
NSEC Caching Revisited

Geoff Huston, Joao Damas
APNIC Labs
October ‘19

What is NSEC Caching?

RFC 8198, July 2017:
• If a DNS zone is pre-signed then each zone entry is

“connected” to the next with a NSEC (or NSEC3) record
• Proof of non-existence of a name is provided by a signed NSEC

record that “spans” the query name
• If a DNSSEC-validating recursive resolver receives an NSEC

record it can cache this record and use it to answer all
subsequent queries for names in the NSEC span for the TTL of
the record

NSEC Caching Benefits
(according to RFC8198)

• Reduced Latency
• Decreased Recursive Resolver Load
• Decreased Authoritative Server Load
• Random name attack mitigation

Does it Deliver?

Random Subdomain Attack Traffic

• Petr Špaček’s report to DNS OARC 28 (2018)
https://indico.dns-oarc.net/event/28/contributions/509/attachments/479/786/DNS-OARC-28-presentation-RFC8198.pdf

Does it Deliver?
• Petr Špaček’s report to DNS OARC 28 (2018)

https://indico.dns-oarc.net/event/28/contributions/509/attachments/479/786/DNS-OARC-28-presentation-RFC8198.pdf

Benchtop vs Live Measurement

• Petr’s results were obtained by feeding a log of query data into
a resolver and measuring the query traffic from the resolver to
the authoritative server(s)

• We thought it would be useful to see if these results are
reproducible in the Internet:

• To what extent is NSEC caching visible in the DNS today?
• How well does NSEC caching work?

Measurement Setup

• We use APNIC Lab’s Ad-based measurement platform in conjunction
with a set of servers

• The Ad campaign delivers some 8M – 12M ads per day to eyeball
networks across the entire Internet

• Each ad contains an HTML5 script that runs the NSEC experiment:
– Generate unique label name within a DNSSEC-signed domain name and

query
– The DNSSEC response is an NXDOMAIN code with an NSEC record that

includes a span across the label name space in the domain
– Wait 2 seconds
– Generate a new unique label name sits within the span of the NSEC record

Measurement Setup

Controls:
• We use a pair of unique labels that generate a CNAME

response to a unique non-existent name
– That way the authoritative server will see the query that generates

the CNAME response and depending on whether the recursive
resolver is performing NSEC caching the authoritative server may (or
may not) see the second CNAME target name query

• We use a second pair of labels that are generated within an
unsigned zone where the server always returns NXDOMAIN

Measurement Details

3

Measurement Details

3

We should not see this query
if the recursive resolver is
performing NSEC caching

Measurement Details

3

We should not see this query
if the recursive resolver is
performing NSEC caching

We might not see this query
either if a previous NSEC
record has been cached

Predictions

• How many users sit behind DNSSEC validating resolvers?
• In this case the NSEC record is validly signed, so we are

interested only in the user’s “first choice” resolver

DNSSEC Validation Rates

30% of users send
queries to DNS
resolvers that
perform DNSSEC
validation

https://stats.labs.apnic.net/dnssec/XA

Predictions

• In up to 30% of these measurements we expect to see a query
pattern consistent with DNSSEC validation being performed by
the recursive resolver

• The maximum NSEC caching rate would therefore be visible for
some 30% of users
– While some resolver code has NSEC caching enabled by default other

code sets have it as a configurable option
– Somewhere between 0% and 30% of all measurements is the range

of possible outcomes from this experiment

Results

7% average outcome

Weekdays tend to be higher

98 days, 266M experiments

This is lower than we had
anticipated

• And some open resolvers that we had thought were NSEC
caching were showing variable behaviour
– Sometimes they queried as if they were NSEC caching and other

times not

What’s goi
ng on?

DNS Load Balancing
The scenario of a stub resolver sending queries to a single
instance of a DNS recursive resolver is being overshadowed by
DNS load balancing scenarios

Stub Resolver

Recursive Resolvers

DNS
Load Balancer

Resolver selection

Auth Server

Measuring Load Balancing by IP
addresses

• Over the 98 day period we observed 559,357 distinct IP addresses that
queried the experiment’s authoritative name servers with query names
generated by the experiment

• If we group these addresses using a /24 (IPv4) and /48 (IPv6) subnet we
observed 295,546 distinct subnets

• More than one half of the visible recursive resolver set share a
common subnet with other recursive resolvers

Query Distribution in Resolver
Farms

• How do you distribute DNS queries in a resolver farm and
maximise cache performance?

– Run some form of cache memory bus across the resolvers to
share cached data across all members of the resolver farm

or
– Hash the query name so that the same resolver handles all

queries for a given name

Query Name Hashing and NSEC caching

3

Does NSEC Caching Deliver?

• The results are not all that promising for conventional query
traffic

• Despite a large number of recursive resolvers performing
DNSSEC validation (and possibly even performing NSEC
caching) the apparent widespread use of qname-hashing DNS
load balancers works against NSEC caching

What about NSEC caching as a response
to Random Subdomain Attack?

• It depends…
• If the attack query pattern is widely distributed then each recursive

resolver may not experience sufficient query intensity to load all
resolver farm members with the cached NSEC records

But
– We didn’t test this scenario using the ad platform using a very high query

intensity as we don’t have the capacity in this platform to operate at very
high query loads over sustained periods

NSEC Caching?

☹The recursive resolver needs to perform range checks against its
help cache state - this may make lookups into the cache database
slightly slower
😊The cache does not contain individual NXDOMAIN entries for signed

zones, so the cache efficiency increases with NSEC caching
☹Commonly used DNS load balancers appear to spread query names

across individual resolver engines and this appears to reduce the
effectiveness of NSEC caching for the resolver farm as a whole

NSEC Caching?

Mostly Harmless!

• NSEC caching does not appear to be harmful to the DNS
• But in today’s resolver environment the interplay between

commonly used load balancers and queries for non-existent
names tends to negate much of the potential benefit of NSEC
caching

One more thing…

• The observed model of DNS operational deployment at scale is
diverging from the classical stub-resolver-authoritative model
that many still use as a reference

• Caching has long been a fundamental property of DNS but the
current deployment model with extensive use of DNS load
balancers alters aggregate cache behaviour

• Is it time to consider how DNS load balancers fit within the
larger DNS architecture?

Standards?

• This is similar to the situation with NATs for many years
• The absence of standard specifications that describe how such

units should behave mean that individual implementors are
able to make their own choices

• And this can result in unexpected variance in behaviours for
aspects of DNS resolution

Thanks!

