Internet Addressing and the Address Registry System

David R. Conrad David.Conrad@Nominum.com Nominum, Inc.

Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
- Registry Policies and Procedures
- Summary

Internet Addresses

- Any device wishing to use Internet protocols must have at least on Internet address
 - IPv4: 32 bit value
 - IPv6: 128 bit value
- These addresses provide dual functionality
 - Identifying (naming) an end point
 - Describing the path to reach that end point

The Beginning

- Back when the Internet protocols were first being designed, there was a big argument between fixed length and variable length addresses
 - Fixed length will always be limited
 - But if you make it big enough, no one will notice
 - Variable length will always take more cycles to proces
 - But there are tricks you can play to minimize the difference
- The decision was made for fixed, 32 bit addresses
 - Rumor has it, by a flip of a coin...

IP version 4 Addresses

- 32 bit unsigned integers
 - possible values 0 4,294,967,295
- Typically written as a "dotted quad of octets"
 - four 8 bit values each having a range of 0-255 separated by "."
 - For example, 202.12.28.129 can be written as below

Internet Addresses

A subset of IPv4 addresses

- Just one of an infinite number of subsets, albeit an important one
- Guaranteed globally unique by the IANA
 - Generally allocated by delegated authorities such as Internet service providers or regional registries
 - Assumed to be routable
 - Bad assumption
- Partitioned into two parts
 - A host part that identifies a particular machine on a local or wide area network
 - A network part that gives routers information how to get to the local or wide area network via the Internet

Internet Address Structure

- Originally, the architects of the Internet thought 256 networks would be more than enough
 - Assumed a few very large (16,777,216 hosts) networks
 - They were wrong (in case you were wondering)
- Addresses were partitioned as below
 - 8 bit network part, 24 bit host part

Classfull Addressing

Original addressing plan too limiting

- More than 256 networks with many fewer hosts than 224
- Solution was to create address classes

	Network Part		Host Part	
Class A 128 networks 16,777,216 hosts				
	Network Part		Host Part	
Class B		γ		
16,384 networks 65,536 hosts	10			
Network Part Host Part				
Class C 2,097,152 networks 256 hosts				Host Part
	(Y	
	110			
Class D				
Multicast				
268,435,456 Addresses	1 1 1 0			
Addresses				
Class E Reserved				
268,435,456 Addresses				

The Problem

- Class A way too big
 - Originally, the TCP/IP architects thought there would be many networks, and each network would have many hosts.
 - They were wrong
- Class B too big
 - Even 65536 host addresses is too many in most case
 - Imagine 65534 hosts all responding to a broadcast
- Class C too small
 - Most sites initially connecting to the Internet were larg Universities, 256 was too small for them

Subnetting

- Classfull addressing was a better fit than origina
 but class A and B networks impossible to manage
- Solution was to partition large networks internall into sub-networks (subnets)
 - Typically "class C" (8 bit host part) sized subnets although variable length subnets used too

Classless Addressing

- Forget what I just told you
 - Classfull addressing is officially "Bad"™
 - 3 sizes just don't fit all -- very wasteful
- Better solution is to use variable length partitioning between the host and network parts
 - Actual partitioning for a site provided by routing protocol
 - notation is dotted quad followed by a "/" and the network part length, e.g., 202.12.28.129/26 → First host on 64 host network starting at 202.12.28.128
- No need for subnets

Example of Classless Addressing

Prefix 202.12.28.0/22

- 1024 host addresses
- announced as a single network

Consists of 7 subnets

- 202.12.28.0/25

- 202.12.28.128/26
- 202.12.28.192/26
- 202.12.29.0/24
- 202.12.30.0/24
- 202.12.31.0/25
- 202.12.31.128/25

Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
- Registry Policies and Procedures
- Summary

The Address Registries

- In order to assure global uniqueness for address, a "registry" of allocated addresses is used
- Over time, the role of the registries has changed
 - From a simple accounting role to one with significant policy making capabilities.

