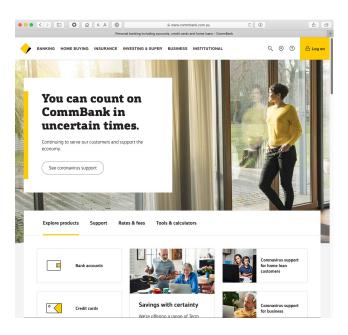
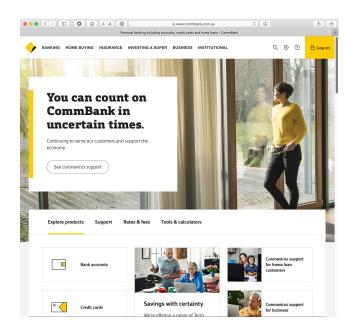
Security

Geoff Huston Chief Scientist, APNIC


Security

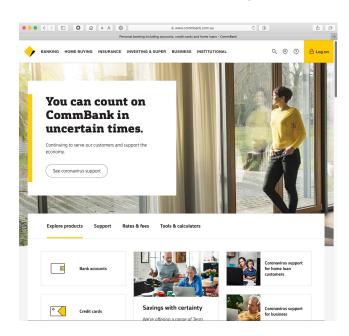
insecurity!

Geoff Huston Chief Scientist, APNIC


Which Bank?

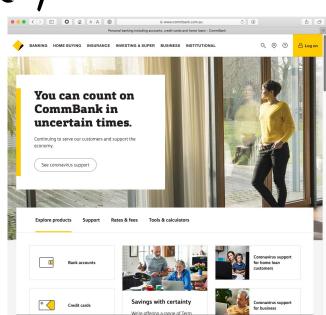
Let's start with a simple example:

Why should you pass your account and password to this web site? It might look like your bank, but frankly it could just as easily be a fraudulent site intended to steal your banking credentials. Why should you trust what you see on the screen?


Which Bank? My Bank!

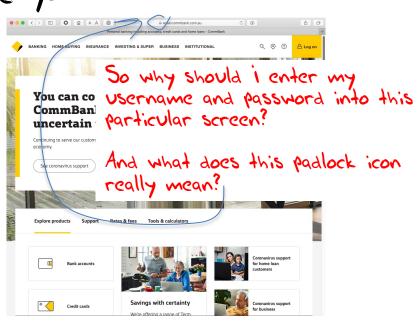
Ok – its not a random example. It's the online bank I use! But the same question is still there. Why should I trust this web page?

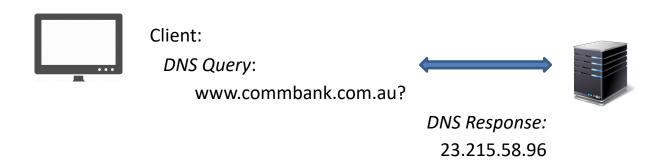
Which Bank? My Bank!

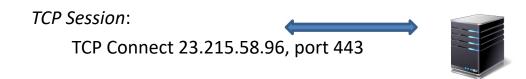

" nobe!

Security on the Internet

How do you know that you are really going to where you thought you were going to?


its trivial to mack up a web page to look like another


Security on the Internet


How do you know that you are really going to where you thought you were going to?

its trivial to mock up a web page to look like another

Opening the Connection: First Steps

Hang on...

```
$ dig -x 23.215.58.96 +short
a23-215-58-96.deploy.static.akamaitechnologies.com.
```

Hang on...

```
$ dig -x 23.215.58.96 +short
a23-215-58-96.deploy.static.akamaitechnologies.com.
```

That's **not** an IP addresses that was allocated to the Commonwealth Bank!

The Commonwealth Bank of Australia has the address blocks

140.168.0.0 - 140.168.255.255 and

203.17.185.0 - 203.17.185.255

Hang on...

\$ dig -x 23.215.58.96 +short a23-215-58-96. Ceploy.static.akamaitechnologies.com.

That's an Akamai IP address

And I'm NOT a customer of the Internet Bank of Akamai!

Why should my browser trust that 23.215.58.96 is really the authentic web site for the Commonwealth Bank of Australia, and not some dastardly evil scam designed to steal my passwords and my money?

And why should I trust my browser?

The major question ...

How does my browser tell the difference between an intended truth and a dastardly lie?

It's all about cryptography

Public Key Cryptography

Pick a pair of keys such that:

- Messages encoded with one key can only be decoded with the other key
- Knowledge of the value of one key does not infer the value of the other key
- Make one key public, and keep the other a closely guarded private secret

This is important

So I will repeat it:

- Using public/private key cryptography requires a pair of keys (A,B) such that:
 - Anything encrypted using key A can ONLY be decrypted using key B, and no other key
 - Anything encrypted using key B can ONLY be decrypted using key A, and no other key
 - Knowing the value of one key WILL NOT let you work out the value of the other key anytime soon!

This form of asymmetric cryptography lies at the heart of the Internet's security framework

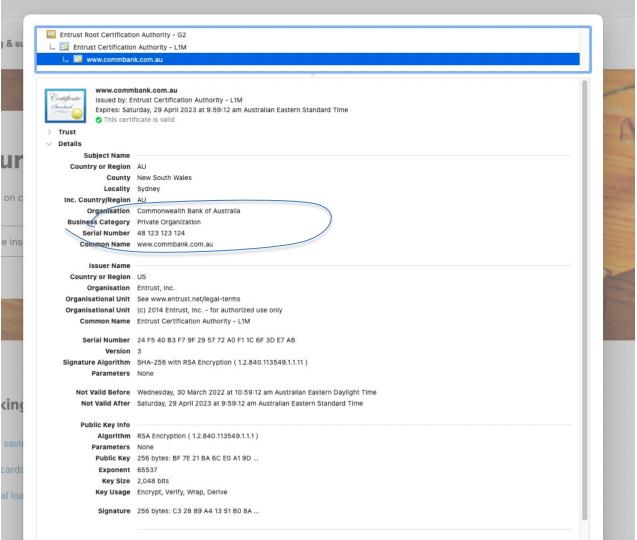
Public/Private Key Pairs

If I have a copy of your PUBLIC key, and you encrypt a message with your PRIVATE key, and I can decrypt the message using your public key

- I know no one has tampered with your original message
- I am confident that no one else has seen the contents of the message while it was passed through the network
- And I know it was you that sent it.
- And you can't deny it.

