
Who am I talking to?

Who am I talking to?

What’s the Problem?

Which Bank? My Bank!

It looks l
ike my bank

But is it my bank?

The Question:

How do you know that you are really going to
where you thought you were going to?

It looks l
ike my bank

But is it m
y bank?

A Clue!

A Clue!

If “green” is all users can

rely on, then it
’s a pretty

unsatisfactory
security

model!

Leakage

Also, how can you keep your session a secret
from wire(less) snoopers?

Why is this important?

Because it may not be your bank that you are
providing your credentials to

The connection may not be as secure as you
might like it to be

Because sometimes…

And numerous other incidents

Just 2 hour
s was enoug

h!

Opening the Connection: First Steps

Client:
DNS Query:

www.commbank.com.au?
DNS Response:

23.77.138.30

TCP Session:
TCP Connect 23.77.138.30, port 443

Here’s what happens when
I connect to my bank

The first step is a DNS
transaction to get an IP
address

Then a TCP session is
started

Hang on…

$ dig -x 23.77.138.30 +short
a23-77-138-30.deploy.static.akamaitechnologies.com.

That’s not an IP addresses that was allocated to the Commonwealth Bank!

The Commonwealth Bank of Australia has been assigned the address blocks:
140.168.0.0 - 140.168.255.255 and
203.17.185.0 - 203.17.185.255

Hang on…

$ dig -x 23.77.138.30 +short
a23-77-138-30.deploy.static.akamaitechnologies.com.

That’s an Akamai address block

And I am NOT a customer of the Internet Bank of Akamai!

Why should my browser trust that 23.77.138.30 is really the “proper” web site for the Commonwealth
Bank of Australia, and not some dastardly evil scam designed to steal my passwords and my money?

A tricker question…
How can my browser tell the difference between an intended truth and a lie?

Secure Connections using TLS 1.2

https://rhsecurity.wordpress.com/tag/tls/

Secure Connections using TLS 1.2

https://rhsecurity.wordpress.com/tag/tls/

Secure Connections using TLS 1.2

How
does

 the
 bro

wser
 clie

nt

“reco
gnis

e” t
his c

ertif
icate

as t
he “

righ
t” ce

rtifi
cate

?

How did my
browser know that
this is a valid cert?

Domain Name Certification

• The Commonwealth Bank of Australia has generated a key pair
• And they passed a certificate signing request to a company called

“Symantec”
• Who was willing to vouch (in a certificate) that the entity who goes by the

domain name of www.commbank.com.au also has a certain public key
value

• So if I can associate this public key with a connection then I have a high
degree of confidence that I’ve connected to an entity that is able to
demonstrate knowledge of the private key for www.commbank.com.au, as
long as I am prepared to trust Symantec and the certificates that they issue

• Symantec NEVER lie!

http://www.commbank.com.au/
http://www.commbank.com.au/

Domain Name Certification

• The Commonwealth Bank of Australia has generated a key pair
• And they passed a certificate signing request to a company called

“Symantec”
• Who was willing to vouch (in a certificate) that the entity who goes by the

domain name of www.commbank.com.au also has a certain public key
value

• So if I can associate this public key with a connection then I have a high
degree of confidence that I’ve connected to an entity that is able to
demonstrate knowledge of the private key for www.commbank.com.au, as
long as I am prepared to trust Symantec and the certificates that they issue

• Symantec NEVER lie!
Why should

I trust th
em?

http://www.commbank.com.au/
http://www.commbank.com.au/

Local Trust

The cert I’m being asked to
trust was issued by a
certification authority that my
browser already trusts – so I
trust that cert!

Local Trust or Local Credulity*?

That’s a big list of people to
Trust

Are they all trustable?

*

Local Trust or Local Credulity*?

That’s a big list of people to
Trust

Are they all trustable?

*

Evid
ently

 Not
!

Local Trust or Local Credulity*?

That’s a big list of people to
Trust

Are they all trustable?

*

Evid
ently

 Not
!

But my bank used Symantec

And Symantec NEVER lies in the
certificates they issue

Never?

Well, hardly ever
http://arstechnica.com/security/2017/01/already-
on-probation-symantec-issues-more-illegit-https-
certificates/

Well, hardly ever
http://arstechnica.com/security/2017/01/already-
on-probation-symantec-issues-more-illegit-https-
certificates/

What’s going wrong here?

• The TLS handshake cannot specify which CA should be used by
the client to validate the digital certificate that describes the
server’s public key

• The result is that your browser will allow any CA to be used to
validate a certificate!

• Which is an exploited weakness in the CA model

What’s going wrong here?

• There is no incentive for quality in the CA marketplace
• Why pay more for any certificate when the entire CA

structure is only as strong as the weakest CA?
• And you browser trusts a LOT of CAs!
– About 60 – 100 CA’s
– About 1,500 Subordinate RA’s
– Operated by 650 different organisations

In a market for security

Where CA’s compete with each other for market share
And quality offers no protection
Than what ‘wins’ in the market?

Cheap!
Sustainable

Trusted

Resilient

Privacy

Secure

In a market for security

Where CA’s compete with each other for market share
And quality offers no protection
Than what ‘wins’ in the market?

Cheap!
Sustainable

Trusted

Resilient

Privacy

Secure

Who am I talking to?

What can we do about it?

What can we do about it?

• The problem with “who am I talking to?” lies in the situation of
widely distributed trust in the WebPKI CA environment

• How can we improve this situation?

Is this your Certificate?

How can a user be assured that the certificate that they are
being presented with, signed and published by a CA that their
browser / platform is prepared to trust, is the genuine
certificate?

