What’s the Time?

] A ~ ©.50
il i

Ay

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm



Background

 All computers run with some kind of internal oscillator
(called a ‘clock’)

— This clock manages the internal state changes at each cycle of the
central processing unit

— Clock ‘ticks’ are fed to a digital counter

— From this counter the computer can maintain a conventional clock
and maintain the current time

e )
GAC) r o
o= i

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm

Ay



Why is Time useful for a computer?

* To understand when things happen

— Crontab and event scheduling to ensure that a computer performs
certain tasks at precise times

« To understand the relative age of things

— For example, with NFS file systems its vital to understand which file is
more recent

* To understand when things are valid

l ~ (A
Y

Ss

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm



Security Certificates and Time

Safari is using an encrypted ion to www.p 00.net.

IR i e oomecion o wmpetmntes. These securidy credentials are
L@ wwroene” p ’ : ovx\y vsable w a delwea
wwndow of fwe

k=) DST Root CA X3

L+ 2 Let's Encrypt Authority X3

. The computer’s local clock s
S compared o dwese dates Yo

Issued by: Let's Encrypt Authority X3

:DI‘FI‘:S: h‘-‘?unc‘s‘aay‘ B‘Ja'vuary 2019 at 3:31:18 pm Australlan Eastern Daylight Time de*erm‘\“e V.\»\e*»\er *o *r\)s*
" o Mis certilicade or nod

Subject Name
Common Name www.potaroo.net

Issuer Name
Country US
Organisation Let's Encrypt

Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before
Not valid After

Public Key Info
Algorithm
Parameters
Public Key

#apricot2019 Exponent

Key Size

Let's Encrypt Authority X3

031FBAS7CODSF7 AAAET721B01287223506C 75
3

SHA-256 with RSA Encryption ( 1.2.840.113549.1.1.11 )
None

Thursday, 11 October 2018 at 3:31:18 pm Australian Eastern Daylight Time
Wednesday, 9 January 2019 at 3:31:18 pm Australian Eastern Daylight Time

RSA Encryption ( 1.2.840.113549.1.1.1)
None

256 bytes : BD AD 83 IF FZB1FD B4 ...
65537

2,048 bits

5z APRICOT 2019 APNIC 47




20 we need to keep "time"

 But this can be challenging

« Computer clocks are based on quartz crystal oscillation
— Quartz crystal oscillation is only stable if the temperature and excitation
voltage are kept stable. Changes in temperature or voltage will cause
oscillation changes

« Computer time of day clocks rely on counting ticks in a register
— Which is performed by software running in the processor at an elevated
interrupt level
— If the processor runs for extended times at an even higher interrupt level
then clock ticks can be ‘lost’

] L A
o= i N

Ss

5z APRICOT 2019 APNIC 47 £‘W‘

#apricot2019



Example of Computer
Sotability

PPS Frequency Changes within a leek
Linux 2,2,18 with PPSkit-1,0,3 and ntpd-4,0,99k17 on a Pentium 100MHz

[PPH] Reference Clock: Meinberg PZF 535 (ICF77 with Phase-Locking)

16,4

PO0L —

15,4 F ........ Al ........ ......... ......... ......... o4, 03 lboot
: = : : : : : po01 —
15,2 F o STEETRE Beffeeee SRRTEREE SRICERTE XRSERTEE SRSCRREE = oe.03lboos —
: : : : : : : 001
13 P SRR R SRR R R R “fos.03lpoor — |
. . . . 29,03,2001
14,8 I
0 10000 20000 30000 40000 SO000 BOOO0 FOO00 80000 90000

day offset [UTC seconds]

#apricot2019

Clock

Dave Mill's 2001 experiment on
looking at clock stability over a one
week period using a Linux PC

https://www.eecis.udel.edu/~ntp/ntpfaq
/INTP-s-sw-clocks.htm

5z APRICOT 2019 APNIC 47 =



20 we need to keep "time"

« We actually want to keep accurate and stable time

— Accurate in that every reference timekeeper keeps the same time
(modulo the spacetime stretch factors of relativity)

— Stable in that the duration of each measured interval is exactly the
same

] L )
il i ~

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm

Ss



20 we need to keep "time"

What is “time”?

