
DoH!
Geoff Huston

APNIC



Words of Caution!

I’m speaking after Paul
And I’m speaking on the DNS

This may not end well!

But here goes…



What defines “The Internet”?

• The 1990’s answer was all about ‘reachability’
• The Internet was this connected domain where every connected device could 

send IP packets to any other connected device
• And the packet I sent to you is the packet you got 

• Modulo TTL and fragmentation and reassembly

• But then we invented enterprise networks, firewalls and security 
realms, NATs and all kinds of “value added” network services
• And the entire architecture of the Internet shifted to a client/server 

architecture
• Clients could interact with servers, but not with each other



What defines “The Internet”?

• Then we turned to the server model and started playing with anycast 
to improve server performance by service replication

• Today:
• Clients don’t have a public IP address (NATs)
• Server’s don’t have a unique public IP address (Anycast)
• So what is the address architecture of the Internet?



What defines “The Internet”?

• If the Internet used be defined by a communications domain that 
shared a common name and address infrastructure then we’ve 
broken the address part and its never going to come back!

• The Internet is now defined only by a common name space



The DNS as the Internet’s Glue

RFC 2826:

Effective communications between two parties requires two essential 
preconditions: 

• The existence of a common symbol set, and 
• The existence of a common semantic interpretation of these 
symbols. 

Failure to meet the first condition implies a failure to 
communicate at all, while failure to meet the second implies that 
the meaning of the communication is lost. 



The Internet’s Domain Name System

What is it?
• A common set of syntax rules that defines ‘valid’ DNS names
• A hierarchically structured distributed database
• A common name resolution protocol that can consult this database and map 

a name to a value
• A collection of engines (resolvers and servers) that run a common 

query/response protocol that performs name resolution



The DNS as Internet Infrastructure

The Theory:
• Names are visible to all
• Names resolve consistently to the same values all the time

The Practice:
• How much of these two principles can we break and still get away with it?



Old School DNS

• The DNS is operated as a common infrastructure (not application 
specific)
• The common infrastructure assumes a common and consistent name 

set in the DNS that is assessible to all
• If a name is defined than its definition is the same for all queriers
• If a name doesn’t exist it doesn’t exist for every querier



Old School DNS

• DNS resolvers configured with IP addresses as part of the connection 
context (DHCP)
• DNS recursive resolvers operated by the ISP as part of the ISP’s 

service to their users
• DNS authoritative services provided in various ways (often as part of 

web hosting environments)

• Applications used gethostbyname() and tapped into the DNS common 
infrastructure



Old School DNS

DNS Authoritative 
Servers

ISP-operated 
Recursive ResolversPlatform Stub DNS 

libraries



DNS (Ab)Use

• Split Horizon DNS
• NXDOMAIN substitution
• TTL munging and Cache manipulation
• Fake Roots
• White Lies: DNS64
• DNS Geolocation
• EDNS Client Subnet



The Path to DoH

The DNS leaks information like a sieve

https://xkcd.com/1361/



Why pick on the DNS?

• The DNS is very easy to tap
• Its open and unencrypted

• DNS traffic is easy to tamper with
• Its payload is not secured and tampering cannot be detected
• Its predictable and false answers can be readily inserted

• The DNS is hard for users to trace
• Noone knows exactly where their queries go
• Noone can know precisely where their answers come from

• The DNS is used by everyone



Second-hand DNS queries are a 
business opportunity these days



How can we improve DNS 
Privacy?
And not alter the DNS architecture in fundamental ways

Move away from clear queries and responses and use session 
encryption



Encrypting the session

• Today the standard tool is TLS, which uses dynamically generated 
session keys to encrypt all traffic between two parties
• We could use TLS between the end client and the client’s recursive 

resolver
• We could probably do the same between recursive resolvers and 

authoritative servers, but the IETF is doing this one step at a time



DoT - DNS over TLS

• TLS is a TCP ‘overlay’ that adds 
server authentication and session 
encryption to TCP
• TLS uses an initial handshake to 

allow a client to: 
• Validate the identity of the server
• Negotiate a session key to be used 

in all subsequent packets in the TCP 
session

• RFC 7858, RFC 8310, RFC8446
DNS over TLS 1.3

Client Server

Client hello
Supported AEADS

Signatures
Key Share

Server hello
Chosen AEAD

Key Share
Certificate
Signature
Finished

Finished
DNS Query

DNS Response



DoT - DNS over TLS

• Similar to DNS over TCP:
• Open a TLS session with a recursive resolver
• Pass the DNS query using DNS wireline format
• Wait for the response

• Can use held DNS sessions to allow the TLS session to be used for 
multiple DNS queries
• The queries and the responses are hidden from intermediaries 
• The client may validate the recursive resolver’s identity …



Who is at the other end of the 
TLS session?
Strict Mode:
• Connect by name, and perform a TLS handshake based on authentication of 

the offered name certificate
(which sounds a whole lot better than it really is due to the WEB PKI CA mess!)

