Technology Adoption and the Internet

Gooff Huston

Chief Scientist APNIC Labs

Was IPv4 a runaway success, yet IPv6 is approaching its third decade of waiting in the wings?

Was IPv4 a runaway success, yet IPv6 is approaching its third decade of waiting in the wings?

Will this "transition" ever end?

Was IPv4 a runaway success, yet IPv6 is approaching its third decade of waiting in the wings?

Will this "transition" ever end?

When?

Was IPv4 a runaway success, yet IPv6 is approaching its third decade of waiting in the wings?

Will this "transition" ever end?

When?

Or has it already ended and the mess we have today is the mess we are going to have to live with for a few more decades until the Internet crumbles into chaos?

More Whys?

Are we still using BGP?

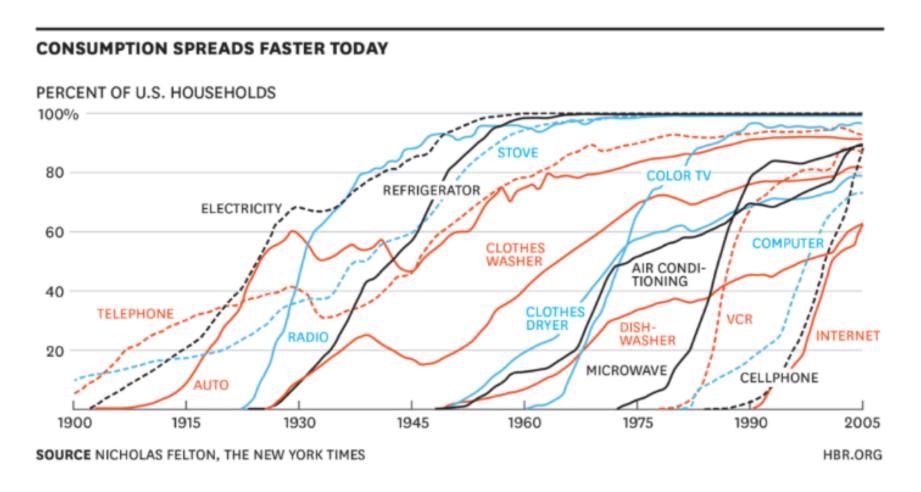
It's a 65 year old network routing protocol that creaks and groans! Haven't we had better ideas since then?

And what about TCP, HTTP, DNS, SMTP?

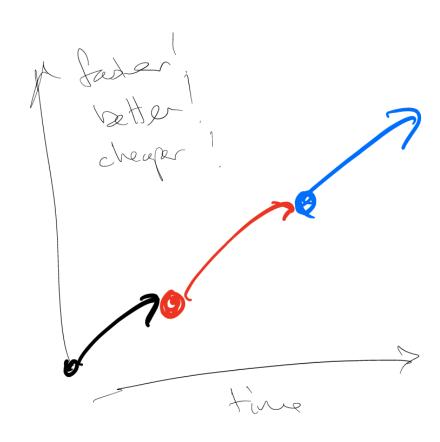
None of these protocols are recent inventions either

We seem to spend most of our time tweaking around the edges and avoiding fundamental changes these days

What's happening?


Is there any appetite left for technical innovation in the internet, or is the internet entering a terminal phase of sclerotic dotage?

We're not making changes because what we have is perfect. Far from it.


But despite many issues we are still slow to adopt changes

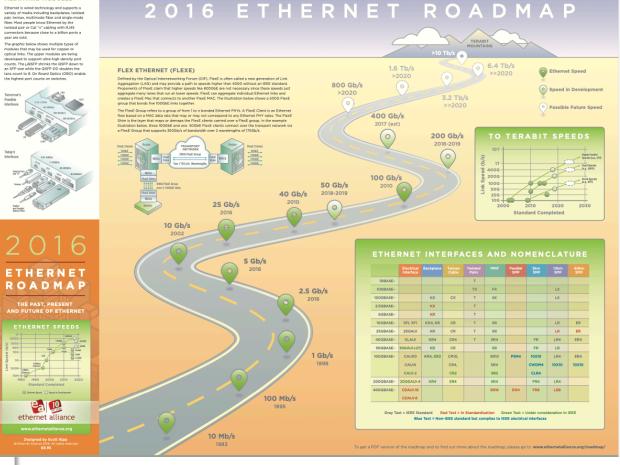
So why does today's Internet actively resist change?

