
Security

Geoff Huston
Chief Scientist, APNIC



Security

Geoff Huston
Chief Scientist, APNIC

Insecurity!



Which Bank?

Let’s start with a simple example:
Why should you pass your account and password to this web site? It might look like your bank, but frankly it could just as easily be a fraudulent site 
intended to steal your banking credentials. Why should you trust what you see on the screen?



Which Bank? My Bank!

Ok – its not a random example. It’s the online bank I use! But the same question is still there. Why should I trust this web page?



Which Bank? My Bank!

I hope!



Security on the Internet

How do you know that
 you are really 

going to where you th
ought you were 

going to?

Its trivial to mock 
up a web page to 
look like another



Security on the Internet

How do you know that
 you are really 

going to where you th
ought you were 

going to?

Its trivial to mock 
up a web page to 
look like another

So why should I enter my 
username and password into this 
particular screen?

And what does this padlock icon 
really mean?



Opening the Connection: First Steps

Client:
   DNS Query:
          www.commbank.com.au?

DNS Response:
23.215.58.96

   

 TCP Session:
          TCP Connect 23.215.58.96, port 443 

 



Hang on…
$ dig -x 23.215.58.96 +short
a23-215-58-96.deploy.static.akamaitechnologies.com.



Hang on…
$ dig -x 23.215.58.96 +short
a23-215-58-96.deploy.static.akamaitechnologies.com.

That’s not an IP addresses that was allocated to the Commonwealth Bank!

The Commonwealth Bank of Australia has the address blocks 
140.168.0.0 - 140.168.255.255 and 
203.17.185.0 - 203.17.185.255



Hang on…
$ dig -x 23.215.58.96 +short
a23-215-58-96.deploy.static.akamaitechnologies.com.

That’s an Akamai IP address

And I’m NOT a customer of the Internet Bank of Akamai!

Why should my browser trust that 23.215.58.96 is really the authentic web site for the Commonwealth 
Bank of Australia, and not some dastardly evil scam designed to steal my passwords and my money?

And why should I trust my browser?



The major question…
How does my browser tell the difference between an intended truth and a 
sneaky lie?



It’s all about cryptography



Public Key Cryptography

Pick a pair of keys such that:
– Messages encoded with one key 

can only be decoded with the 
other key

– Knowledge of the value of one 
key does not infer the value of 
the other key

– Make one key public, and keep 
the other a closely guarded 
private secret



This is important

So I will repeat it:
– Using public/private key cryptography requires a pair of keys (A,B) such that:

• Anything encrypted using key A can ONLY be decrypted using key B, and no other 
key

• Anything encrypted using key B can ONLY be decrypted using key A, and no other 
key

• Knowing the value of one key WILL NOT let you work out the value of the other 
key anytime soon!

This form of asymmetric cryptography lies at the heart of the 
Internet’s security framework



Public/Private Key Pairs

If I have a copy of your PUBLIC key,  and you encrypt a message 
with your PRIVATE key, and I can decrypt the message using your 
public key 
• I know no one has tampered with your original message
• I am confident that no one else has seen the contents of the 

message while it was passed through the network
• And I know it was you that sent it.
• And you can’t deny it.



Public Key Certificates

But how do I know this is YOUR public key?
– And not the public key of some dastardly evil agent pretending to be you?

• I don’t know you
• I’ve never met you
• I have absolutely no clue if this public key value is yours or not!



Public Key Certificates

What if I ‘trust’ an intermediary*?
– Who has contacted you and validated your identity and conducted a ‘proof of 

possession’ test that you have control of a private key that matches your public key
• Then if the intermediary signs an attestation that this is your public key (with their 

private key) then I would be able to trust this public key
• This ‘attestation’ takes the form of a “public key certificate”

* If you have ever used “public notaries” to validate a document, then this is a digital equivalent



I trust that this is the web site of the 
Commonwealth Bank because I used 
the Commonwealth Bank’s public key to 
sete up the encrypted connection to the 
server.