Public Key Certificates

But how do I know this is YOUR public key?


- And not the public key of some dastardly evil agent pretending to be you?
- I don't know you
- I've never met you
- So I have absolutely no clue if this public key value is yours or not!

Public Key Certificates

What if I 'trust' an intermediary*?

- Who has contacted you and validated your identity and conducted a 'proof of possession' test that you have control of a private key that matches your public key
- Then if the intermediary signs an attestation that this is your public key (with their private key) then I would be able to trust this public key
- This 'attestation' takes the form of a "public key certificate"

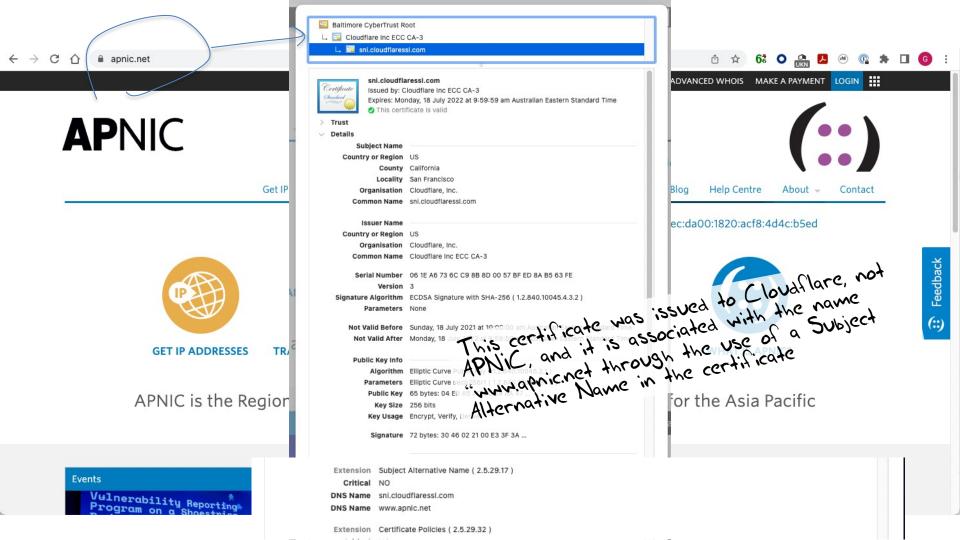
^{*} If you have ever used "public notaries" to validate a document, then this is a digital equivalent

I trust that this is the web site of the Commonwealth Bank because I used the Commonwealth Bank's public key to sete up the encrypted connection to the server.

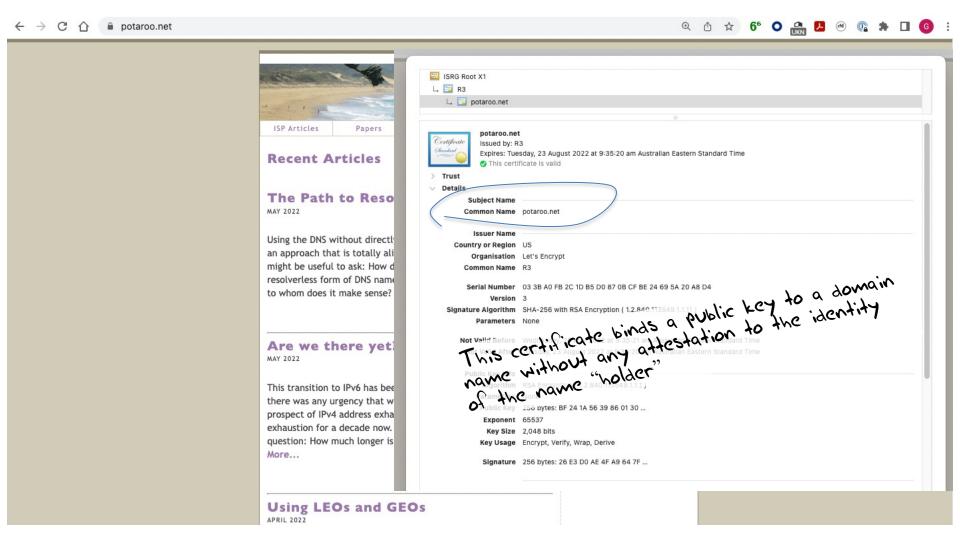
And I can trust that this is the commonwealth Bank's public key because I trust that Entrust has performed a number of checks before issuing a public key certificate for this public key