The Pace of Consumer Technology Adoption

A Conventional View of Progress

This view sees progress as progressive refinement

Adopted technologies build on existing capabilities

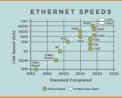

Progress is largely deterministic

Example: IEEE 802.3 GigE

MEDIA AND MODULES

Ethernet Speed Evolution Summary

- 2.5 GE and 5 GE is coming soon for higher speed Cat 5e/6 applications
- 10 GE is being widely deployed in every part of the network
- 25 GE is coming soon for server and ToR applications
- 40 GE is increasingly deployed in data center networks
- Popular for 40 GE and 4 x 10 GE breakout
- 100 GE has transitioned to 2nd generation technology with CFP2, CFP4 and QSFP28
- Still at least a generation away from 100 Gb/s serial signaling
- 400 GE development is well under way and will leverage 100 GE technology
- Ethernet at Terabit speeds is still unfeasible in the near future, but we'll get there eventually (2020+)



2016 Ethernet Alliance Road Map http://ethernetalliance.org/roadmap

Example. TRIRIRI AND 3 Ciori

ROADMAP

THE PAST, PRESENT AND

ethernet alliance

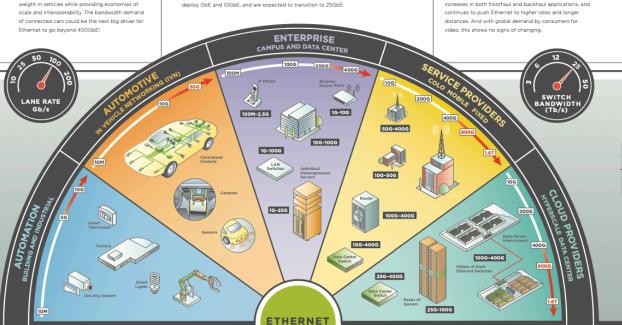
Ethernet Speed

- 2.5 GE and 5 GE is (
- 10 GE is being wide
- 25 GE is coming soc
- 40 GE is increasingl
- Popular for 40 GE a
- 100 GE has transition
- Still at least a gene
- 400 GE developmen
- Ethernet at Terabit (2020+)

INTEROPERABILITY AND CERTIFICATION

The Ethernet Alliance is committed to leading the charge to instilling industry confidence in Ethernet standards through its multivendor interoperability demonstrations and plugfests, Our PoE Certification Program takes this mission to the next level!

Our industry-defined PoE Certification Test Plan is based on the Ethernet PoE standard, and products passing this test will be granted the Ethernet Alliance PoE Certification Logo. This logo will provide instant recognition for products that are based on the IEEE 802.3 PoE standard, and provide confidence in the multi-vendor interoperability of those products bearing it. The logos will also provide clear guidance on which devices will work with each other.


The first generation of the program certifies Type 1 and Type 2 products that use 2-Pair of wires. The second generation of the program tackles the EEE802.3bt standard. This table explains the capabilities of the Types.

ETHERNET APPLICATIONS

AUTOMOTIVE Ethernet is one of ENTERPRISE and Campus applications drive the bulk of Ethernet port shipments Ethernet's latest success stories. Forecasts predict with hundreds of millions of ports shipping per year. Ethernet's roots are in enterprise local up to 500 million ports of Ethernet will ship in over area networks (LANs) where the entire Ethernet family, including the BASE-T products, can 100M vehicles by 2021. Ethernet links within cars be found I ANs are rich in copper where over 70 Billion meters of cable have been deployed provide data and power to reduce the cost and over the past 15 years. Enterprise data centers are very cost sensitive and most servers weight in vehicles while providing economies of deploy GbE and 10GbE, and are expected to transition to 25GbE.

