
TCP and BBR
Geoff Huston

APNIC



The IP Architecture

At	its	heart	IP	is	a	datagram	network	architecture
• Individual	IP	packets	may	be	lost,	re-ordered,	re-timed	and	even	fragmented



The IP Architecture

At	its	heart	IP	is	a	datagram	network	architecture
• Individual	IP	packets	may	be	lost,	re-ordered,	re-timed	and	even	fragmented



The IP Architecture

At	its	heart	IP	is	a	datagram	network	architecture
• Individual	IP	packets	may	be	lost,	re-ordered,	re-timed	and	even	fragmented



TCP

• The	Transmission	Control	Protocol	is	an	END-TO-END	protocol	that	
creates	a	reliable	stream	protocol	from	the	underlying	IP	datagram	
device
• TCP	uses	a	sliding	window	flow	control	protocol	to	manage	the	data	
flow

ACKed Dataunsent	Data unacknowledged	Data

window

Data	stream



TCP Sliding Window

• Each	ACK	advertises	the	sequence	number	of	the	last	“good”	received	
byte	and	the	available	buffer	size	in	the	receiver
• The	sender	can	send	up	to	a	window	size	of	data	before	pausing	for	a	
window	update

ACKed Dataunsent	Data unacknowledged	Data

window

Data	stream

ACK=n	W=s
ns



Sliding Window protocols tend 
to be “bursty”

time

Se
nd

in
g 

ra
te

Send a window of data
Wait for acks to advertise re-opened window

Send a window of data

1 RTT



Flow Control

• While	TCP	could	send	up	to	one	window	of	data	into	the	network	as	
fast	as	it	can,	it	is	possible/likely	that	this	would	flood	the	network	
and	generate	packet	loss
• The	question	is	then	how	to	regulate	TCP’s	sending	behaviour	so	that	
it	sends	as	much	data	as	it	can	while	avoiding	network	packet	loss
• So	lets	look	at	networks…



Network Considerations

Networks	routers	are	constructed	of	links and	routers
• Links are	a	constant	delay	lossless	pipe
• Routers are	a	buffered	switch

• Buffers	within	the	router	constrain	the	total	amount	of	data	that	can	be	held	in	the	
network

Input	Buffers Output	BuffersSwitch



Queue Formation in Network 
Buffers



Buffer Considerations

Buffers	play	the	role	of	multiplexing	adaptors
• If	two	packets	arrive	at	the	same	instant,	one	packet	is	queued	in	a	buffer	
while	the	other	is	being	services

Buffers	also	play	the	role	of	rate	adaptation
• But	only	from	fast	to	slow,	and	only	in	a	limited	role!



Buffer Considerations

• When	the	queue	fills	then	incoming	packets	are	dropped	– so	larger	
buffers	are	better	to	reduce	the	incidence	of	queue	drop!
• When	packets	spend	time	in	the	queue	it	adds	to	the	additional	time	
this	packets	spends	in	transit	(this	delay	variation	is	called	jitter)	– too	
much	imposed	jitter	is	bad,	so	smaller	queues	are	better!
• A	reasonable	rule	of	thumb	for	IP	networks	is	to	use	a	buffer	size	
equal	to	the	delay	bandwidth	product of	the	next	hop	link



TCP Design Objectives

To	maintain	an	average	flow	which	is	Efficient and	Fair
• Efficient:
• Minimise	packet	loss
• Minimise	packet	re-oordering
• Do	not	leave	unused	path	bandwidth	on	the	table!

• Fair:
• Do	not	crowd	out	other	TCP	sessions
• Over	time	take	1/N	of	the	path	capacity	when	there	are	N	other	TCP	sessions	
sharing	the	same	path



It’s a Flow Control process

• Think	of	this	as	a	multi-
flow	fluid	dynamics	
problem
• Each	flow	has	to	gently	
exert	pressure	on	the	
other	flows	to	signal	
them	to	provide	a	fair	
share	of	the	network,	
and	be	responsive	to	the	
pressure	from	all	other	
flows



How can we achieve this?