« We all know that time is divided into days, where a ‘day’ is
defined as the duration between successive events when
the sun is at precisely the same elevation in the sky

— But we don’t do this any more because the earth and the sun are
poor timekeepers

« We turned to distant quasars as the reference point

— But we don’t do this any more because we needed even greater
precision

#apricot2019 == APRICOT 2019 APNIC 47 éw/m



20 we need to keep "time"

* We turned to nuclear physics:

— Time is defined using Systeme International (Sl) seconds, defined as
the duration of 9,192,631,770 periods of the radiation emitted by a
caesium-133 atom in the transition between the two hyperfine levels
of its ground state at a temperature of OK

] L )
il i ~

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm

Ss



Keeping Accurate Time

* Not everyone can afford to run their own caesium clock

5071A

Cesium Primary Frequency Standard

Overview Resources Applications Parametric Search Ordering Support

Unsurpassed accuracy, stability and reliability for demanding laboratory and field applications

Accurate, stable, and capable of delivering extremely predictable time and
phase for long periods, the 5071A meets the needs of leading-edge
metrology and calibration labs. Used with GPS systems, the 5071A
provides master clock integration for telecommunication, satellite
communication, and nawgallun sys!emsA

Microsemi's 507 1A primary frequency standard delivers exceptional
frequency stability. Thanks to a stability specification for 30-day averaging
time, the 5071A can keep extremely predictable time and phase for long
periods. Combined with a GPS timing receiver the 5071A primary
frequency standard can produce a highly robust, inexpensive, and

redundant frequency and time system.

Key Features
Frequency accuracy to 5 x 1013

The intrinsic accuracy of the cesium beam tube assures that any 5071A Option 001 will power up to within 5 x 10-13 of the accepted standard for
frequency. This is achieved under full environmental conditions in 30 minutes or less- and without the need for any adjustments or alignments.

Long-term stability better than 1 x 10-14

The 5071A Option 001 high-performance cesium beam tube guarantees stability to be better than 1 part in 10-14 for averaging times of five days or
greater. The 5071A is the first cesium standard to specify stability for averaging times longer than 100,000 seconds (approximately one day).

#apricot2019 5= APRICOT 2019 APNIC 47




Keeping Accurate Time

Not everyone can launch their own GPS network P

« The GPS satellite constellation is a set of 31 1) b
active earth-orbiting spacecraft operated by i v
the US Air Force e

» These spacecraft are equipped with Caesium-
133 reference clocks that broadcast time
signals

* GPS receivers can use triangulation from
multiple satellites and delay measurement to
determine the receiver’s position and provide
an accurate reference time

#apricot2019 == APRICOT 2019 APNIC 47 &LW:




Distributing Accurate Time

* Not every computer runs their own Cesium Clock or runs a
GPS receiver to maintain accurate time
— But some folk do, and that’s a good thing!

« So what we would like is a way to take this set of highly
accurate reference time sources and provide a mechanism
for others to synchronize their local clock against a
reference source

* On the Internet we use the Network Time Protocol (NTP) to
perform this time synchronization function

#apricot2019 = APRICOT 2019 APNIC 47 =



NTP Operation

« Time sources are classified by their accuracy

— A Stratum O server is a reference clock (GPS or cesium)
— A Stratum 1 server is directly connected to a reference clock source

— A Stratum 2 server receives its time from a Stratum 1 server, and so on

« NTP is a simple clock exchange UDP protocol

J . J \ — C\‘\Q(\‘\ "‘\\N\Q J\ - C\\G(\* ‘\\W\Q
j | '\ — cliend Ywe \ — cliend "‘MQA | j

l E— ) v
Client 7 — seever Y secver 4w Server

‘ ~L Ao

1=

K; ks

#apricot2019 Cl|ent Offset = % ((T2'T1) + (T3'T4)) [EE_E! APRICOT2019 APNIC 47



NTP UDP Packets

A 48 byte UDP packet is passed between the client and server

The fields in the packet are: o1 a3 5 ) 5

u I VN I Mode I Stratum Poll Precision
* The header section contains leap seconds, NTP version, NTP flostDslay
mode, Stratum level, polling interval and clock precision oot Dsperston

Reference Identifier

» Server’'s round trip delay to its reference source and dispersion R

Origin Timestamp (64)

« |dentification of reference source

Receive Timestamp (64)

* 64 bit reference date (seconds and fractions from 1 January 1900
000000 UTC) Transmit Timestamp (64)

Optional Extension Field 1 (variable)

