BGP4

Ravi Chandra cisco Systems

Border Gateway Protocol (BGP)

- Introduction to BGP
- BGP Peer Relationship
- BGP Attributes
- Applying Policy with BGP
- Putting it all together

Autonomous System (AS)

- Collection of networks with same policy
- Single routing protocol
- Usually under single administrative control

Autonomous System...

- Identified by 'AS number'
- Examples:
 - service provider
 - multihomed customers
 - anyone needing policy descrimination

Routes learnt from other autonomous systems

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal prefixes
- Examples—OSPF, ISIS, EIGRP...

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- Decoupled from the IGP
- Current EGP is BGP

Why Do We Need an EGP?

 Scaling to large network Hierarchy Limit scope of failure

Policy

Control reachability to prefixes

Interior vs. Exterior Routing Protocols

- Interior
 - Automatic discovery
 - Generally trust your IGP routers
 - Routes go to all IGP routers

- Exterior
 - Specifically configured peers
 - Connecting with outside networks
 - Set administrative boundaries

Demilitarized Zone (DMZ)

- no path information
- very versatile
- low protocol overhead
- high maintainance
- very bad convergence time
- requires manual configuration

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the IP forwarding table
- Policies applied by influencing the best path selection

Internal BGP Peering

- BGP peer within the same AS
- Not required to be directly connected
- IBGP neighbors should be fully meshed

External BGP Peering

- Between BGP speakers in different AS
- Should be directly connected

Basic BGP commands:

- router bgp <as-number>
- neighbor <ip address> remote-as <as-number>
- show commands
 - show ip bgp summary
 - show ip bgp neighbors

- Define a static route
- Bring the route into BGP table
- Verify if route is in the BGP table

IBGP peering

Verify IBGP peering

• EBGP peering

Verify EBGP peering

- No need for BGP
- Point default towards the ISP
- ISP advertises the stub network
- Policy confined within ISP policy

- Internal BGP used with IGP
- IBGP only between border gateways
- Only border gateways speak BGP
- Exterior routes must be redistributed into IGP or use defaults

Common Service Provider Network

Service Provider Network

- IBGP used to carry exterior routes
- IGP carries local information only
- Full IBGP mesh is required

Stable IBGP Peering

- Peer with loop-back address
- IBGP session is not dependent on a single interface
- Loop-back interface does not go down

Peering to Loop-Back Address

Stable IBGP peering

Verify IBGP peering

- withdrawn routes
- attributes
- advertised routes

BGP: Update Messages..

- Network reachability information
- network prefix/length
- Example :
 - 131.108/16
 - 131.108.0.0 255.255.0.0
 - 198/8
 - 198.0.0.0 255.0.0.0

- What is an attribute?
- AS path
- Next hop
- Local preference
- Multi-Exit Discriminator (MED)

BGP community

Others

What Is an Attribute?

- Describes the characteristics of prefix
- Transitive or non-transitive
- Some are mandatory

Look at live routing table

next hop in EBGP session

Third Party Next Hop

More efficient

Next hop not changed

6

AS 300

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Allows IGP to make intelligent fowarding decision

IBGP nexthop exercise

- Local to an AS
- Used to influence BGP path selection
- Path with highest local preference wins

Local Preference exercise

Multi-Exit Discriminator

- Non-transitive
- Used to convey the relative preference of entry points
- Influences best path selection
- Comparable if paths are from same AS
- IGP metric can be conveyed as MED

- Conveys the origin of the prefix
- Three values—igp, egp, incomplete
- Influences best path selection

- BGP attribute
- Used to group destinations
- Represented as an integer
- Each destination could be member of multiple communities
- Community attribute carried across ASs
- Useful in applying policies

Community

Applying Policy with BGP

- Policy-based on AS path, community or the prefix
- Rejecting/accepting selected routes
- Set attributes to influence path selection

BGP Path Selection Algorithm

- Do not consider IBGP path if not synchronized
- Do not consider path if no route to next hop
- Highest weight (local to router)
- Highest local preference (global within AS)
- Shortest AS path

- Lowest origin code IGP < EGP < incomplete
- Multi-Exit Discriminator

Considered only if paths are from the same AS

Prefer EBGP path over IBGP path

- Path with shortest nexthop metric wins
- Lowest router-id

BGP Path Selection

BGP TABLE IN AS-201: 192.68.1.0/24 150.1.1.1 160.1.1.1

A's IP TABLE: 192.68.1.0/24 150.1.1.1

B's IP TABLE: 192.68.1.0/24 160.1.1.1

C's IP TABLE: Either one depending on IGP metric to nexthop

 Many situations possible Multiple sessions to same ISP Secondary for only backup Load share between primary and secondary Selectively use different ISPs

Multiple Sessions to an ISP

- EBGP to loopback address
- EBGP prefixes learnt with loopback address as nexthop
- Parallel paths to loopback address allows load sharing

Multiple Sessions to an ISP

- Simplest scheme is to use defaults
- Learn/advertise prefix for better control

Multiple Session to ISPs

- Difficult to achieve load sharing
- Point default towards one ISP
- Learn selected prefixes from second ISP
- Modify the number of prefixes learnt to acheive acceptable loadsharing

Putting it all together

- Your network is going to grow at an exponential rate
- Design to scale... but be prepared to reorganize from scratch
- Don't be afraid of change!

- Most network redisigns are only configuration changes

Putting it all together

- Requirements for IGPs for backbones
- IGP connects your backbone together, not your client's routes
- Must
 - converge quickly
- Should
 - carry netmask information

Putting it all together... **Connecting to a customer**

- Static routes
 - you control directly
 - no route flaps
- Shared routing protocol or leaking
 - You must filter your customers info
 - route flaps
- BGP for multihomed customers

Putting it all together **Building your backbone**

- Keep it simple
- redundancy is good, but expensive
- use an IGP that carrys mask information
- use an IGP that converges quickly
- use OSPF, ISIS or EIGRP

Putting it all together Connecting to other ISPs

- Use BGP4
- advertise only what you serve
- take back as little as you can

Putting it all together The internet exchange

- Long distance connectivity is expensive
- Connect to several providers at a single point