A few more observations about 
TCP
• TCP	is	an	ACK	Pacing protocol

Data sending rate is matched to the 
ACK arrival rate 



A few more observations about 
TCP
• TCP	is	an	ACK	Pacing protocol
• Each	received	ACK	tells	the	sender	how	many	bytes	of	data	were	received	by	
the	remote	receiver	– which	is	the	same	as	the	number	of	bytes	that	left the	
network
• If	a	sender	paces	its	data	to	ensure	that	the	same	number	of	bytes	enters the	
network,	then	it	will	maintain	a	steady	rate	of	network	“pressure”	assuming	a	
constant	capacity	network	path
• If	the	sender	sends	more	data	into	the	network	than	is	spanned	by	the	ACK	
then	it	increases	its	data	rate	and	its	network	pressure
• Similarly	if	it	sends	less	than	the	ACK	span	then	it	decrease	its	sending	rate	
and	its	network	pressure



A few more observations about 
TCP
Ack pacing	protocols	relate	to	a	past	network	state,	not	necessarily	the	
current	network	state
• The	ACK	signal	shows	the	rate	of	data	that	left	the	network	at	the	receiver	
that	occurred	at	½	RTT	back	in	time

• So	if	there	is	data	loss,	the	ACK	signal	of	that	loss	is	already	½	RTT	old!
• So	TCP	should	react	quickly	to	‘bad’	news

• If	there	is	no	data	loss,	that	is	also	old	news
• So	TCP	should	react	conservatively	to	‘good’	news



“Classic TCP” – TCP Reno

• Additive	Increase	Multiplicative	Decrease	(AIMD)
• While	there	is	no	packet	loss,	increase	the	sending	rate	by	One	Segment	
(MSS)	each	RTT	interval
• If	there	is	packet	loss	decrease	the	sending	rate	by	50%	each	RTT	Interval

• Start	Up
• Each	RTT	interval,	double	the	sending	rate
• We	call	this	“slow	start”	– probably	because	its	anything	but	slow!!!



Idealised TCP Reno

Time

Slow	Start
Rate	Doubles
each	RTT
Interval

Congestion	Avoidance
Rate	increases	by	1	MSS	per	RTT
Rate	halves	on	Packet	Loss

Notification	of	Packet	Loss	via	
Duplicate	ACKs	causes	RENO	to	
halve	its	sending	rate



TCP RENO and Idealized Queue 
Behaviour

Total	Queue	Capacity
(Onset	of	Packet	Loss)

Link	Capacity	Capacity
(Onset	of	Queuing)

Network	Buffers	Fill

Network	Buffers	Drain



Reno is “coarse”

• TCP	Reno	tries	to	oscillate	between	sending	rates	R and	2	x	R that	
span	the	link	capacity
• It	increases	its	sending	rate	slowly	so	it’s	really	lousy	when	trying	to	
run	at	very	high	speed	over	long	delay	networks
• It	over-corrects	on	loss	and	leaves	available	path	capacity	idle
• 10Gbps	rates	over	100ms	RTT	demands	a	packet	loss	rate	of	less	than	
0.000003%	
• A	more	common	average	1%	loss	rate	over	a	100ms	RTT	maxes	AIMD	to	
3Mbps



Reno is “coarse”

• Could	we	make	TCP	faster	and	more	efficient	by	changing	the	way	in	
which	the	sending	rate	is	inflated?



Refinements to TCP

• There	have	been	many	efforts	to	alter	TCP’s	flow	control	algorithm	to	
improve	on	RENO
• In	a	loss-based	control	system	the	essential	parameters	are	the	
manner	of	rate	increase	and	the	manner	of	loss-based	decrease
• For	example:	

MulTCP behaves	as	it	it	were	N	simultaneous	TCP	sessions:	i.e.	increase	by	N	segments	
each	RTT	and	rate	drop	by	1/N	upon	packet	loss

• What	about	varying	the	manner	of	rate	increase?



CUBIC

• CUBIC	is	designed	to	be	useful	for	high	speed	sessions	while	still	being	
‘fair’	to	other	sessions	and	also	efficient	even	at	lower	speeds
• Rather	than	probe	in	a	linear	manner	for	the	sending	rate	that	
triggers	packet	loss,	CUBIC	uses	a	non-linear	(cubic)	search	algorithm

C	is	a	scaling	factor
ß is	the	window	deflation	factor,	
t is	the	time	since	the	most	recent	window	deflation	
Wmax is	the	window	size	prior	to	the	window	deflation



Idealized CUBIC operation

Link	capacity



CUBIC and Queue formation



CUBIC

• Can	react	quickly	to	available	capacity	in	the	network
• Tends	to	sit	for	extended	periods	in	the	phase	of	queue	formation
• Can	react	efficiently	to	long	fat	pipes	and	rapidly	scale	up	the	sending	
rate
• Can	operate	in	a	manner	that	tends	to	exacerbate	‘buffer	bloat’	
conditions	



Can we do better?