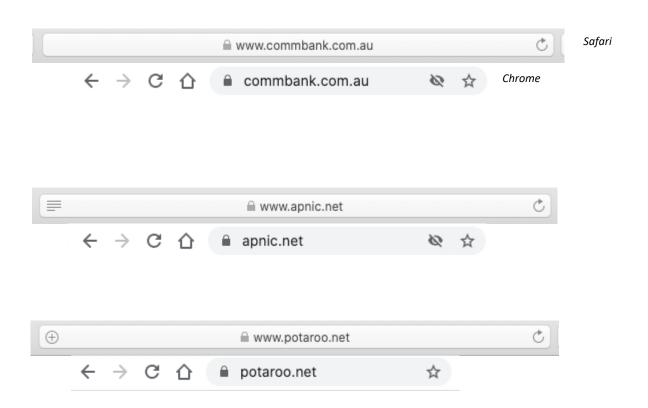
And another example

• Lets take www.apnic.net and look at that certificate

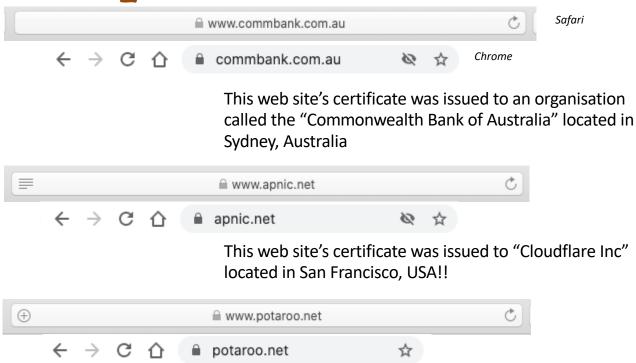


Your IP address: 2001:8003:1dec:da00:1820:acf8:4d4c:b5ed


APNIC is the Regional Internet Registry administering IP addresses for the Asia Pacific

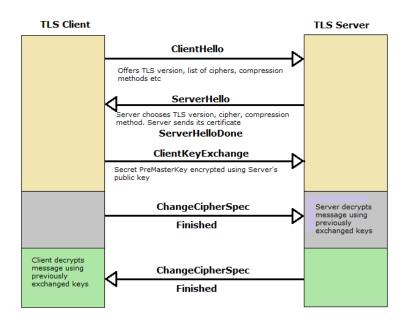


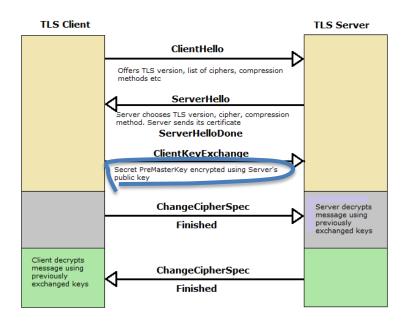
And another

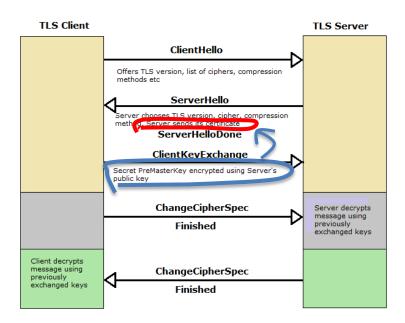

 Let's look at my own web site, with its certificate issued by Let's Encrypt

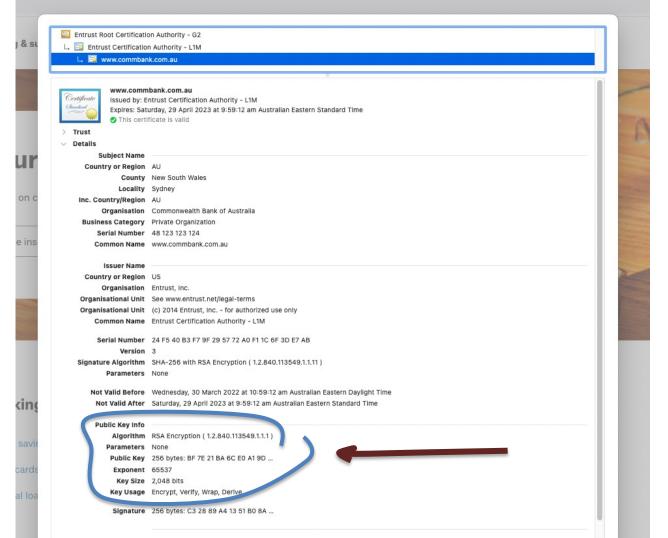
Spot the Difference

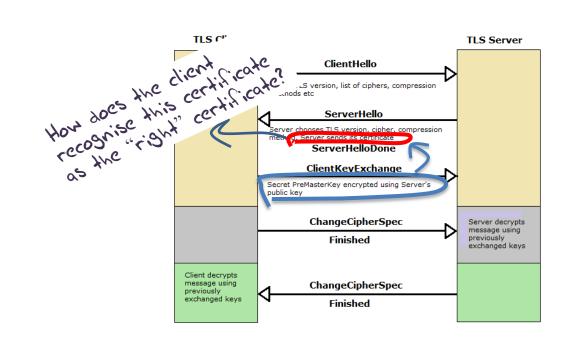
Spot the Difference

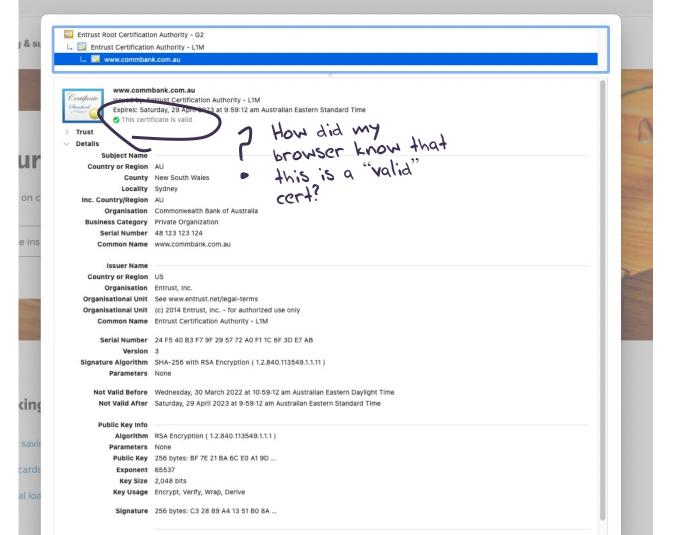

This web site's certificate says *nothing* about the entity that holds the public key associated with this domain


Spot the Difference


- The certification processes taken to issue the certificate were different in each of these cases.
 - One confirmed the identity of the public key holder as well as their association with the domain name
 - The second used a proxy agent and there is no association between the entity domain name that is certified here and the proxy agent
 - The third simply associates a public key with a domain name without any form of identification of the holder of the domain name
- They all have different levels of trustworthiness, yet they all display to the user in exactly the same way
 - Because when we tried to differentiate these different levels of trust (such as painting the padlock icon in green) nobody understood what was going on and nobody cared anyway!