Certificate Transparency

Certificate Transparency is the current response from the CAB
Forum
CT is an effort to make the problem everyone’s problem by
requiring all trusted CAs to publish immutable logs of all the
certificates they issue
– analogous to blockchain for each CA, but with a centralised authority

model

Certificate Transparency

• Make the problem everyone’s problem by requiring all trusted CAs to
publish all the certificates they issue

• Leave it to the service publisher to figure out if a fake cert has been
issued and logged in the CT logs
– But what then?
– How does the user figure out whether the service point they are accessing has

been attacked with a fake cert?

Certificate Transparency is Naïve!

• CT attempts to set a universal threshold that all CAs must pass
in order to be trusted by a browser

• But won’t really protect my browsing
– Inspection of CT logs by third parties is not fast, thorough, timely nor

effective
– And revocation of certs requires browsers to perform revocation

checks every time (which they don’t)
– Brief (and even long-held) windows of opportunity for exploits still

exist

Pinning: Narrowing the Trust Space

CA / Public Key Pinning
– Communicate to the client which CA / which certificate / which

public key to trust for a given service name
– Exactly how to undertake this communication in a way that is

tamperproof is the challenge

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

https://code.google.com/p/chromium/codesearch

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

https://code.google.com/p/chromium/codesearch

Coded Browser Pinning

https://code.google.com/p/chromium/codesearch#chromium/src/net/http/transport_security_state_static.json

It’s not a totall
y insane idea -

- until you

realise that it appears
to be completely

unscaleable!

It’s just Google protecting
 itself and no o

ne

else

https://code.google.com/p/chromium/codesearch

Content Pinning

HPKP

Content Pinning with HPKP

The issues here include

CA migration can become really convoluted

There appears to be a Trust on First Use issue

A MITM attack could withhold the HPKP record, or even substitute its

own

Is the effort worth it? Low deployment numbers suggest otherwise!

The Google Chrome team recently deprecated support for HPKP in Chrome

because of its perceived complexity and potential side-effects.

DNS Pinning

Where better to find out the public key associated with a DNS-
named service than to look it up in the DNS?
If you are prepared to believe the DNS to give you an IP address
for the service, then why wouldn’t you also trust the DNS to give
you the right pinning record?
(As long as you are using DNSSEC, of course!)

CAA Pinning

• Use a DNS record to specify which CA(s) may issue a WebPKI
certificate for a domain

• Specified in RFC 6844
• It’s not clear how CAA protects a user
– If a user can subvert a CA then its likely that they would also be able

to subvert the CA’s CAA check
– Unless the user is also prepared to retrieve and check the CAA

record then this appears to largely a palliative measure
– But if the user checks the CAA record, then why not just use DANE?

DANE Pinning

• Use a DNS server record to:
– specify which CA(s) may issue a WebPKI certificate for connections to

a service
or
– specify which EE public key certificate should be presented to the

user when connecting to a service
or
– specify which public key will be used when connecting to a service

DANE Pinning

• Use a DNS server record to:
– specify which CA(s) may issue a WebPKI certificate for connections to

a service
or
– specify which EE public key certificate should be presented to the

user when connecting to a service
or
– specify which public key will be used when connecting to a service

Note that
 CAA is u

sed to p
in domains in

the DNS while
DANE is us

ed to pi
n

service records
in the D

NS

TLS with DANE

• Client receives server cert in Server Hello
– Client lookups the DNS for the TLSA Resource Record of the domain

name
– Client validates the presented certificate against the TLSA RR

• Client performs Client Key exchange

TLS Connections

Public Key
Cert

DNS

TLSA query

DANE Does DNS
via a Browser Extension

But…

• DNSSEC as we know it today is just not good enough
• DNSSEC validation should not be outsourced to the recursive

resolver - setting the AD bit in a DNS response is not good
enough

• A client needs to directly validate the DNSSEC-signed DANE
response
– This requires more DNS queries
– And this takes (too much) time
– And we get pushback from browser vendoras

Faster DNSSEC Validation?

RFC 7901 - CHAIN Query Requests in DNS
– Allows a client to make an “omnibus” DNS query to a recursive

resolver to retrieve the set of DNSSEC RRs between the QNAME and
a trust point in a single DNS transaction

DANE as a TLS Extension?

draft-ietf-tls-dnssec-chain-extension-07

TLS + DANE Chain Connections

Public Key
Cert

Local copy
of DNS
root zone
KSK

+TLSA+DNSSEC Chain

DANE CERT
Pinning record

DNSSEC
validation

What now?

It appears that we still need WebPKI certs for the moment, but we need to make them
more robust in the face of continued attack

• DANE+DNSSEC could useful in adding assurance to the WebPKI in a role of WebPKI
CA pinning

• So far we have not figured out how to reliably catch instances of withholding a DNS
TLS extension without paying a DNS query time delay penalty
– Which implies that DANE TLS extension probably represents one more thing to go wrong

without a compelling case that can be made about what it actually manages to do to protect the
user

– Or we can work out a way to catch withholding efficiently

Conclusions
Corrupting a trusted CA is a nightmare scenario for the WebPKI

• DANE appears to offer a natural and compelling alternative to the WebPKI by offering a
dynamic system that provides authenticated data to the user that does not rely on
expansive trust

• But there are some issues that exist in the DNS, DNSSEC and DANE
– Registry practices to ensure that there are very robust defences against domain name hijacking

are lacking today and will be lacking tomorrow
– Centralising trust in a single model creates a single point of vulnerability for the entire system
– The KSK model is fragile
– Overloading the DNS with large payloads stresses the UDP-based system beyond their viability,

but the case to justify shift to DNS over <X> architectures has a limited value proposition outside
of DNSSEC/DANE-based use cases

Thanks