AUTOMATION, BUILDING, AND INDUSTRIAL applications highlight the need for lower speed Ethernet solutions in harsh environments. Today this space is

leveraging BASE-T solutions from the enterprise space. The Ethernet community defined the IEEE 802.3cg standard for 10Mb/s operation plus power delivery over a single twisted pair. This will consolidate a landscape of multiple legacy protocols, driving the promise of Ethernet's multi-level interoperability to new heights

EA CERTIFIED & PSE Logo™, is a trademark and certification mark of The Ethernet Alliance

in the United States and other countries. Unauthorized use strictly prohibited

CLOUD PROVIDERS were the first to adopt 10GbE servers on a large scale in 2010 for

hyperscale data centers. With voracious appetites for applications like AI and Machine Learning, hyperscale servers have moved to 25GbE, and are transitioning to 50GbE and beyond. Unique networking architectures within these warehouse scale data centers have driven multiple multimode and single-mode fiber solutions at 100, 200 and 400 GbE. The bandwidth demands of hyperscale data centers and service providers continue to grow exponentially and in a similar direction that blurs the lines between the two

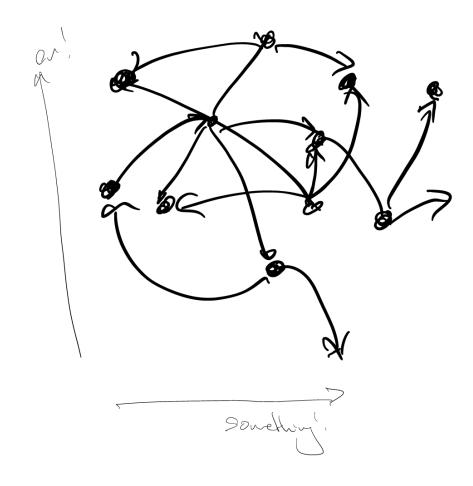
SERVICE PROVIDERS have driven higher

speed Ethernet solutions for decades. Router connections,

EPON, client side optics for optical transport network

(OTN) equipment, and wired and wireless backhaul. In

particular, the 5G mobile deployment is driving dramatic


ce Road Map ce.org/roadmap

1.6 Tb/s Ethernet Speed O Speed in Development Possible Future Speed 400 Gb/s 200 Gb/s 2018-2019 100 Gb/s Gray Text = IEEE Standard Red Text = In Standardization Green Text = Under consideration in IEEE Blue Text = Non-IEEE standard but complies to IEEE electrical interfaces

ET ROADMAP

Greg Hankins, NAN Next June 2015

Reality is often messier!

This view sees progress as a random outcome of an underlying chaotic set of circumstances

We have no real concept of any long term objective, and just shift from state to state in random directions

What is this telling us?

It appears that technology evolutionary process is like a biological process – pretty much random!

But the filter of natural selection has no clear analogue in technology

- Sometimes completely broken technologies gain market ascendency
- Sometimes we accidently make good choices for all the wrong reasons at the time!

We can't all decide on the same thing at the same time

Sometimes we just can't choose, and then we pick both Household power: 110v vs 240v, 50Hz vs 60Hz? Driving vehicles: on the left or on the right?

Closer to home - Telephony:

µ-Law or A-Law voice encoding?

T vs E multiplexing?

Computing technology is not immune what's a 'word' – 6 bits, 8 bits, 16 bits, 32 bits, 36 bits, 60 bits? big endian vs little endian?

Success!

Some technology platforms have been completely revolutionary in their impacts through widespread adoption:

- The IP packet switched model
- The browser application
- Mobile devices
- Social Media

Examples of Transformational Technologies

Circuits to Packets

- 100x unit cost reduction in network service
- The change was large enough to destroy the incumbent telco market

Hardware to Cloudware

- 2x 4x unit cost reduction
- Moderate pace of change that has allowed some incumbents to ride the change while others have had a harder time

Failure!

Other technologies appear to fall far short of their intended adoption trajectory:

- OSI
- ATM
- SMS
- IPv6
- "New IP"

Failure Examples

IPv6

- No marginal unit cost improvement
- Incumbents feel no major pressure to adopt
- 25 year transition with no end in sight

DNSSEC

- Increased unit cost without clear incremental benefits
- Another protracted transition with no end in sight