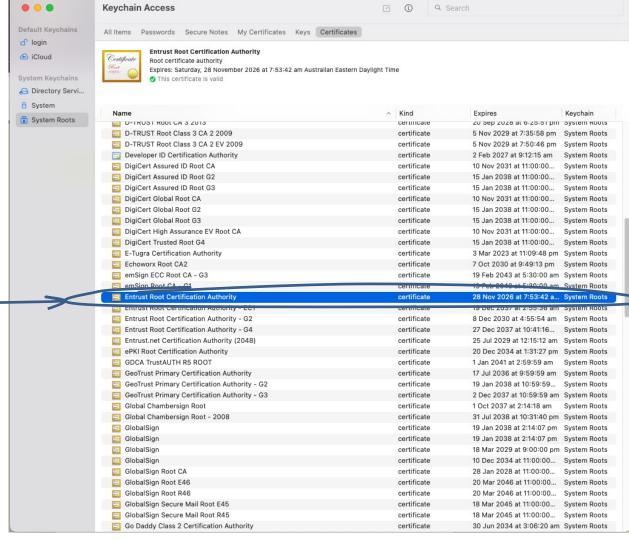

Moving on...


- Ok, so the certificate system is a mess, but TLS still works, right?
- So lets look at the way TLS sets of a secure session



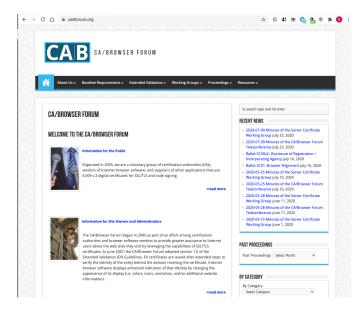
Domain Name Certification

- The Commonwealth Bank of Australia has generated a key pair
- And they passed a certificate signing request to a company called "Entrust" in the US
- Who was willing to vouch (in a certificate) that the entity is called the Commonwealth Bank of Australia and they have control of the the domain name www.commbank.com.au and they have a certain public key
- So, if I can associate this public key with a connection then I have a high degree of confidence that I've connected to an entity that is able to demonstrate knowledge of the private key for www.commbank.com.au, as long as I am prepared to trust Entrust and the certificates that they issue
- And I'm prepared to trust them because Entrust NEVER lie!

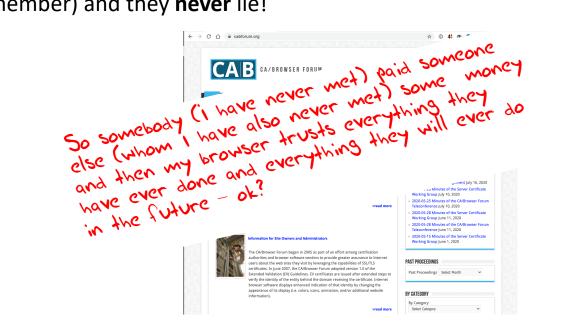

Domain Name Certification

- The Commonwealth Bank of Australia has generated a key pair
- And they passed a certificate signing request to a company called "Entrust" in the US
- Who was willing to vouch (in a certificate) that the entity is called the Commonwealth Bank of Australia and they have control of the the domain name www.commbank.com.au and they have a certain public key
- So, if I can associate this public key with a connection then I have a high degree of confidence that I've connected to an entity that is able to demonstrate knowledge of the private key for www.commbank.com.au, as long as I am prepared to trust Entrust and the certificates that they issue
- And I'm, How do I know that? Why should I trust them?

Local Trust


The cert i'm being asked to trust was issued by a certification authority that my browser already trusts

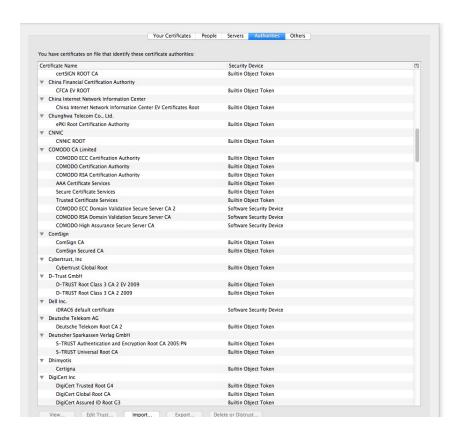
so I trust that cert!


Local Trust

These Certificate Authorities are listed in my computer's trust set because they claim to operate according to the practices defined by the CAB industry forum (of which they are a member) and they **never** lie!

Local Trust

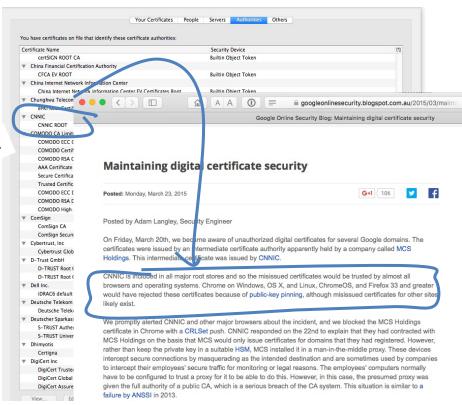
These Certificate Authorities are listed in my computer's trust set because they claim to operate according to the practices defined by the CAB industry forum (of which they are a member) and they **never** lie!


Local Trust or Local Credulity*?

Wow!

Are they all trustable?

a tendency to be too ready to believe that something is real or true.