• Lets	look	at	the	model	of	the	network	once	more
• There	are	three	‘states’	of	flow	management	in	this	network:

• Under-Utilised	– where	the	flow	rate	is	below	the	link	capacity	and	no	queues	form
• Over-Utilised	– where	the	flow	rate	is	greater	that	the	link	capacity	and	queues	form	
• Saturated	– where	the	queue	is	filled	and	packet	loss	occurs

• Loss-based	control	systems	probe	upward	to	the	saturation	point,	and	back	
off	to	what	they	guess	is	the	under-utilised	state	in	order	to	the	let	the	
queues	drain
• But	the	optimal	operational	point	for	the	flow	is	at	the	state	change	from	
Under	to	Over	utilised



RTT and Delivery Rate with 
Queuing

Under-Utilised Over-Utilised Saturated



How to detect the onset of 
queuing?
• By	carefully	measuring	the	Round	Trip	Time!



TCP Vegas

• Vegas	was	an	early	attempt	to	replace	loss-based	congestion	
avoidance	with	delay-based	control
• Every	sent	packet	is	matched	with	its	ACK,	creating	a	new	RTT	
measurement
• If	the	RTT	measurements	rise,	then	reduce	the	sending	rate
• If	the	RTT	measurements	are	steady	then	increase	the	sending	rate



Idealised TCP Vegas



Vegas vs Loss-based Control

• To	put	it	bluntly,	Vegas	is	too	polite!
• Loss	based	control	systems	are	insensitive	to	the	build	up	of	the	
network	queues,	while	Vegas	will	back	off
• In	a	world	of	congestion-loss	controlled	flows	Vegas	is	unable	to	claim	
its	fair	share	of	path	capacity
• BUT	Vegas	tries	to	minimize	its	demands	on	queuing,	which	is	a	good	
fit	to	cheap	high	speed	short	queue	switching	chips

• Can	we	”improve”	Vegas?



How to “improve” Vegas?

• Only	probe	the	path	capacity	intermittently
• Probe	the	path	by	increasing	the	sending	rate	for	a	short	interval:
• If	the	RTT	of	the	probe	equals	the	RTT	of	the	previous	state	then	there	is	
available	path	bandwidth	that	could	be	utilised
• If	the	RTT	of	the	probe	rises	then	the	path	is	likely	to	be	at	the	onset	of	
queuing	and	no	further	path	bandwidth	is	available

• Do	not	alter	the	path	bandwidth	estimate	in	response	to	packet	loss
• Pace	the	sending	packets	to	avoid	the	need	for	network	buffer	rate	
adaptation



BBR

• Maintain	a	long	term	stable	estimate	of	path	RTT	and	a	shorter	
updated	estimate	of	the	bottleneck	capacity	of	the	path
• Probe	these	estimates	regularly,	but	not	continuously
• Maintain	the	sending	rate	at	this	estimated	bottleneck	capacity	rate	for	6	RTT	
intervals
• For	the	next	RTT,	raise	the	sending	rate	by	25%	and	sample	the	RTT
• If	the	RTT	increased	across	this	probe,	then	for	the	next	RTT	drop	the	sending	
rate	by	25%
• Otherwise	assume	this	is	the	new	bottleneck	bandwidth	



Idealised BBR profile



Idealised BBR profile

I’m not sure I 
have the queue 
size profile right 
in this simulation



Does BBR strike a ‘better’ 
balance than Vegas?
• It	is	certainly	less	“polite”	than	Vegas	and	that	means	it	will	probably	
not	constantly	pull	back	when	simultaneous	loss-based	protocols	
exert	pressure	on	the	path’s	queues
• It	still	tries	to	make	minimal	demands	on	the	queue	size,	and	does	not	
rely	on	a	large	dynamic	range	of	queue	occupancy	during	a	flow



From Theory to Practice

• Lets	use	BBR	in	the	wild
• I’m	using	iperf3	on	Linux	platforms	(Linode)	
• The	platforms	are	dedicated	to	these	tests

• It’s	the	Internet
• The	networks	paths	vary	between	tests
• The	cross	traffic	is	highly	variable
• No	measurement	is	repeatable	to	a	fine	level	of	detail

• These	are	long	pipes
• Which	is	probably	the	opposite	scenario	of	the	target	deployment	
environment	of	BBR



Cubic vs BBR over a 12ms RTT 
10G circuit



Wow!

• That	was	BRUTAL!
• As	soon	as	BBR	started	up	it	collided	with	CUBIC,	and	BBR	startup
placed	pressure	on	CUBIC	such	that	CUBIC’s	congestion	window	was	
reduced		close	to	zero
• At	this	stage	CUBIC’s	efforts	to	restart	its	congestion	window	appear	
to	collide	with	BBR’s	congestion	control	model,	so	CUBIC	remains	
suppressed
• The	inference	is	that	BBR	appears	to	be	operating	in	steady	state	with	a	
relatively	full	network	queue	in	order	to	crowd	out	CUBIC



BBR vs Cubic – second attempt

Same	two	endpoints,	same	
network	path	across	the	public	
Internet

Using	a	long	delay	path	AU	to	
Germany	via	the	US



BBR vs Cubic

BB
R	
(1
)	s
ta
rt
s

Cu
bi
c	
st
ar
ts

BB
R	
(2
)	s
ta
rt
s

Cu
bi
c	
en

ds

BB
R(
2)
	e
nd

s

The	Internet	is	capable	of	offering	
a	400Mbps	capacity	path	on	
demand!