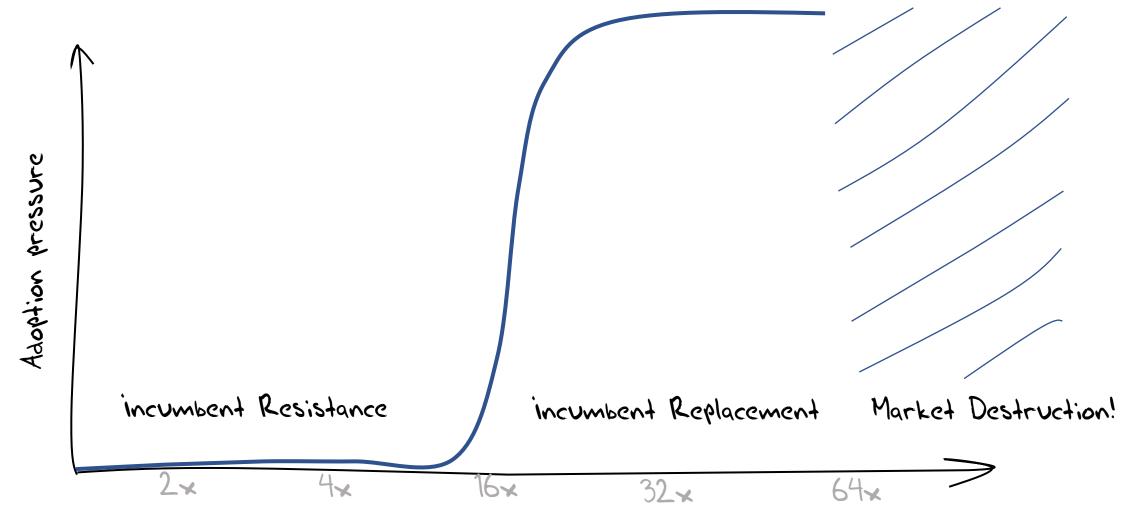
Circuits to Packets

- True stateless packet switched networks exist only in textbooks these days
- With MPLS and its variants we've back to virtual circuits again!

What's going on?

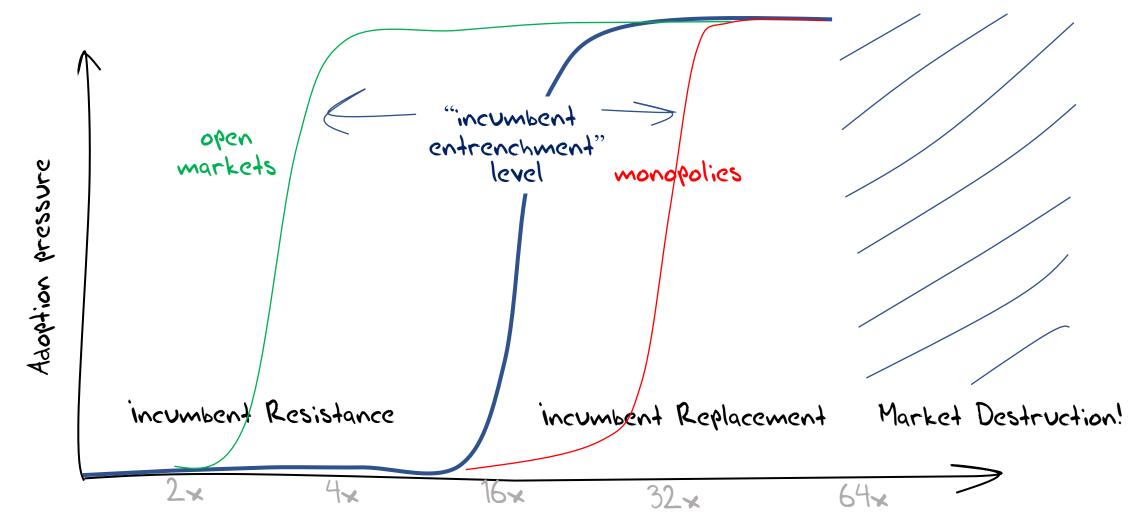
- Why was IPv4 fast-paced success while IPv6 has been a slow motion train wreck of prevarication and delay?
- Why is security a market failure?
- Is Google now so entrenched that it is beyond all but the most disruptive of competitive technology pressures?

What drives change?