Opportunistic Mode:
• Use an unauthenticated encrypted session

(the client has no idea who it is talking to, but whatever is said cannot be eavesdropped in 
any case!)



DNS over TLS and Android

https://android-developers.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html



DoT - DNS over TLS

• Its TCP not UDP -- May generate a higher recursive resolver memory 
load as each client may have a held state with one or more recursive 
resolvers
• The TCP session state is on port 853
• DNS over TLS can be readily blocked by middleware

• The privacy is relative, as the recursive resolver still knows all your 
DNS queries
• Supported by Bind (stunnel), Unbound, KNOT, DNSDist
• Open DoT Resolvers from Google, Cloudflare (and maybe others)



But once you are using TLS 
it’s a short step to…



DoH - DNS over HTTPS

• DNS over HTTPS
• Uses an HTTPS session with a resolver
• Similar to DNS over TLS, but with 

HTTP object semantics
• Uses TCP port 443, so can be masked 

within other HTTPS traffic
• Uses DNS wire format

DNS

TLS

TCP

IP

DOT

DNS

TLS

TCP

IP

DOH

HTTP



DoH - DNS within the Browser



DoH - DNS within the Browser

• Firefox’s “Trusted Recursive Resolver”
• Avoids using the local DNS resolver library and local DNS 

infrastructure
• Has the browser sending its DNS queries directly to a trusted resolver 

over HTTPS
• Servers available from Cloudflare, Google, CleanBrowsing



Why DoH?

• Lives on TCP port 443
• DNS content denoted by “application/dns- message”, allowing a 

server to distinguish DNS queries within the HTML stream (which is 
encrypted in TLS with HTTPS)
• i.e. DNS queries and responses can be readily intertwined in other HTTPS 

traffic 



Why DoH?

• Applications can effectively hide DNS transactions from the network
• TLS 1.3 and ESNI can remove all visible indication of the DoH server name 

from the network
• DoH queries and responses can use both DNS and HTML padding to disguise 

the payload size

• Applications can effectively hide DNS transactions from the platform
• No DNS query logs on the platform
• No cross-application spyware on the platform



DoH Bypass

DNS 
Authoritative 

ServersISP-operated 
Recursive 
Resolvers

Platform 
Stub DNS 
libraries

1.1.1.1bypass



DoH Futures?

• HTML prefetch?
• How can the client ascertain if the pushed data is genuine?
• What is the use context of the pushed name resolution?

• DoH only names
• Implicit client identification allowing for client customisation

• Morph the DNS into the WEB infrastructure?
• Use HTTPS content distribution infrastructure for DoH web objects



If the web is doing it… why 
not the DNS?



DoQ - DNS over QUIC

• QUIC is a transport protocol originally developed 
by Google and passed over to the IETF for 
standardised profile development
• QUIC uses a thin UDP shim and an encrypted 

payload
• The payload is divided into a TCP-like transport 

header and a payload
• The essential difference between DOT and DOQ 

is the deliberate hiding of the transport protocol 
from network middleware with the use of QUIC
• No known implementations of DNS over QUIC 

exist, though IETF work continues
draft-huitema-quic-dns-quic-07

DNS

TLS

TCP

IP

DNS

QUIC

UDP
IP

DOT DOQ

DNS

TLS

TCP

IP

DOH

HTTP
TLS



DoT, DoH, DoQ

Its not a rule, but
• It seems that applications (browsers) are looking to DoH and possibly DoQ
• Platforms are looking to use DoT as an alternative to DNS in the clear



Whose DNS is it anyway?

• ISP-provided DNS infrastructure
• User configured DNS resolvers can override ISP defaults
• Although open DNS and DoT can be blocked at the ISP level by port level 

blocking and interception
• It’s unclear whether DoH and DoQ can be blocked so readily

• Application selected resolvers can override ISP and platform 
configured defaults
• It’s unclear whether an applications use of DoH can even be detected by the 

platform, let alone by the ISP



DNS use in the Internet

Provider’s DNS

Same country
(Provider’s DNS)

Google’s Public
DNS

All the rest (Open 
DNS platforms)

Top 10



DNS use in New Zealand

Provider’s DNS

Same country
(Provider’s DNS)

Google’s Public
DNS

All the rest (Open 
DNS platforms)

Top 10



DNS use in New Zealand



Thanks!