And I can trust that this is the 
commonwealth Bank’s public key 
because I trust that Entrust has 
performed a number of checks before 
issuing a public key certificate for this 
public key 



And another example

• Lets take www.apnic.net and look at that certificate

http://www.apnic.net/




This certi
ficate wa

s issued 
to Cloudflare

, not 

APNIC, and it 
is associ

ated with
 the nam

e 

“www.apn
ic.net thr

ough the
 use of 

a Subjec
t 

Alternati
ve Name in the 

certificat
e



And another

• Let’s look at my own web site, with its certificate issued by 
Let’s Encrypt



This certi
ficate bi

nds a pu
blic key 

to a dom
ain 

name withou
t any at

testation
 to the 

identity 

of the n
ame “holder

”



Spot the Difference
Safari

Chrome



Spot the Difference

This web site’s certificate was issued to an organisation 
called the “Commonwealth Bank of Australia” located in 
Sydney, Australia

This web site’s certificate was issued to “Cloudflare Inc” 
located in San Francisco, USA!!

This web site’s certificate says nothing about the entity 
that holds the public key associated with this domain 

Safari

Chrome



Spot the Difference
• The certification processes taken to issue the certificate were different in 

each of these cases. 
– One confirmed the identity of the public key holder as well as their association 

with the domain name
– The second used a proxy agent and there is no association between the entity 

domain name that is certified here and the proxy agent
– The third simply associates a public key with a domain name without any form 

of identification of the holder of the domain name
• They all have different levels of trustworthiness, yet they all display to the 

user in exactly the same way
– Because when we tried to differentiate these different levels of trust (such as 

painting the padlock icon in green) nobody understood what was going on and 
nobody cared anyway!



Moving on…

• Ok, so the certificate system is a mess, but TLS still works, 
right?

• So, lets look at the way TLS sets of a secure session



Secure Connections using TLS

https://rhsecurity.wordpress.com/tag/tls/



Secure Connections using TLS

https://rhsecurity.wordpress.com/tag/tls/



Secure Connections using TLS

https://rhsecurity.wordpress.com/tag/tls/





Secure Connections using TLS

https://rhsecurity.wordpress.com/tag/tls/

How
 doe

s th
e cli

ent

reco
gnis

e th
is ce

rtifi
cate

as t
he “

righ
t” c

ertif
icate

?



How did my 
browser know that 
this is a “valid” 
cert?



Domain Name Certification

• The Commonwealth Bank of Australia has generated a key pair
• And they passed a certificate signing request to a company called “Entrust” 

in the US
• Who was willing to vouch (in a certificate) that the entity is called the 

Commonwealth Bank of Australia and they have control of the the domain 
name  www.commbank.com.au and they have a certain public key

• So, if I can associate this public key with a connection then I have a high 
degree of confidence that I’ve connected to an entity that is able to 
demonstrate knowledge of the private key for www.commbank.com.au, as 
long as I am prepared to trust Entrust and the certificates that they issue

• And I’m prepared to trust them because Entrust NEVER lie!

http://www.commbank.com.au/
http://www.commbank.com.au/


Domain Name Certification

• The Commonwealth Bank of Australia has generated a key pair
• And they passed a certificate signing request to a company called “Entrust” 

in the US
• Who was willing to vouch (in a certificate) that the entity is called the 

Commonwealth Bank of Australia and they have control of the the domain 
name  www.commbank.com.au and they have a certain public key

• So, if I can associate this public key with a connection then I have a high 
degree of confidence that I’ve connected to an entity that is able to 
demonstrate knowledge of the private key for www.commbank.com.au, as 
long as I am prepared to trust Entrust and the certificates that they issue

• And I’m prepared to trust them because Entrust NEVER lie!How do I know that? Why should I trust them?

http://www.commbank.com.au/
http://www.commbank.com.au/


Local Trust

The cert I’m being 
asked to trust was 
issued by a certification 
authority that my 
browser already trusts 
– so I trust that cert!



