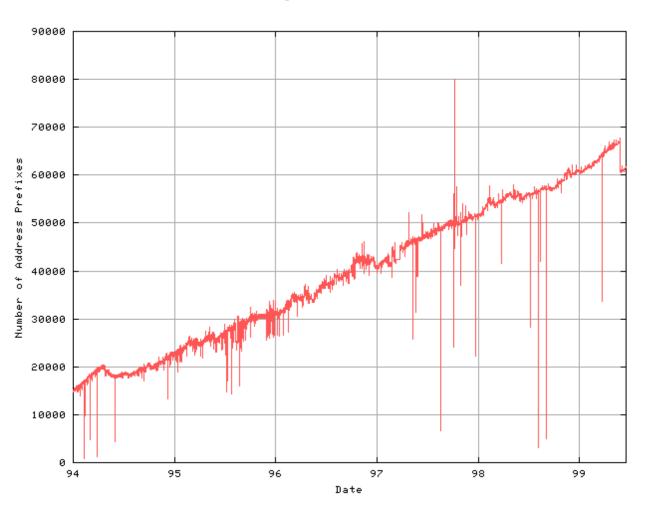
Addressing Issues

David Conrad

drc@isc.org

Internet Software Consortium


Addressing Issues

- Routability, hierarchical addressing, and address ownership
- Address Scarcity
- Allocation Policies
- Static vs. Dynamic/Private vs. Global Addressing
- Multi-homing and Virtual Hosting
- Confederations/National NICs

Routability

- The Internet is growing fast
 - Faster than router vendors can keep upgrading router technology (and keep router prices reasonable)
- Every address allocated outside a service provider block must show up in the global routing tables
 - The number of entries in those tables are very limited
 - Every update to those entries must be propagated globally
- Some service providers are filtering out smaller globally routed allocations
 - Smaller allocations affect fewer people and tend to "flap" more
 - If ISPs don't filter, their routers melt

Internet Routing Table Growth

Hierarchical Addressing

- The only way high performance large networks can get larger is if you hide information
 - Details always take time/resources to process
- One way to hide information is to aggregate it
 - +65 aggregates all telephone numbers in Singapore
 - "Ulaan Bataar", Mongolia aggregates all postal addresses in Ulaan Bataar
 - 202.12.28.0/22 aggregates all 1024 hosts from 202.12.28.0 -202.12.31.255
- Internet addresses are hierarchically assigned
 - Service providers get a block from a regional registry
 - The ISP's customers get address from that ISP block
 - The ISP customer's customers get addresses from the customer block

Address Ownership

- The problem with hierarchical addressing?
 - If a site changes providers, it should renumber out of the old provider's address space into the new
 - If not, the non-aggregatable addresses be treated the same as top level aggregated addresses
 - i.e., must show up in the global routing tables
 - This implies the service providers own the addresses not the customers
- Renumbering can be expensive
 - Dynamic addressing can help

Address Scarcity

- The Internet is growing fast
 - There are concerns that 4,294,967,295 addresses are not sufficient
 - Especially given an average utilization < 1%
 - Some people think we have already run out of IPv4 addresses
- However:
 - Only about half of the address space has been used
 - New technologies (NAT, ALG) reduce the need for addresses
 - As address gets scarcer, organizations will have incentive to use it more efficiently

Address Registry Policies

- RFC 2050 documented address allocation procedures
 - Documents current practice
 - Took two years to write
 - Makes no claims whether current practice is a good idea or not
- Policies documented by RFC 2050 were defined by the "Internet Community"
 - An uneasy balance between end users and service providers
- Official authority is the IANA
 - But where does the IANA get its authority?

Static vs. Dynamic Addressing

- Dynamic addressing
 - When dialing up to the Internet, addresses assigned when the modem connects
 - LANs can be configured so that machines get Internet addresses when they boot
- Efficient use of address space
 - Only those machines on the net have addresses
- Can be inconvenient

- Static Addressing
 - Addresses are assigned to the user or the machine, regardless of whether it is connected
- Can be convenient as Internet connectivity OK over physical disconnect/reconnect
- Can be less efficient in use of address space
 - Particularly if users have multiple dialup accounts

Private vs. Global Addressing

- Private addressing
 - Use of networks that cannot be routed on the Internet with address translation techniques to provide Internet connectivity
- Very efficient
 - Only one Internet address necessary for an entire site
- Controversial
 - Thought to break fundamental TCP/IP assumptions
 - Adds another point of failure

- Global Addressing
 - Using normal Internet addresses
- Can be particularly wasteful for sites which do not connect to the Internet or do so through firewalls
 - Don't really need global addresses for this
- Provide most flexibility in case site decides to connect to the Internet

Multi-homing

- Multi-homing is defined as a single site having multiple connections to the Internet
 - Usually done for reliability reasons
 - But may not offer the level of reliability thought
- For multi-homing to be effective, addresses must be in the global routing tables
 - The less aggregated the address, the more likely it will still be visible if part of the network goes away
 - But, filters still apply...

Virtual Hosting

- The WWW protocol (HTTP 1.0) is broken
 - Each web site requires an additional IP addresses, even though a single machine can host multiple web sites
 - Results in a single machine having hundreds or thousands of addresses
- Fixed in HTTP 1.1
 - But a lot of browsers won't understand 1.1 for a while

Confederations/National NICs

- APNIC and ARIN have an intermediate layer between the regional registry and the ISP
 - Confederations of service providers, perhaps organized by national boundaries (national NICs)
- Can provide better local support
 - For the same reason the regional registries were created
- Can contribute to the global routing load
 - Unless the confederations only assign to ISPs

Internet Protocol Version 6

- People were (are) very worried about running out of address space
 - 2³² just doesn't go as far as it used to...
- IPv6 fixes this problem and some others
 - 128 bits of address space
 - 340,282,366,920,900,000,000,000,000,000,000,000+ possible addresses
 - Simplifies IP header, adds more easily processed options, includes "flow tags"
- Prototype implementations available from most vendors
 - ISPs less than enthusiastic
 - IPv6 does not solve routing problems

Summary

- Internet Addresses are a critical resource managed via a hierarchy of allocation entities
 - ISPs are the normal allocators for most
 - Regional registries generally allocate to ISPs
- Efficiency of use predominates concerns
 - Primarily due to routability requirements
 - Also concerns about availability of addresses
- IPv6 resolves the availability issue
 - But doesn't address the routability issue