In	this	case	BBR	is	apparently	
operating	with	filled	queues,	and	
this	crowds	out		CUBIC

BBR	does	not	compete	well	with	
itself,	and	the	two	sessions	
oscillate	in	getting	the	majority	
share	of	available	path	capacity



BBR vs Cubic

BB
R	
(1
)	s
ta
rt
s

Cu
bi
c	
st
ar
ts

BB
R	
(2
)	s
ta
rt
s

Cu
bi
c	
en

ds

BB
R(
2)
	e
nd

s

Using	a	shorter	(200ms)	creates an	
entirely	different	profile

Its	possible	to	drive	the	network	
harder,	and	NNR	is	pulling	some	
700Mbps	in	capacity

Cubic	is	still	completely	crowded	
out	of	the	picture!

Interestingly	in	this	case	two	BBR	
sessions	share	the	capacity	very	
effectively



So what can we say about BBR?

It’s	“interesting”	in	so	many	ways:
• It’s	a	move	away	from	the	more	common	loss-based	flow	control	protocols
• It	looks	as	if	it	will	operate	very	efficiently	in	a	high-speed	small-buffer	world
• High	speed	small	buffer	chips	are	way	cheaper,	but	loss-based	TCP	reacts	
really	badly	to	small	buffers	by	capping	its	flow	rate

• It	also	looks	as	if	it	will	operate	efficiently	in	rate	policed	environments
• Unlike	AIMD	systems,	it	will	scale	from	Kbps	to	Gbps over	long	delay	paths	
very	efficiently
• It	resists	the	conventional	network-based	traffic	control	mechanisms



Why use BBR?

• Because	it	achieves!



Why not use BBR?

• Because	it	over	achieves!
• The	classic	question	for	many	Internet	technologies	is	scaling	– “what	
if	everyone	does	it?”
• BBR	is	not	a	scalable	approach
• It	works	so	well	for	the	user	while	it	is	used	by	just	a	few	users,	some	of	the	
time
• But	when	it	is	active,	BBR	has	the	ability	to	slaughter	concurrent	loss-based	
flows
• Which	sends	all	the	wrong	signals	to	the	TCP	ecosystem

• The	loss-based	flows	convert	to	BBR	to	compete	on	equal	terms
• The	network	is	then	a	BBR	vs	BBR	environment,	which	is	highly	unstable
• And	we	all	loose!



While we are bad-mouthing BBR…

• Its	really	unfair	in	the	(loss-based)	Internet	environment
• Its	like	driving	a	rocket-propelled	bulldozer	down	the	freeway!

• Its	unstable,	in	that	it	appears	to	react	quite	radically	to	small	
variations	in	the	path	characteristics
• It	spends	75%	of	its	time	flying	“blind”	with	respect	to	its	sending	rate
• BBR’s	RTT	estimates	are	too	susceptible	to	admit	the	onset	of	
queueing,	and	maintains	a	(too)	high	sending	rate	in	the	face	of	large	
scale	congestion	loss.



Is this BBR experiment a 
failure?
Is	it	just	too	‘greedy’	and	too	‘insensitive’	to	other	flows	to	be	allowed	
out	on	the	Internet	to	play?
• Many	networks	have	been	provisioned	as	a	response	to	the	aggregate	
behaviours	of	loss-based	TCP	congestion	control
• BBR	changes	all	those	assumptions,	and	could	potentially	push	many	
networks	into	sustained	instability
• We	cannot	use	the	conventional	network	control	mechanisms	to	regulate	BBR	
flows
• Selective	packet	drop	just	wont	create	back	pressure	on	the	flow



Where now?

BBR	2.0!
• Alter	BBR’s	‘sensitivity’	to	loss	rates,	so	that	it	does	not	persist	with	an	
internal	bandwidth	delay	product	(BDP)	that	exceeds	the	uncongested	BDP
This	measure	would	moderate	BBR	1.0’s	ability	to	operate	for	extended	
periods	with	very	high	loss	levels

• Improve	the	dynamic	sharing	fairness	by	moderating	the	BDP	by	using	an	
estimated	‘fair’	proportion	of	the	path	BDP
• Alter	the	+/- 25%	probe	factors	dynamically	(i.e.	allow	this	to	be	less	than	25%	
overload)



Thanks!

Questions?