Local Trust
These Certificate Authorities are listed in my computer’s trust set because they claim 
to operate according to the practices defined by the CAB industry forum (of which 
they are a member) and they never lie!



Local Trust
These Certificate Authorities are listed in my computer’s trust set because they claim 
to operate according to the practices defined by the CAB industry forum (of which 
they are a member) and they never lie!

So som
ebody (

I have 
never m

et) pai
d someone 

else (w
hom I have

 also n
ever m

et) som
e  money 

and the
n my brow

ser tru
sts eve

rything
 they 

have ev
er done

 and ev
erythin

g they 
will eve

r do 

in the 
future 

– ok?



Local Trust or Local Credulity*?

Wow!

Are they all trustable?

*



Local Credulity

Wow!

Are they all trustable?

Evid
ently

 Not!



Local Credulity

Wow!

Are they all trustable?

Evid
ently

 Not!



Never?



Well, hardly ever
http://arstechnica.com/security/2017/0
1/already-on-probation-symantec-
issues-more-illegit-https-certificates/



Well, hardly ever



These are isolated events

No they’re not: 
        https://www.feistyduck.com/ssl-tls-and-pki-history/



These are isolated events

No they’re not: 
        https://www.feistyduck.com/ssl-tls-and-pki-history/



With unpleasant consequences when it all 
goes wrong



With unpleasant consequences when it all 
goes wrong

International Herald Tribune 
Sep 13, 2011 Front Page





What’s going wrong here?



What’s going wrong here?

• The TLS handshake cannot specify WHICH CA should be used 
by the client to validate the digital certificate that describes 
the server’s public key

• The result is that your browser will allow ANY CA to be used to 
validate a certificate!



What’s going wrong here?

• The TLS handshake cannot specify WHICH CA should be used 
by the client to validate the digital certificate that describes 
the server’s public key

• The result is that your browser will allow ANY CA to be used to 
validate a certificate!

WOW! That’s aweso
mely bad!



What’s going wrong here?

• The TLS handshake cannot specify WHICH CA 
should be used by the client to validate the 
digital certificate that describes the server’s 
public key

• The result is that your browser will allow ANY 
CA to be used to validate a certificate!

WOW! That’s aweso
mely bad!

Here’s a lock – it might be the 
lock on your front door for all I 
know.

The lock might LOOK secure, 
but don’t worry – literally ANY 
key can open it!



What’s going wrong here?

• There is no incentive for quality in the CA 
marketplace

• Why pay more for any certificate when the 
entire CA structure is only as strong as the 
weakest CA

• And your browser trusts a LOT of CAs!
– About 60 – 100 CA’s
– About 1,500 Subordinate RA’s
– Operated by 650 different organisations

See the EFF SSL observatory
http://www.eff.org/files/DefconSSLiverse.pdf



In a Commercial Environment

Where CA’s compete with each other for market share
And quality offers no protection
Then what ‘wins’ in the market?

Sustainable

Trust
ed

Resilient

Privacy

Secure

?



In a Commercial Environment

Where CA’s compete with each other for market share
And quality offers no protection
Then what ‘wins’ in the market?

Cheap
!Sustainable

Trust
ed

Resilient

Privacy

Secure



But its all OK

Really.



But its all OK

Really.

• Because ‘bad’ certificates can be revoked
• And browsers always check revocation status of certificates 

before they trust them



Always?



Ok – Not Always. 
Some do. 

Sometimes.

https://www.potaroo.net/ispcol/2020-03/revocation.html



So we can’t count on revocation

• If we can’t revoke certificates, then we need to reduce 
certificate lifetimes 



So we can’t count on revocation

• If we can’t revoke certificates then we need to reduce 
certificate lifetimes

• But we are not doing that! 



So we can’t count on revocation

• If we can’t revoke certificates then we need to reduce 
certificate lifetimes 

• What’s a “safe” certificate lifetime? 