+ Time the req§est left the client

» Time the requegt arrived at the server

Optional Extension Field 2 (variable)

» Time the respon§e left the server Optional Key/Algorithm Identifer (32)

#apricot2019 NTP CUNS UTC — rewmewber Hwig)

Optional Message Digest (128)




NTP Operation

 In steady state the UDP clock packet exchange happens every 16
seconds

— Faster clock exchanges happen when the client clock has lost
synchronisation with the server, and it will burst 8 packets evenly spaced
across a 16 second interval

- If the local clock needs to be adjusted the client time application will
use adjtime() to slew the local clock. Clock correction is slow —
0.5ms per second
— Jumping the clock can fatally confuse applications, so this gentle slew is far

kinder
* NTP can normally maintain a client clock within a few hundredths of
second of the server reference clock <

5z APRICOT 2019 APNIC 47 =

#apricot2019



50 we all agree on the time?

« If everything supports NTP, and there is a well structured
mesh of NTP reference clock servers then every connected
Internet device that runs a clock should have the same

value of time
— “same’ is within a tenth of a second or less

« But does the Internet agree on the tim)

——

nﬂ“J'"" )
5z APRICOT 2019 APNIC 47 z%iwjm

#apricot2019



The Experiment

» Use a scripted online ad to direct a client to report back the value of the
client’s clock
— Use the Javascript getTime() method to get the local UTC clock value
— Pass this value to the server as an argument to a URL fetch operation

« Use NTP-managed clock on the server to maintain a stable reference
clock

« Record the distribution of differences
— lIgnore the fine-grained differences due to local processing and network
propagation time
— Which means that we are looking at measurements of time within +/- 1 second as
being equivalent

] L A
o= i N

Ss

#apricot2019 5= APRICOT 2019 APNIC 47 4‘Wm



Results

#apricot2019

Sample Count (log scale)

1x108

1x10”

1x10°

100000

10000

1000

100

10

0

Time Difference (Days)
—

100

200

300




Log Scales can be misleading

Cumulative Distribution

100 T T T T T T
80 |- -
c
o
R -
=
B
[a)
[0}
3
kS
g 40 -
3
o
20 - -
0 I Il 1 1 1 1

-3x107 2x107 -1x107 0 1x107 2x107 3x107

#apricot2019 Relative Time Difference (seconds) \"C 47 &/




Results

We tested the clock of 202,460,921 clients
over a 80 day period:
— 11% of clocks are more than 1 second fast
— 57% of clients are more than 1 second
slow
— We observed clock slew values of up to 1
year both fast and slow

— 92% of clients are within 120 seconds of
the reference clock

#apricot2019

Cumulative Distribution

------

5z APRICOT 2019 APNIC 47 éwm/




Fast Clocks

100

0.05% of all clocks are ahead
by more than 2 days 0055 | [’f |

There is a clear step function in
this distribution that is aligned
quite precisely to whole days

Cumulative Distribution

Cumulative Distribution

How can a client clock maintain
a stable per-second clock, yet 9085 |- 1
report a time value that is off by
a number of whole days?

1 2 3 4 5 6 7 8 9 7 11 12 13 14 15 16 17 18 19 20

Relative Time Difference (days)

#apricot2019 5= APRICOT 2019 APNIC 47 J/



Fast Clocks

0.7% of all clocks are ahead by
more than 1 hour

As with the day distribution,
there is a marked clustering of
the clock offsets into units of
hours, and a slightly smaller
clustering into half-hours

Similar question: How can a
client clock maintain a stable
per-second clock, yet report a
time value that is off by a
number of whole hours?

#apricot2019

Cumulative Distribution

100

99.9

99.8

99.7

99.6

99.5

99.4

99.3

99.2

Cumulative Distribution

9 10 1M1 12 13 14 15 16 17 18 19 20 21 22 23 24

Relative Time Difference (hours)

5z APRICOT 2019 APNIC 47



Slow Clock

0.35 | -
0.15% of all clocks lag by more sl .
than 2 days (3 x the number of '
fast clocks) 5 o) i
The per-day clustering is not so % 02| ]
clear for slow clocks with alag s
of greater than 2 days. 5 osp -
01 _
0.05 - -
0 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

=20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 7 6 -5 4 -3 2 -1 0

Relative Time Difference (days)