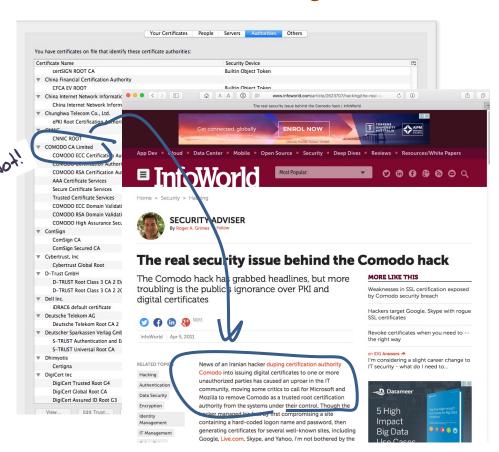


Local Credulity

Wow!

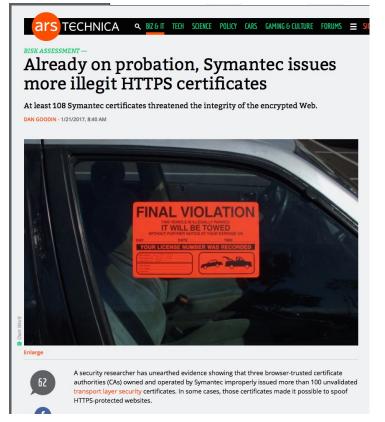
Are they **all** trustable?

Evidently Not!



Local Credulity

Wow!


Are they **all** trustable?

Evidently Not

Never?

Well, hardly ever

http://arstechnica.com/security/2017/0 1/already-on-probation-symantecissues-more-illegit-https-certificates/

Misissued/Suspicious Symantec Certificates

Andrew Ayer Thu, 19 Jan 2017 13:47:06 -0800

I. Misissued certificates for example.com

On 2016-07-14, Symantec misissued the following certificates for example.com:

https://crt.sh/?

sha256=A8F14F52CC1282D7153A13316E7DA39E6AE37B1A10C16288B9024A9B9DC3C4C6

https://crt.sh/?

sha256=8B5956C57FDCF720B6907A4B1BC8CA2E46CD90EAD5C061A426CF48A6117BFBFA

https://crt.sh/?

sha256=94482136A1400BC3A1136FECA3E79D4D200E03DD20B245D19F0E78B5679EAF48

https://crt.sh/?

sha256=C69AB04C1B20E6FC7861C67476CADDA1DAE7A8DCF6E23E15311C2D2794BFCD11

I confirmed with ICANN, the owner of example.com, that they did not authorize these certificates. These certificates were already revoked at the time I found them.

II. Suspicious certificates for domains containing the word "test"

On 2016-11-15 and 2016-10-26, Symantec issued certificates for various domains containing the word "test" which I strongly suspect were misissued.

Well, hardly ever

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

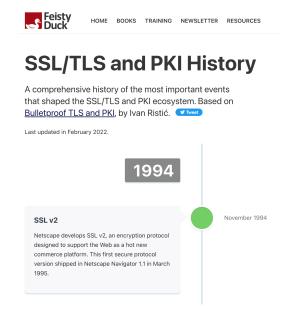
Distrust of the Symantec PKI: Immediate action needed by site operators

March 7, 2018

Posted by Devon O'Brien, Ryan Sleevi, Emily Stark, Chrome security team

We previously announced plans to deprecate Chrome's trust in the Symantec certificate authority (including Symantec-owned brands like Thawte, VeriSign, Equifax, GeoTrust, and RapidSSL). This post outlines how site operators can determine if they're affected by this deprecation, and if so, what needs to be done and by when. Failure to replace these certificates will result in site breakage in upcoming versions of major browsers, including Chrome.

Chrome 66


If your site is using a SSL/TLS certificate from Symantec that was issued before June 1, 2016, it will stop functioning in Chrome 66, which could already be impacting your users.

If you are uncertain about whether your site is using such a certificate, you can preview these changes in Chrome Canary to see if your site is affected. If connecting to your site displays a certificate error or a warning in DevTools as shown below, you'll need to replace your certificate. You can get a new certificate from any trusted CA, including Digicert, which recently acquired Symantec's CA business.

These are isolated events

No they're not:

https://www.feistyduck.com/ssl-tls-and-pki-history/

With unpleasant consequences when it all goes wrong

With unpleasant consequences when it all goes wrong

BORDER GATEWAY PROTOCOL ATTACK —

Suspicious event hijacks Amazon traffic for 2 hours, steals cryptocurrency

Almost 1.300 addresses for Amazon Route 53 rerouted for two hours.

DAN GOODIN - 4/25/2018, 5:00 AM

Tuesday morning when hackers exploited a known Internet-protocol weakness that let them to redirect traffic to rogue destinations. By subverting Amazon's domain-resolution service, the attackers masqueraded as cryptocurrency website MyEtherWallet.com and stole about \$150,000 in digital coins from unwitting end users. They may have targeted other Amazon customers as well.

Amazon lost control of a small number of its cloud services IP addresses for two hours on

The incident, which started around 6 AM California time, hijacked roughly 1,300 IP addresses, Oracle-owned Internet Intelligence said on Twitter. The malicious redirection was caused by fraudulent routes that were announced by Columbus, Ohio-based eNet, a large Internet service provider that is referred to as autonomous system 10297. Once in place, the eNet announcement caused Hurricane Electric and possibly Hurricane Electric customers and other eNet peers to send traffic over the same unauthorized routes. The 1,300 addresses belonged to Route 53. Amazon's domain name system service

The attackers managed to steal about \$150,000 of currency from MyEtherWallet users,

- The TLS handshake cannot specify WHICH CA should be used by the client to validate the digital certificate that describes the server's public key
- The result is that your browser will allow ANY CA to be used to validate a certificate!