History

- Back when IP addresses first started being allocated, Jon Postel at USC ISI kept a record of which site had which (class A sized) network block
- This function was formalized into the "Internet Assigned Numbers Authority" in the early 80's

The Internet Assigned Numbers Authority

- The IANA was (is) the parent of all regional registries and top level domain name administrators
 - In some context at least, the IANA can be said to "own" all administrative resources on the Internet
 - Hands out all globally unique numbers (IP addresses, protocol numbers, port numbers, object Ids, etc.)
- The IANA is now a "function" of ICANN – Still at USC ISI
- Administration of the address registry has been sub-delegated to the "Registries"

Registry History

First NIC at Stanford Research Institute (SRI-NIC)

- Located in California (near Stanford University)
- Funded by DOD DARPA
- SRI replaced by GSI in Washington DC area
 - Lowest bidder
 - Unpleasant transition
 - DOD DCA provided funding
- NSF issued InterNIC 5 year Cooperative Agreement
 - Cooperative agreement issued in 1992
 - AT&T, General Atomics, and Network Solutions, Inc. each awarded part of InterNIC

InterNIC History

InterNIC consisted of 3 parts

- Registration Services operated by NSI
- Database and Directory Services operated by AT&T
- Information services operated by General Atomics
- Registration Services provided
 - Domain name registration
 - Address allocation and registration

Meanwhile, In Europe...

- Two organizations, EARN and RARE were investigating internetworking
 - Albeit with the OSI protocol suite
- Around 1989, folks wanting to get work done formed "RIPE"
 - A working group of RARE looking into internetworking with the TCP/IP protocol suite
- An informal group, funded by the EU (via RARE)
 - Established the RIPE Network Coordination Centre around 1990

RFC 1366

- In 1990, RIPE-NCC requested a large block of address space so it could manage allocations for Europe
 - Politically correct rationale: to distribute the address management load
 - The IANA allocated 193/8 and 194/8 to RIPE-NCC
- RFC 1366 was written to formalize the sub-delegation of address allocation authority to "regional registries"
 - Originally, the regional registries were to be agents of InterNIC
 - Not politically viable
 - The regional registries consider themselves peers

Before ICANN

- The regional registries operated under the authority of the IANA
- Allocation policies defined by the operations groups and the IAB/IETF
 - IEPG
 - NANOG/APOPS/EOF
 - IETF CIDRD and ALE Working Groups
- The regional registries self-organized themselves in a bottom-up fashion
 - Authority derived from their memberships

Internet Hierarchy (Bottom Up View)

The US View

- When the Internet commercialized, the US Gov't began to take notice
 - Prior to NSF permitting NSI to charge for domain names, US Gov't involvement was characterized as "benign neglect"
- A top-down model was asserted

Internet Hierarchy (US View)

Enter ICANN

- As a result of the "White Paper" ICANN was given authority over all IP addresses
 - IANA becomes a function of ICANN
- The Address Supporting Organization (ASO) provides advice to ICANN on the management of address resources
- The ASO is comprised of an Address Council
 - Each regional registry provides 3 people to the AC
- Uncomfortable mixture of bottom-up and top-down models

ICANN Organizational Chart

Who Cares?

- The regional registries can still believe they gain their authority from their members
- ICANN is seen as a formalization of the IANA
 - provides legal and political authorization
- The registries continue to operate as they have in the past
 - The ASO may play a role in policy formalization

Registry Hierarchy

Regional Registries

Registries allocate numbers

- Internet addresses
 - (plus in-addr.arpa domains)
- Autonomous System Numbers
- Currently three regional registries exist
 - APNIC, ARIN, RIPE-NCC
 - All are self-funded
 - ICANN may create others as needs arise
 - AfriNIC and LATNIC are fairly well along

Regional Registries (cont'd)

- Regional Registries are NOT regulatory bodies
 - They do not "license" ISPs
 - This is a national governmental issue
 - They are not the authority for who can or cannot connect to the Internet
 - Anyone can who is permitted by law in their country
 - They cannot control any organization
 - So complaining to them is pretty pointless

Regional Registry Funding

- Historically, Internet registries have been funded by the US government
 - Either NSF or DoD
- RFC 1366 specified the creation of regional registries
 - But didn't indicate how they would be funded
- All 3 regional registries have a membership model that provides funding
 - APNIC and RIPE's funding is almost exclusively membership fees
 - Most of ARIN's money comes from allocation fees

APNIC

- Started as an APCCIRN/APEPG Pilot Project in Sept., 1993, received address space from IANA in April, 1994, Incorporated in April 1996
- Membership based organization with tiers (very large, large, medium, small) depending on total amount of APNIC allocated address space use

