
A Quick look at QUIC

Geoff Huston, Joao Damas,

APNIC Labs

QUIC is…

HTTP
Multistream

TLS
Session Encryption

TCP
Data stream integrity
Congestion Control

HTTP

QUIC
Multistream
Encryption

Data stream integrity
Congestion Control

UDP

IP

HTTP/2 HTTP/3

QUIC is…

A transport level framing protocol that offers applications access to the
basic IP datagram services offered by IP through the use of UDP

All other transport services (data integrity, session control, congestion control) are
shifted towards the application

Support for multi-stream multiplexing that avoids head-of-line blocking
and exploits a shared congestion and encryption state
QUIC also places the transport control fields inside the encryption
envelope, so QUIC has minimal exposure to the network

What TCP needs to be for the Internet of 2022!

Looking for QUIC

• At APNIC we use Ads to perform large scale measurements of
network service capabilities as seen by users
• IPv6 deployment
• DNSSEC validation
• Fragmentation

• Can we use this measurement platform to see the level of use of
QUIC in today’s network?

Setting up QUIC

• Server:
• nginx v1.21.7 with QUIC functions included

• DNS:
• Set up an HTTPS record for each URL with value: alpn=“h3”

• Content:
• Alt-Svc: h3=“:443”

(This second method requires a subsequent query to allow the client to use the Alt-Svc
capability. We perform a 2-second delayed second query for this URL in the measurement
experiment approximately one fifth of the time. We keep the domain name constant and vary
the URL arguments to detect the second fetch.)

• Server:
• nginx v1.21.7 with QUIC functions included

• DNS:
• Set up an HTTPS record for each URL with value: alpn=“h3”

• Content:
• Alt-Svc: h3=“:443”

Setting up QUIC

First Fetch

Second Fetch

QUIC Use – June/July 2022

About 3.5% of
users use HTTP/3
for the second
fetch

About 1% of users
are seen to use
HTTP/3 on first
fetch

This result looks wrong!

• Some 90% of the browsers we “see” via the ad campaign identify
themselves as Chrome
• And Chrome has been supporting a switch to QUIC via the Alt-Svc

directive since 2020

This result looks wrong!

• Some 90% of the browsers we “see” via the ad campaign identify
themselves as Chrome
• And Chrome has been supporting a switch to QUIC via the Alt-Svc

directive since 2020
• So we should be seeing a far higher level of QUIC use than 3.5%

Hmm
• What do others see?

Cloudflare’s Numbers

Our QUIC use numbers are far lower than other published measures

Maybe 2 fetches is not enough?

• So we changed the experiment to fetch the same URL 7 times with a 2
second pause between each fetch
• Surely this would flush out QUIC use!

Nope!

• No change!

• The problem appears to be related to HTTP/2 and persistent
connections
• When the browser performs the followup fetch the connection is

likely still open and then the browser will prefer to use the open
connection over opening up a new QUIC connect
• So on the NGINX server let’s set the keepalive session parameter to 0

seconds
• Yes?

Still Nope!

• That was worse!
• We didn’t see any use of QUIC at all
• Nothing. Nada. Not even a little bit.

• Seems that if you set keepalive to zero then NGINX disables QUIC
completely!
• So we then set the session keepalive parameter to 1 second
• Better?

QUIC Use – June - August 2022

keepalive=0 keepalive=1

Change from 1 to 7 repeat fetches

Yes!

• We are seeing a 57% QUIC on the repeat fetches, corresponding to a
rate of 63% QUIC use of Chrome clients

Yes, and No

• We are seeing a 57% QUIC on the repeat fetches, corresponding to a
rate of 63% QUIC use of Chrome clients
• But at the same time the first fetch use dropped from 1% to minimal

levels
• Which appears to be an issue with Safari, and iOS (and MAC OS)
• Chrome and Firefox were also behaving erratically across the 7 repeat

fetches flipping between HTTP/2 and HTTP/3

QUIC Use – August 2022

QUIC Use – August 2022

QUIC Use – August 2022

Huh?