- The TLS handshake cannot specify WHICH CA should be used by the client to validate the digital certificate that describes the server's public key
- The result is that your browser will allow ANY CA to be used to validate a certificate!

WOW! That's arresomely bad!

The TLS handshake cannot specify WHICH CA

Here's a lock - it might be the ! lock on your front door for all i know.

The lock might LOOK secure, but don't worry - literally ANY key can open it!

NΥ

validate a certificate!

WOW! That's arresomely bad!

- There is no incentive for quality in the CA marketplace
- Why pay more for any certificate when the entire CA structure is only as strong as the weakest CA
- And your browser trusts a LOT of CAs!
 - About 60 100 CA's
 - About 1,500 Subordinate RA's
 - Operated by 650 different organisations

See the EFF SSL observatory http://www.eff.org/files/DefconSSLiverse.pdf

In a Commercial Environment

Where CA's compete with each other for market share And quality offers no protection
Then what 'wins' in the market?

In a Commercial Environment

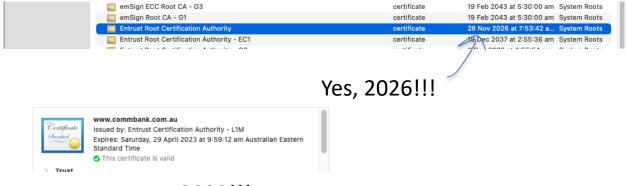
Where CA's compete with each other for market share And quality offers no protection
Then what 'wins' in the market?

But its all OK

Really.

- Because 'bad' certificates can be revoked
- And browsers always check revocation status of certificates before they trust them

Always?


Ok - Not Always. Some do. Sometimes.

Platform	Chrome	Firefox	Opera	Safari	Edge
Mac OS X	YES	YES	YES	YES	
10.15.3	80.0.3987.132	73.0.1	67.0.3575.53	13.0.5	
iOS	YES	YES	NO	YES	
13.3.1	80.0.3987.95	23.0	16.0.15	13.3.1	
Android	NO	NO	NO		
10	80.0.3987.132	68.6.0	56.1		
Windows	NO	YES	NO		YES
10	80.0.3987.132	74.0	67		44.18362
	1		,		

Table 1 - Browser Revocation Status

 If we can't revoke certificates then we need to reduce certificate lifetimes

- If we can't revoke certificates then we need to reduce certificate lifetimes
- But we are not doing that!

Yes, 2023!!!

• If we can't revoke certificates then we need to reduce certificate lifetimes

What's a "safe" certificate lifetime?

- If we can't revoke certificates then we need to reduce certificate lifetimes
- What's a "safe" certificate lifetime?
- If we want 2 hours or less then we need to think hard about how to achieve this

Option A: Take all the money out of the system!

Option A: Take all the money out of the system!

Option B: White Listing and Pinning with HSTS

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/ transport_security_state_static.json

```
transport security state static.json
                                                                                 Layers ▼ Find ▼
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      5 // This file contains the HSTS preloaded list in a machine readable format.
      7 // The top-level element is a dictionary with two keys: "pinsets" maps details
     8 // of certificate pinning to a name and "entries" contains the HSTS details for
    10 //
    11 // "pinsets" is a list of objects. Each object has the following members:
            name: (string) the name of the pinset
             static spki hashes: (list of strings) the set of allowed SPKIs hashes
            bad static spki hashes: (optional list of strings) the set of forbidden
    16 // report uri: (optional string) the URI to send violation reports to;
                 reports will be in the format defined in RFC 7469
    19 // For a given pinset, a certificate is accepted if at least one of the
    20 // "static spki hashes" SPKIs is found in the chain and none of the
    21 // "bad static spki hashes" SPKIs are. SPKIs are specified as names, which must
    22 // match up with the file of certificates.
    23 //
```

Option B: White Listing and Pinning with HSTS

```
https: its not a totally insane idea -- until you realise transp that it appears to be completely unscaleable!
                                                                                                                     http/
             its just 60091e protecting itself and no one
                              s file contains the HSTS preloaded list in a machine readable format.
                      7 // The top-level element is a dictionary with two keys: "pinsets" maps details
                      8 // of certificate pinning to a name and "entries" contains the HSTS details for
                     10 //
                     11 // "pinsets" is a list of objects. Each object has the following members:
                             name: (string) the name of the pinset
                             static spki hashes: (list of strings) the set of allowed SPKIs hashes
                             bad static spki hashes: (optional list of strings) the set of forbidden
                     16 // report uri: (optional string) the URI to send violation reports to;
                                 reports will be in the format defined in RFC 7469
                     19 // For a given pinset, a certificate is accepted if at least one of the
                     20 // "static spki hashes" SPKIs is found in the chain and none of the
                     21 // "bad static spki hashes" SPKIs are. SPKIs are specified as names, which must
                     22 // match up with the file of certificates.
```

O its not a totally insane idea -- until you realise
that it appears to be completely unscaleable!

HSTS

http://sits.just Google protecting itself and no one

http://decemple.com/p/chromium/codesearch#chromium/src/net/http/

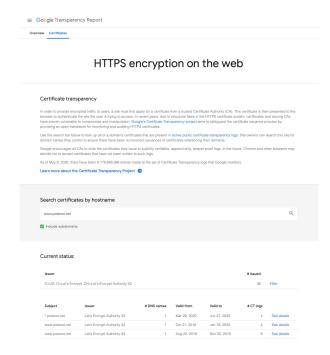
About | ⋒
Informed news analysis every weekday