Market motivations:

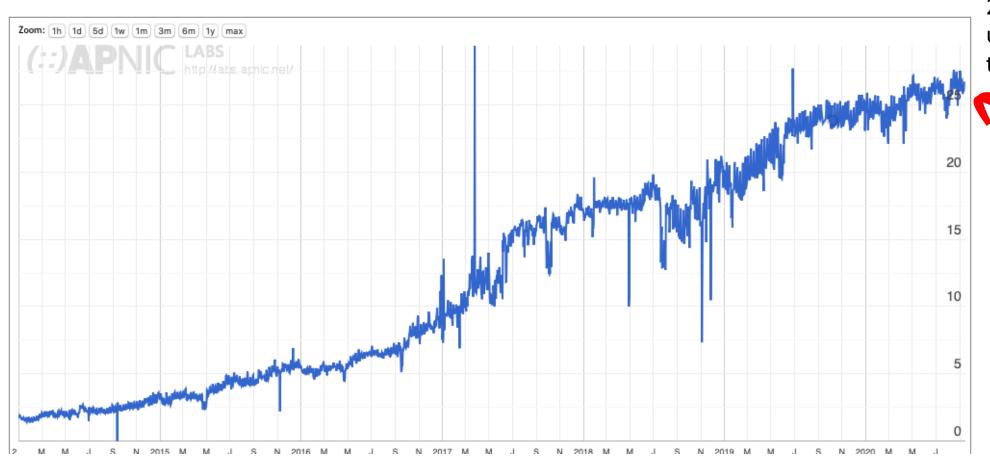
- Incumbency breeds risk aversion and increasing inertia Which
- Breeds erection of increasing barriers to market entry by competitive actors -

means

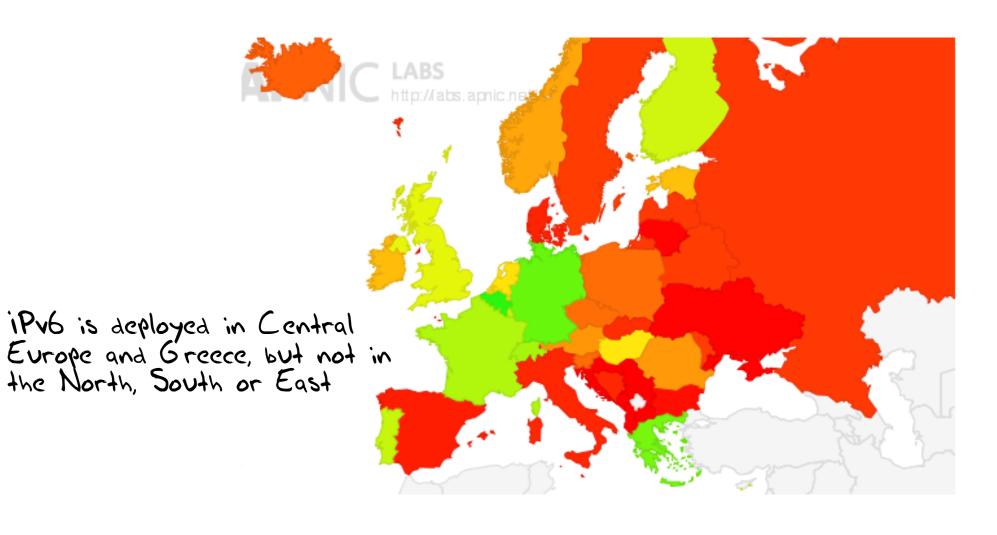

- The cost of risk rises
 - Venture capital funds increasingly uninterested in small cap ventures its either billions or nothing, because underfunded exercises in disruptive competition are increasingly likely to fail