Yes, and No

• We are seeing a 57% QUIC on the repeat fetches, corresponding to a
rate of 63% QUIC use of Chrome clients
• But at the same time the first fetch use dropped from 1% to minimal

levels
• Which appears to be an issue with Safari, and iOS (and MAC OS)
• Interestingly, Safari technology preview (release 150, safari 16.0,

webkit 17614.1.22.1.1) does not show this behaviour within our test
rig
• So we were unsure what is going on here between Safari clients and

our NGINX-based QUIC server

Its all about Keepalive Timers

• After much searching under many rocks we are advised (many thanks
to Ryan Hamilton, Martin Thompson and Tommy Pauly for various
clues at this stage) that a server keepalive timer value of 1 is also a
Really Bad setting!
• The server is dropping the QUIC connection too aggressively and the

browser client drops back to HTTP/2
• The default value of 65 seconds for the server keepalive interval

seems to be too long
• And 1 second is too short
• So now let’s try a value of 20 seconds…

Quic Use – September 2022

Quic Use – September 2022

Change from 1 to 7 repeat fetches

keepalive=0
keepalive=1 keepalive=20

Some Questions:

1. Which clients are performing QUIC and why?
2. What are the QUIC MSS values?
3. What is the QUIC connection failure rate?
4. Is QUIC faster than HTTP/2 + TLS?

TCP/TLS QUIC on First Fetch QUIC on Second Fetch
iOS 5.5% 93.3% 16.1%
Mac OS 1.0% 2.8% 0.6%
Android 84.5% 1.7% 77.9%
Win 5.5% 1.4% 4.3%
Linux 0.4% 0.2% 0.2%
Others 3.1% 0.6% 0.9%

100.0% 100.0% 100.0%

1. OS Clients* performing QUIC

* Based on reported browser string

1. Browser Clients* performing QUIC

TCP/TLS QUIC on First Fetch QUIC on Second Fetch
Chrome 91.8% 4.1% 81.7%
Safari 4.3% 93.3% 16.1%
Firefox 0.8% 2.4% 1.0%
Edge 0.7% 0.0% 0.5%
Opera 0.2% 0.1% 0.6%
Others 2.2% 0.1% 0.1%

100.0% 100.0% 100.0%

* Based on reported browser string

1. Who does QUIC and why?

Apple Safari clients use a DNS HTTPS query and some of these
clients then follow up with a fetch over QUIC. The observed
DNS HTTPS query to QUIC fetch conversion rate was relatively
small.

Chrome clients use the Alt-Svc field as a QUIC trigger for most
clients. The observed QUIC conversion rate was high, but not
universal.

* Based on reported browser string

2. QUIC Packet Size distribution

Maximum Packet Sizes used in QUIC sessions:

1,200 octets – 46.6%
1,250 octets – 18.5%
1,252 octets – 16.4%

QUIC clients take a very
conservative approach to
maximum packet sizes to
avoid packet fragmentation
complications

3. QUIC Connection Loss

In this measurement framework we cannot measure client -> server
loss, but we can measure server-> client loss by looking for incomplete
QUIC initial connections that do not complete

(this form of connection loss could be due to the client filtering incoming UDP
port 443 packets)

Initial QUIC Connections: 19,211,357
Failed Connections: 46,645
Failure Rate: 0.24%

4. Is QUIC Faster?

Let’s compare the user-measured time to load an object using HTTP/2
and the same user’s measured time to load the same object using
HTTP/3
• There are a number of variables in the user time measurement, including

varying time penalties relating to the internal task scheduling within the
browser, but these individual factors should be cancelled out over a large
enough sample set

4. TCP/TLS vs QUIC speed
difference

Area where QUIC is faster

Non-QUIC Faster QUIC Fasterms

4. Cumulative Distribution

HTTP/3 is faster to
perform object
retrieval in 2/3 of
the observed cases

Non-QUIC Faster QUIC Fasterms

Some Answers:
1. Which clients are performing QUIC?

The recent change appears to relate predominately to iOS 15.x clients (iPhones and iPads) using
HTTPS queries and selectively performing an object retrieval over HTTP/3 at a rate of
approximately 1 in 5

2. What are the QUIC MSS values?
Most QUIC clients limit their total IP packet size to a max of either 1,250 or 1,252 octets. Largest
observed packet was 1,357 octets

3. What is the QUIC connection failure rate?
Extremely small at 0.24%. This falls within the bounds of experimental error in this experiment’s
framework.

4. Is QUIC faster than HTTP/2 + TLS?
Yes, more than 2/3 of the time QUIC will complete in less elapsed time than the equivalent HTTP/2
retrieval

Thanks!

Ongoing HTTP/3 Measurement Report at APNIC Labs:
https://stats.labs.apnic.net/quic