Google moves into the Certificate Authority business

Google doesn't seem to trust the current system, as it has launched its own security certificates

```
17 // reports will be in the format defined in RFC 7469

18 //


19 // For a given pinset, a certificate is accepted if at least one of the

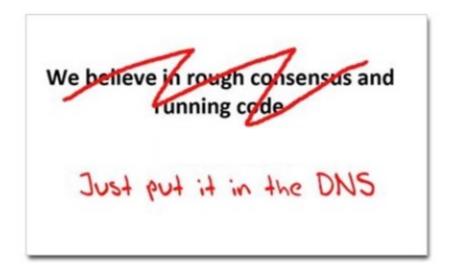
20 // "static_spki_hashes" SPKIs is found in the chain and none of the

21 // "bad_static_spki_hashes" SPKIs are. SPKIs are specified as names, which must

22 // match up with the file of certificates.
```

Option C: Certificate Transparency

Option C: Certificate Transparency


	■ Google Transparency Report					
	Oversiew Certificates					
	HTTPS encryption on the web					
	Certificate transparency					
	In order to provide encrypted traffic to users, a site must first apply for a certificate form a trusted Certificate Authority (CA). This certificate is then presented to the breviet by authorities the high like user's bytes, because it receives the site of brighted likes in the HTTS certificate prefixer, certificate and standy CAs providing and certificate prefixer. Certificate prefixer and standy CAS providing and certificate prefixer and c					
This is true	Use the search bar below to look up all of a domain's certificates that are present in active public certificate transparency logs. Site owners can search this site for domain names they control to ensure there have been no incorrect issuances of certificates referencing their domains.					
1 412 12 41 0	Google encourages at CAs to write the certificates they issue to publicly verifiable, append-only, tamper-proof logs. In the future, Chrome and other browsers may agoid not to accept certificates that have not been written to such logs.					
	As of May 6,2500, there have been 9,178,649,266 entries made to the set of Certificate Transparency logs that Google monitors.					
	Learn more about the Certificate Transparency Project O					

In order to provide encrypted traffic to users, a site must first apply to a certificate from a trusted Certificate Authority (CA). This certificate is then presented to the browser to authenticate the site the user is trying to access. In recent years, due to structural flaws in the HTTPS certificate system, certificates and issuing CAs have proven vulnerable to compromise and manipulation. Google's Certificate Transparency project aims to safeguard the certificate issuance process by providing an open framework for monitoring and auditing HTTPS certificates.

Option C: Certificate Transparency

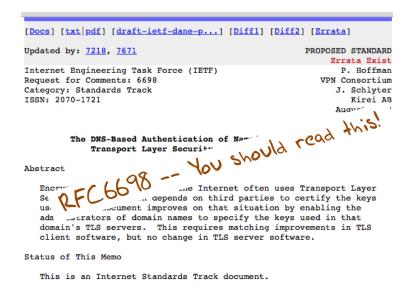
	≡ Google Transpare	ency Report						
	Overview Certificates							
	HTTPS encryption on the web							
	Certificate trans	sparency rypted traffic to users, a site must first	apply for a certificate	from a trusted Certif	icate Authority (CA). Th	is certificate is the	an presented to the	e neck service in a
	browser to authenticate have proven vulnerable providing an open fram Use the search bar bel	e the site the user is trying to access, to compromise and manipulation. Go nework for monitoring and auditing HT ow to look up all of a domain's certific	In recent years, due to cogle's Certificate Tran TPS certificates. ates that are present in	structural flaws in the sparency project ain active public certifi	e HTTPS certificate sys	tem, certificate ificate issuante p Site own Ocan	recess b Sam	is received the blace.
its just so These trans millisecond	Only and Only of the Courages all decide not to accept or	ctrol to ensure there have been no inc CAs to write the pertilicate the current ertilicates that have the	e to put Q vertiable such logs.	pend-only, tamps	reproof logs. In the futu	٥٨٥	"YOOK?	2 W
These trans	Spoken more about the	e Certificate Transpa	20W	w2	Section in the section is			
will is econd	Search certifica	tes by hostname					11.04	a placebo!
V · · · ·	www.potaroo.net	9	اه - ما	da	1 40	r50	5 4Na	
	. CAOTE	ncy is	prov	50(5)	•			, a placebo!
Cert Irai	Issuer	•				# issued		
	C=US, O=Let's Encr	rypt, CN=Let's Encrypt Authority X3				36	Filter	
	Subject	Issuer	# DNS names	Valid from	Valid to	# CT logs		
	*.potaroo.net	Let's Encrypt Authority X3	1	Mar 29, 2020	Jun 27, 2020	4	See details	
	www.potaroo.net	Let's Encrypt Authority X3	1	Oct 21, 2019	Jan 19, 2020	4	See details	
	www.potaroo.net	Let's Encrypt Authority X3	1	Aug 22, 2019	Nov 20, 2019	6	See details	

Option D: Use the DNS!

Seriously? The DNS?

Where better to find out the public key associated with a DNSnamed service than to look it up in the DNS?

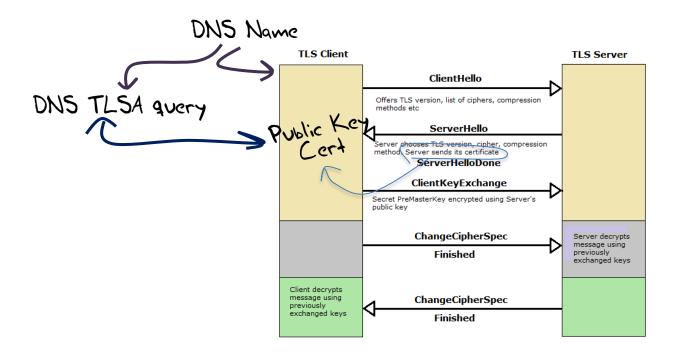
- Why not query the DNS for the HSTS record?
- Why not query the DNS for the issuer CA?
- Why not query the DNS for the hash of the domain name cert?
- Why not query the DNS for the hash of the domain name public key?


Seriously? The DNS?

Where better to find out the public key associated with a DNSnamed service than to look it up in the DN?

- Why not query the DNS for the HCT CA?
 Why not query the DNS for the hash of the domain name cert?
 Why not query the DNS for the hash of the domain name public key?