Economics of Innovation

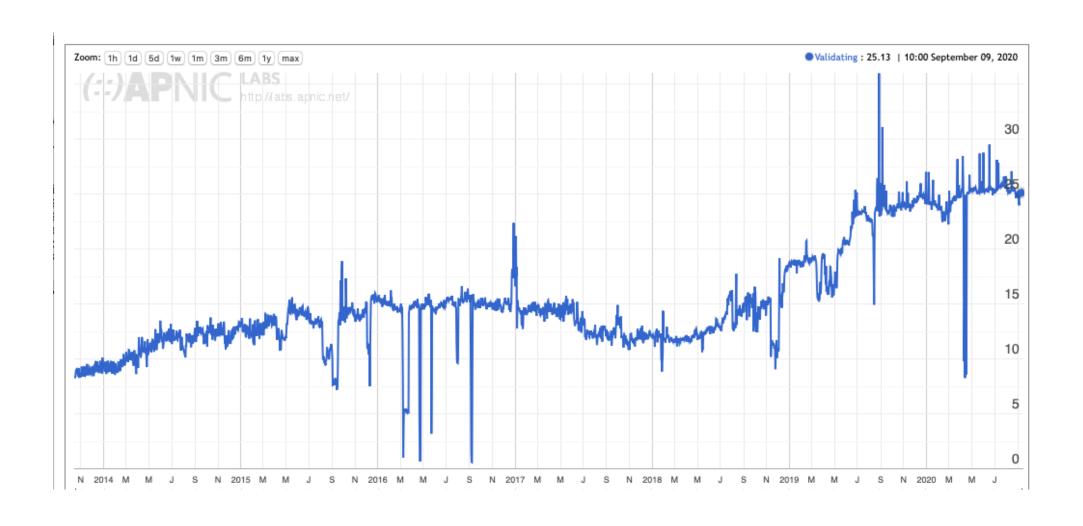
Unit Cost Reduction


Economics of Innovation

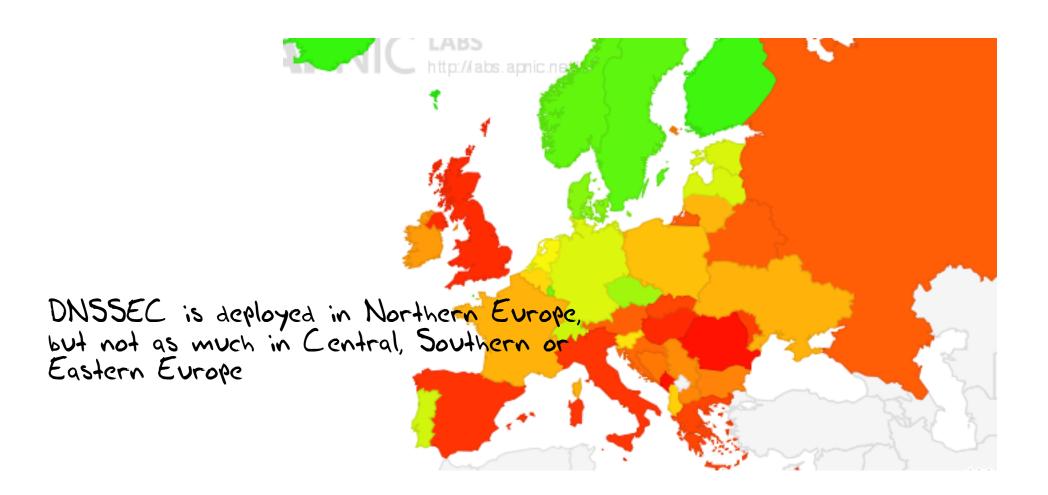
Unit Cost Reduction

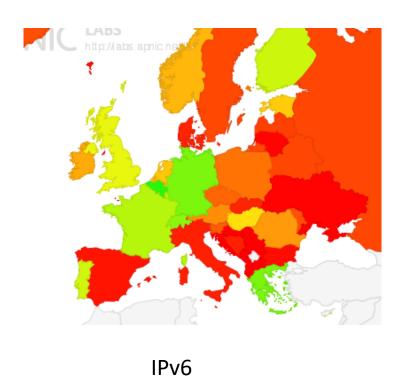

Some Examples

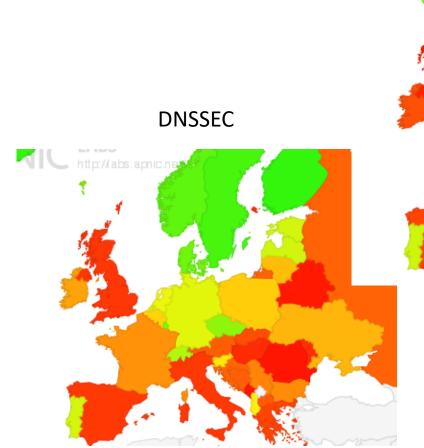
IPv6 adoption - 2012 to Today

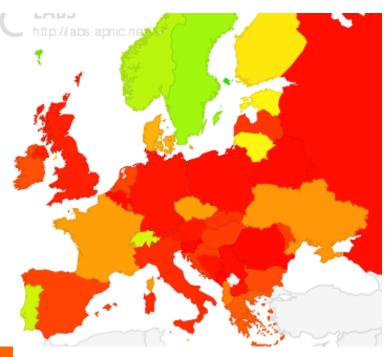


26% of the Internet's user base have IPv6 today


And is very diverse in Europe


DNSSEC adoption




Same (but different) diversity

Why is there such diversity in deployment?