So we can’t count on revocation

• If we can’t revoke certificates then we need to reduce 
certificate lifetimes 

• What’s a “safe” certificate lifetime?
• If we want certificate lifetimes of 2 hours or less then we need 

to think hard about how to achieve this



What can we do?



How can we make certificates 
better?

Option A:  Take all the money out of the system!



How can we make certificates 
better?

Option A:  Take all the money out of the system!

Will the automation of the C
ert 

Issuance couple
d with a totally

 free 

service make the overall 
environment 

more or less sec
ure?

I think we alre
ady know the a

nswer!



How can we make certificates 
better?

Option B:  White Listing and Pinning with HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/
transport_security_state_static.json

https://code.google.com/p/chromium/codesearch
https://code.google.com/p/chromium/codesearch


How can we make certificates 
better?

Option B:  White Listing and Pinning with HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/
transport_security_state_static.json

Its not a totall
y insane idea -

- until you 

realise that it 
appears to be c

ompletely 

unscaleable!

Its just Google protecting
 itself and no 

one 

else

https://code.google.com/p/chromium/codesearch
https://code.google.com/p/chromium/codesearch


How can we make certificates 
better?

Option B:  White Listing and Pinning with HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/
transport_security_state_static.json

Its not a totall
y insane idea -

- until you 

realise that it 
appears to be c

ompletely 

unscaleable!

Its just Google protecting
 itself and no 

one 

else

https://code.google.com/p/chromium/codesearch
https://code.google.com/p/chromium/codesearch


How can we make certificates 
better?

Option C:  Certificate Transparency



How can we make certificates 
better?

This is true

This is a fail

Option C:  Certificate Transparency



How can we maske certificates 
better?

Option C:  Certificate Transparency

Its just s
o broken

These tran
sparency 

logs are a
 case of 

same week se
rvice in a

 

millisecond 
world -- 

Assuming anyon
e looks in

 the first
 place!

Cert Transparen
cy is prob

ably wors
e than a 

placebo!



How can we make certificates 
better?

Option D:  Use the DNS!

www.cafepress.com/nxdomain



Seriously? The DNS?

Where better to find out the public key associated with a DNS-
named service than to look it up in the DNS?
– Why not query the DNS for the HSTS record?
– Why not query the DNS for the issuer CA?
– Why not query the DNS for the hash of the domain name cert?
– Why not query the DNS for the hash of the domain name public key? 



Seriously? The DNS?

Where better to find out the public key associated with a DNS-
named service than to look it up in the DNS?
– Why not query the DNS for the HSTS record?
– Why not query the DNS for the issuer CA?
– Why not query the DNS for the hash of the domain name cert?
– Why not query the DNS for the hash of the domain name public key? 

Who n
eeds

 CA’s 
anyw

ay?



DANE

• Using the DNS to associated domain name public key 
certificates with domain name

RFC6698 
-- You

 shoul
d read

 this!



TLS with DANE

• Client receives server cert in Server Hello
– Client lookups the DNS for the TLSA Resource Record of the domain 

name
– Client validates the presented certificate against the TLSA RR

• Client performs Client Key exchange



TLS Connections

https://rhsecurity.wordpress.com/tag/tls/

Public Key
Cert

DNS Name

DNS TLSA query



Just one problem…

• The DNS is full of liars and lies!
• And this can compromise the integrity of public key 

information embedded in the DNS
• Unless we fix the DNS, we are no better off than before with 

these TLSA records!



Just one response…

• We need to allow users to validate DNS responses for 
themselves

• And for this we need a Secure DNS framework
• Which we have – and it’s called DNSSEC!