DANE


 Using the DNS to associated domain name public key certificates with domain name

TLS with DANE

- Client receives server cert in Server Hello
 - Client lookups the DNS for the TLSA Resource Record of the domain name
 - Client validates the presented certificate against the TLSA RR
- Client performs Client Key exchange

TLS Connections

Just one problem ...

- The DNS is full of liars and lies!
- And this can compromise the integrity of public key information embedded in the DNS
- Unless we fix the DNS we are no better off than before with these TLSA records!

Just one response...

- We need to allow users to validate DNS responses for themselves
- And for this we need a Secure DNS framework
- Which we have and it's called **DNSSEC!**

DANE + DNSSEC

- Query the DNS for the TLSA record of the domain name and ask for the DNSSEC signature to be included in the response
- Validate the signature to ensure that you have an unbroken signature chain to the root trust point
- At this point you can accept the TLSA record as the authentic record, and set up a TLS session based on this data

DANE + DNSSEC

- Query the DNS for the TLSA record of the domain name and ask for the DNSSEC signature to be included in the response
- Validate the signature to ensure that we have an unbroken signature chain to the root
 At this point you ca
- At this point you ca record, and set up a TLS session based on this data

DANE + DNSSEC

ImperialViolet

DNSSEC authenticated HTTPS in Chrome (16 Jun 2011)

Update: this has been removed from Chrome due to lack of use.

DNSSEC validation of HTTPS sites has been <u>hanging around in Chrome</u> for nearly a year now. But it's now enabled by default in the current canary and dev channels of Chrome and is on schedule to go stable with Chrome 14. If you're running a canary or dev channel (and you need today's dev channel release: 14.0.794.0) then you can go to https://dnssec.imperialviolet.org and see a DNSSEC signed site in action.

DNSSEC stapled certificates (and the reason that I use that phrase will become clear in a minute) are aimed at sites that currently have, or would use, self-signed certificates and, possibly, larger organisations that are Chrome based and want certificates for internal sites without having to bother with installing a custom root CA on all the client devices. Suggesting that this heralds the end of the CA system would be utterly inaccurate. Given the deployed base of software, all non-trival sites will continue to use CA signed certificates for decades, at least. DNSSEC signing is just a gateway drug to better transport security.

DANE validation can be SO SLOW!

Faster validation?

[Docs] [txt|pdf] [draft-ietf-dnso...] [Tracker] [Diff1] [Diff2]

EXPERIMENTAL

Internet Engineering Task Force (IETF) Request for Comments: 7901 Category: Experimental ISSN: 2070-1721 P. Wouters Red Hat June 2016

CHAIN Query Requests in DNS

Abstract

This document defines an EDNSO extension that can be used by a security-aware validating resolver configured to use a forwarding resolver to send a single query, requesting a complete validation path along with the regular query answer. The reduction in queries potentially lowers the latency and reduces the need to send multiple queries at once. This extension mandates the use of source-IP-verified transport such as TCP or UDP with EDNS-COOKIE, so it cannot be abused in amplification attacks.

Status of This Memo

Or ... Look! No DNS!

- Server packages server cert, TLSA record and the DNSSEC credential chain in a single bundle
- Client receives bundle in Server Hello
 - Client performs validation of TLSA Resource Record using the supplied DNSEC signatures plus the local DNS Root Trust Anchor without performing any DNS queries
 - Client validates the presented certificate against the TLSA RR
- Client performs Client Key exchange

Doing a better job

We could do a **far** better job at Internet Security by moving on from X.509 public key certificates:

Publishing DNSSEC-signed zones

Publishing DANE TLSA records

Using DNSSEC-validating resolution

Using TLSA records to guide TLS Key Exchange

Stapling the TLSA + sig bundle into TLS

Doing a better job

We could do a far better inh happened for sving on from X.509 public kning has happened wore than a decade!

U Why not?

U Why not?

LSKey Exchange

St. LSA + sig bundle into TLS

We have different goals

- Some people want to provide strong hierarchical controls on the certificates and keys because it entrenches their role in providing services
- Some want to do it because it gives them a point of control to intrude into the conversations of their citizens
- Others want to exploit weaknesses in the system to leverage a competitive advantage
- Some people think users prefer faster applications, even if they have security weaknesses
- Others think users are willing to pay a time penalty for better authentication controls

Because there are so many moving parts?

In a system that is constructed upon the efforts of multiple systems and multiple providers we
are relying on someone in charge to orchestrate the components to as working whole

Saturn V Launch Vehicle
Three stage rocket, each built by a different contractor
Each of whom used multiple subcontractors
3 million components
Each supplied by the lowest bidder!

Because we are relying on the market to provide coherence and consistency of orchestration across providers?

- And perhaps that's the key point here
- Loosely coupled systems will always present windows of vulnerability
 - · Routing integrity
 - Name registration
 - Name certification
 - Service control
- Effective defence involves not only component defence but also in defending the points of interaction between components
- And we find this very hard to achieve when the market itself is the orchestration agent

Users and Trust

- Users just want to be able to trust that the websites and services that they connect to and share their credentials, passwords and content with are truly the ones they expected to be using without first studying for a PhD in Network Operational Security
- Somehow we're missing that simple objective and we've interposed complexity and adornment that have taken on a life of their own and are in fact eroding trust
- And that's bad!
- If we can't trust our communications infrastructure, then we don't have a useful communications infrastructure.

What a dysfunctional mess we've created!

- Single point of trust for EVERTHING (DNSSEC)
 or
- Many points of trust in a highly distributed framework (Web PKI)

- Highly robust validation performed by the client or
- Fast!

- Single common secure credential infrastructure or
- Application-specific credentials

- Yes, if we could only agree on what we want in the first place!
- And we just can't agree on that!

Trat's it!

Questions?