RPKI ROV

Challenges for adoption:

1. This is a deregulated and highly competitive environment

There are many different players Each with their own perspective

And all potential approaches will be explored!

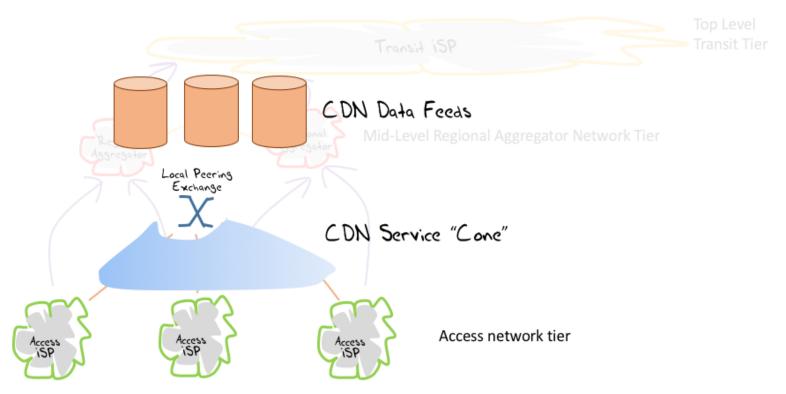
Challenges for adoption:

2. The myth of long-term planning

?

IPV6 Transition will take many years...

5 years, maybe 10 years, maybe longer


Are we still firmly committed to the plans we had 5 years ago? How about our 10-year-old plans?

The longer the period of transition, the higher the risk of completely losing the plot and heading into other directions!

Challenges for adoption:

3. The environment keeps changing

Today's Internet Architecture

Some Providers see advantage in early adoption

- Competitive positioning in a diverse market
- Early adoption of future mainstream technologies (first user advantage)
- Perception of enhanced utility, security and safety in these more recent technologies

Other Providers see compelling reasons to wait ...

- IPv6 is a 1990's technology solution to a 1980's networking architectural challenge – CDN feeder networks do not need globally unique address plans across every device all of the time
- **DNSSEC** is merely a pantomime of secure DNS. If we pushed DNSSEC validation to the edges of the network where it truly matters we're scared that the DNS will slow down to unacceptable levels. DANE's demise is a good example of this DNS paranoia!
- RPKI Route Origin Validation is also a thin veneer of supposed security. It makes routing attacks ever so slightly harder. More moving parts can introduce fragility, and not necessarily enhance operating stability

What drives change?

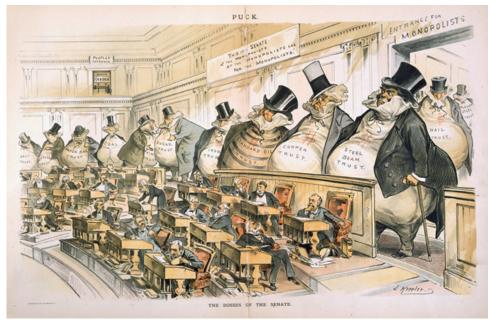
This is a market, like any other

And consumers of goods and services make choices

These user choices are what drives the market

What resists change?

- Volume tends to increase inertial resistance
 - And the digital world has massive volume
- Incumbency resists change
 - And the digital world is now dominated by a small set of incumbents
- The emergence of large scale digital incumbents creates its own challenges


Change and Monopolies

- We are now communicating with a computer-mediated environment rather than with each other
- The network itself is largely incidental to this evolving story, and this
 is not really about the Internet any more
- It's about a set of revolutionary social changes on a par with the industrial revolution that have been triggered by abundant computing, storage and comms
- And its dominated by a very small cartel of monopolists

The Gilded Age in the United States

During latter part of the 19th century in the United States the dominant position within industry and commerce was occupied by a very small number of players who were moving far faster than the regulatory measures of the day.

The resulting monopolies took the US decades to dismember, and even today many of these gilded age companies remain dominant in their field

3

The Internet's Gilded Age

At some point in the past decade or so the dominant position across the entire Internet has been occupied by a very small number of players who are moving far faster than the regulatory measures that were intended to curb the worst excesses of market dominance by a small clique of actors.