DANE + DNSSEC

• Query the DNS for the TLSA record of the domain name and 
ask for the DNSSEC signature to be included in the response

• Validate the signature to ensure that you have an unbroken 
signature chain to the root trust point

• At this point you can accept the TLSA record as the authentic 
record, and set up a TLS session based on this data



DANE + DNSSEC

• Query the DNS for the TLSA record of the domain name and 
ask for the DNSSEC signature to be included in the response

• Validate the signature to ensure that you have an unbroken 
signature chain to the root trust point

• At this point you can accept the TLSA record as the authentic 
record, and set up a TLS session based on this data

Yes, but
 No!



DANE + DNSSEC

DANE validation can be 
SO SLOW!



Or…

Faster validation?



Or … Look! No DNS!

• Server packages server cert, TLSA record and the DNSSEC 
credential chain in a single bundle

• Client receives bundle in Server Hello
– Client performs validation of TLSA Resource Record using the supplied 

DNSEC signatures plus the local DNS Root Trust Anchor without 
performing any DNS queries

– Client validates the presented certificate against the TLSA RR

• Client performs Client Key exchange



Doing a better job

We could do a far better job at Internet Security by moving on from 
X.509 public key certificates:
 Publishing DNSSEC-signed zones
 Publishing DANE TLSA records
 Using DNSSEC-validating resolution
 Using TLSA records to guide TLS Key Exchange 
 Stapling the TLSA + sig bundle into TLS



Doing a better job

We could do a far better job at Internet Security by moving on from 
X.509 public key certificates:
 Publishing DNSSEC-signed zones
 Publishing DANE TLSA records
 Using DNSSEC-validating resolution
 Using TLSA records to guide TLS Key Exchange 
 Stapling the TLSA + sig bundle into TLS

But noth
ing has

 happen
ed for 

more tha
n a dec

ade!

Why not?



Why is this so hard?



Why is this so hard?

We have different goals 
– Some people want to provide strong hierarchical controls on the certificates and 

keys because it entrenches their role in providing services
– Some want to do it because it gives them a point of control to intrude into the 

conversations of their citizens
– Others want to exploit weaknesses in the system to leverage a competitive 

advantage
– Some people think users prefer faster applications, even if they have security 

weaknesses
– Others think users are willing to pay a time penalty for better authentication 

controls 



Why is this so hard?

Because there are so many moving parts?
– In a system that is constructed upon the efforts of multiple systems and multiple providers we 

are relying on someone in charge to orchestrate the components to as working whole

Saturn V Launch Vehicle
Three stage rocket, each built by a different contractor
Each of whom used multiple subcontractors
3 million components
Each supplied by the lowest bidder!



Why is this so hard?

Because we are relying on the market to provide coherence and consistency of 
orchestration across providers? 

– And perhaps that’s the key point here
– Loosely coupled systems will always present windows of vulnerability

• Routing integrity
• Name registration
• Name certification
• Service control

– Effective defence involves not only component defence but also in defending the 
points of interaction between components

– And we find this very hard to achieve when the market itself is the orchestration 
agent



Users and Trust

• Users just want to be able to trust that the websites and services 
that they connect to and share their credentials, passwords and 
content with are truly the ones they expected to be using without 
first studying for a PhD in Network Operational Security

• Somehow we’re missing that simple objective and we’ve interposed 
complexity and adornment that have taken on a life of their own and 
are in fact eroding trust

• And that’s bad!
• If we can’t trust our communications infrastructure, then we don’t 

have a useful communications infrastructure.



What a dysfunctional mess we’ve created!



Can we make it better?

We could do a better job if we knew what we wanted



Can we make it better?

We could do a better job if we knew what we wanted

– Single point of trust for EVERTHING (DNSSEC)
or
– Many points of trust in a highly distributed framework (Web PKI)



Can we make it better?

We could do a better job if we knew what we wanted

– Highly robust validation performed by the client
or
– Fast!



Can we make it better?

We could do a better job if we knew what we wanted

– Single common secure credential infrastructure
or
– Application-specific credentials



Can we make it better?

• Yes, if we could only agree on what we want in the first place!
• And we just can’t agree on that! 



That’s it!

Questions?