Used to be self-determined

- Has a staff of 15
- Located in Brisbane, Australia
- More info: see http://www.apnic.net

RIPE-NCC

Created in 1990 as the IP networking special interest group of RARE, a EU funded group working to deploy OSI networks in Europe

- Incorporated in 1998

 Membership based organization with a tiers (large, medium, small) depending on total amount of address space used (complex formula)

Used to be self-determined

- Has a staff of about 50
- Based in Amsterdam, The Netherlands
- More info: see http://www.ripe.net

ARIN

- Incorporated in 1998 with seed funding from NSI (InterNIC), took over address allocation functions performed by InterNIC (NSI Registration Services)
- Flat membership fee
 - Only small part of income
- Allocation fees dependent on amount of address space consumed within the last year
- Has a staff of around 25
- Based in Chantilly, US (near Washington, DC)
- More info: http://www.arin.net

Local Internet Registries

- Regional Registries delegate authority to "Local Internet Registries" to allocate resources
 - Usually Internet Service providers
 - Sometime confederations of service providers
 - Sometimes national level Internet registries
 - APNIC and ARIN only
- Local Internet Registries sub-delegate to customers
- Each Local Internet Registry may have its own rules, but all must follow the rules of their parent registry

Creation of New Regional Registries

- An issue for the ASO
- Regional Registries are expected to be continental in scope
- Potential regional registries must demonstrate consensus in their region that they should be the regional registry for that region
 - A bit vague on how this is done

Overview

- An Introduction to Addressing
- An Introduction to the Address Registries
 Registry Policies and Procedures
 Summary

Address Delegation Policies

- RFC 2050 provides the guidelines for address delegations.
- Goals of the Registry policies are:
 - Conservation
 - IPv4 is a limited resource
 - Routability
 - Limit the addition of new prefixeis to the routing system
 - Registration
 - Keep track of delegations
- The first two of these often conflict

Allocation Framework

- Addresses are allocated to LIRs for subdelegation
 - Typically, this is address space delegated to ISPs so they can give their customers address space
 - Occasionally (at APNIC and ARIN), allocations are made to non-ISPs (confederations or national Internet registries)
- Allocations will be made by RIRs if the organization is at an Internet Exchange point or is multi-homed

Guidelines for Allocations

Don't break up a block

- Assignments made from the allocation should be treated as "loans" of address space from an ISP to a customer
 - The customer should return the address space when they change providers
- Address space is allocated on CIDR boundaries
 - Sub-delegations should be aggregated
- LIRs sub-delegate based only on justified requirements
- Sub-delegations must be registered at the RIR
 - Known as "reassignments" or "SWIPs"

Slow-Start

All RIRs use "slow-start" for allocations

- Delegate a small block
- Additional delegations occur when that block is consumed and reassigned
 - Typically doubling the amount of address space each time
- This policy is to improve address space utilization efficiency
 - Doesn't conform to ISP market projections
 - Often a source of friction

Assignment Framework

- The delegation of address space to an end enterprise for its internal use
 - Address space is not sub-delegate as in the case of allocations
- Occurs from a RIR when
 - The organization is not connecting to an ISP and cannot use private address space
 - The organization is multi-homed
 - The request is very large
- All others should get address space from their ISP

Common Requirements

- Must document 25% immediate utilization, 50% utilization within 1 year
- Provide Network Engineering plans
 - Not business plans
 - Includes network deployment plans
 - Basically document how the address space will be used and when
 - Reference previous delegation history (if any)

Specific Registry Quirks

APNIC

- May refer organizations to a national Internet registry
- Confederations
- ARIN
 - Will not allocate address space unless the organization can demonstrate existing /21 utilization
 - May refer to a national Internet registry

Issues

- Divergent policies
 - What you get depends on where you are
- Registries-as-police
 - Registries have very few tools
- Scarcity vs. Routability
 - Which is most important
- IPv6

Summary

- IPv4 addresses are considered a limited resource that must be managed
- The Internet Registry system has evolved over time to provide that management
- Currently, 3 regional registries serve the world's address allocation needs
 - New regional registries are in the process of being formed
 - Significant issues continue to face the registry system