The New York Times

Tech Giants Amass a Lobbying Army for an Epic Washington Battle

Catlin O'Neill, right, listening to Facebook's chief executive, Mark Zuckerberg, testify before a House committee on the protection of user data last year. Ms. O'Neill is now director of United States public policy for Facebook after serving as Speaker Nancy Pelosi's chief of staff.

Tom Williams/CQ Roll Call, via Getty Images

By Cecilia Kang and Kenneth P. Vogel

June 5, 2019

WASHINGTON — Faced with the growing possibility of antitrust actions and legislation to curb their power, four of the biggest technology companies are amassing an army of lobbyists as they prepare for what could be an epic fight over their futures.

Gilded Age

Total 2017 federal lobbying spends by tech giants

Alphabet					\$18.1 million
Amazon				\$13 million	
				\$13 million	
Facebook					
			\$11.5	million	
Microsoft					
		\$8.6 million			
Apple			39		
	\$7.1 million				
SOURCE: Open Secrets					

Tech Giants Am Army for an Ep

The

Catlin O'Neill, right, listening to committee on the protection of t policy for Facebook after servin Tom Williams/CQ Roll Call, via Gett

By Cecilia Kang and Ke

June 5, 2019

WASHINGTON -

actions and legislation to d technology companies are prepare for what could be a

The **Economist**

JANUARY 20TH-26TH 2018

The next space race

Immigration's poisonous politics

Something's coming: Bernstein at 100

Our Big Mac index

Change and Monopolies

• We are now communicating with a computer-mediated environment rather than with each other

dant

"Every monopoly and all exclusive privileges are granted only at the expense of the public interest"

Andrew Jackson, 1830

Andrew Jackson, 10 Journal revolution that have computing, storage and comm

And its dominated by a very sr

Incumbency Rewards

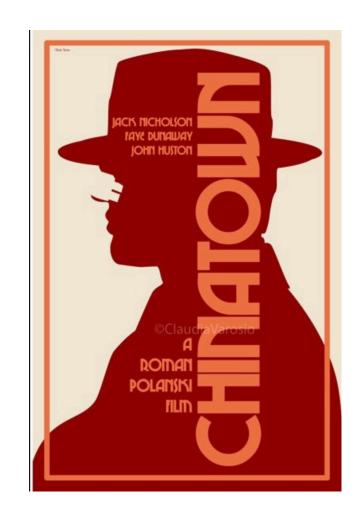
Gittes: How much are you worth?

Cross: I've no idea. How much do you want?

Gittes: I just want to know what you're worth.

Over ten million?

Cross: Oh my, yes!

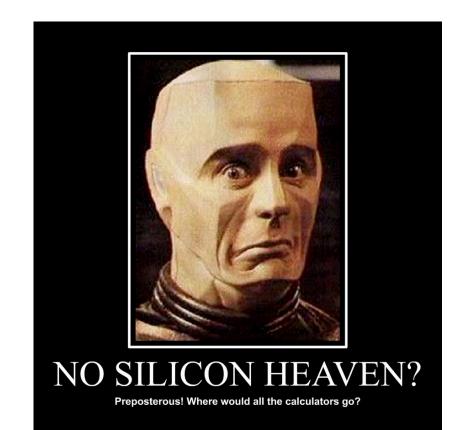

Gittes: Why are you doing it? How much better can

you eat? What can you buy that you

can't already afford?

Cross: The future, Mr. Gittes - the future!

Chinatown (1974)


Where does all this head?

For our society, this rapid market-driven digitisation of our world has the potential to be incredibly empowering or incredibly threatening

Or both at the same time!

Wherever we're heading...

- It's not the Internet any more
- That has already died and gone to silicon heaven!

Sic transit gloria mundi

In 1776 English historian Edward Gibbon published a mighty 6 volume work tracing the Roman Empire (and Western Civilisation) from the height of Empire to the fall of Byzantium

The seeds of of the empire's eventual decline and fall were sown early in its rise

The 100 best nonfiction books: No 83 – The History of the Decline and Fall of the Roman Empire by Edward Gibbon (1776-1788)

Perhaps the greatest and certainly one of the most influential history books in the English language retains its power today

Thanks!