#apricot2019 5= APRICOT 2019 APNIC 47 éw:



olow Clocks

Cumulative Distribution

12 T T T T T T T T T T T T T T T T T T T T T T T
1.05% of all clocks lag by 1
hour or more
1+ |
Here there is a marked
clustering of the clock offsets 5
into units of hours 2% 7
§
é 06 - i
3
04 E
02 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-24 -23 22 -29 -20 19 -18 -17 -16 -15 14 13 12 -11 10 9 8 -7 6 5 4 3 -2 -1 0 .f}v‘

Relative Time Difference (hours) 'M
#apricot2019 [EE_E! APRICOT2019 APNIC 47 &W/ i



Clustering of Clock Slew Values

Distribution of Drift from Hour Chime

This is a distribution of the clock slew 100000 ¢
values when the whole hours are removed i

There is a very strong signal that when a -
clock has slewed from UTC time it does so 10000 |-
in units of hours (and less so in units of half- :
hours)

Sample Count (Seconds)

NTP does not stabilize a local clock into a
slew value of a whole number of hours, so
this distribution is not an artefact of NTP.

1000 |-

What is going on here?

100

-1500 -1000 -500 0 500 1000 1500

Difference from Hour Chime (seconds)

#apricot2019 [EE_E! APRICOT2019 APNIC 47 é‘w:



Clustering of Clock Slew Values

This is a distribution of the clock slew
values when the whole hours are removed

There is a very strong signal that when a
clock has slewed from UTC time it does so
in units of hours (and less so in units of half-
hours)

\WwoN
NTP dnn- e Wt

o -wuk INto a
sle Do O %l number of hours, so

this wstribution is not an artefact of NTP.

What is going on here?

#apricot2019

onds)

Sample

100000

10000 -

d SOV'AQ e

1000 |-

100

Distribution of Drift from Hour Chime

'2

coVse® it

ENRRY

-1500 -1000 -500 0 500 1000

Difference from Hour Chime (seconds)

5z APRICOT 2019 APNIC 47




A Possible Theory

Localtime and UTC time are getting confused
We can test this theory with some additional data

Lets look at 3 countries with a large user population

#apricot2019 == APRICOT 2019 APNIC 47 &LW:



Brazil

 LocalTime is UTC — 2,
UTC-3, UTC -4, UTC-5

« DST is variously
applied in Brazill

« S0 we should expect
localtime at UTC -1
through UTC-5

#apricot2019

90000

80000 |-

70000

60000

50000

40000 |

30000

20000

10000 |-

0

Data For Brazil

-15

Time Offset from UTC (Hours)

i ks
~

5z APRICOT 2019 APNIC 47 4}‘W‘




India

#apricot2019

LocalTime is UTC +5:30

DST is not applied in
India

So we should expect
localtime at UTC +5:30

This is not clearly evident
in the data

There is a strong bias to
30 minute offsets, but no
pronounced peak at
+5:30

3000

2500 -

2000 -

1500 |-

1000 |-

500

0

Data for India

-15 -10 -5 0 5 10 15

Time Offset from UTC (Hours)

sz APRICOT 2019 APNIC 47




Chins

Data for China

+ LocalTime is UTC .|
+8 350 |
 DST is not appliedgir;::
China
» So we should
expect a peak of 4|

localtime at UTC +8 -

15 -10 -5 0 5 10 15

Time Offset from UTC (Hours)

R 4% APRICOT 2019 APNIC 47 JM



A Possible Theory

Q Xne N

Localtime and UTC ti\g;f;o 10= S_wing confused

For the remainder of cases this is not simple clock drift. Some
time source is syncing the local hosts UTC clock to the right
second, but the hour value of the sync source is incorrect

#apricot2019 == APRICOT 2019 APNIC 47 &LW:



A view of Whole of Internet Time

* Only 58% of visible clients run their clock with 2 seconds of
UTC time

 92% of visible clients run a clock that is within 60 seconds
of UTC time

 98% of clients are within 1 hour of UTC time

apricot2019 IBE% APRICOT2019 APNIC 47 éw/m



If your application's behavior relies
on a consistent view of UTC time ..

* |Its probably a poor idea to assume that all local clocks are
tracking UTC time to within 1 hour

* Its probably more robust to work in periods of days rather
than seconds, minutes or even hours

#apricot2019 == APRICOT 2019 APNIC 47 éw/m



Twanks!

#apricot2019 5= APRICOT 2019 APNIC 47




