IPv6e: Are we really
ready to turn off
1Pv4?

The IPv6e Timelinese..

e,
\aoov
< %
03(_ AN 0
I U %
S/ A9, T
Ko 8, v/}
b 5, b (& f
0QAO w %
53
q [N Y, S,
@, p S QQ
\ b AW\\\ A MJ -
3 . Q
X . T @
7o vcw 4 /
5 o, N 1
. L %
R T Ve
.\%Qo v/ & b \
v l‘ ’ YO\ Cnv{ .bm
> 0 ‘~b ¥ ,ma 9 m /
ﬁ.u(nurn_v \m\\ /
s D) 'O U
s % 4
A1 > &/
Q7 \V .
" Jo
'S
by, %
% N
4

2020

2010

2000

1990

The IPve Timelinese..

&
& >
%
& o A
(y S (3
¥ V) o N WL
S° N QQ S Y
& Y “v & <
.l y O 0
© v “ *
» oY & &
(c’ Q (} o &
S & AN
V\ A nb x° s g

\{es we've been \ork wWg on s F
9 or c\ose -\o 30 7eqrs‘

od\bO\, '(\)Q\ Q X
LV / / e si
2010 _—

1990 2000 2020

In-situ transition..

We had this plan ..

IPv6 Deployment

Size of the
Internet

< PV Tiransifion using Dual <tady.

IPv4 Pool
Size

Time

In-situ transition..
Phase 1 - Early Deployment

~\

—X

Eage Dual -Jtack
Nedworks

\PVE netvorks werconnech by

\ \Pu6-over-1PvH tuanels

In-situ transition..
Phase 2 - Dual Stack Deployment

<A “\
SN AV

Transt Dual-Qlack & -) "

Nehworks C Y

Eage Dual-Otack
@, Nedworks

\PVE netvorks werconnech by

\ Dual Slack dransit padns

In-situ transition..
Phase 3 - IPv4 Sunset

3w

Eage Dual Dtack
Nedworks

O\ .
‘\PVL* neheorks wnderconnect by
\ \Pvi-over-1PyvE tunnels

In-situ transition..

We're pretty lousy at following plans!

f

Size of the
Internet

IPv6 Deployment

IPv4 Pool Size

D\)Q\ 5‘\0\CV~ TV‘Q(\S‘\‘\'\OV\)>

Twe Map of \Pub tenciration — Novewser 2017

, Use of IPv6 for World (XA)

I Zoom: 1h 1d 5d 1w 1m 3m 6&m 1y max ® |Pv6 Capable : 0.7 | 10:00 September 26, 2012

m

2012 2013 2014 2015 2016

2012 2013 2014 2015 2016

N - —y

Twe Mag of \PV6 genciration = Novewber 2011

We're stuck in Phase 2

Some 15% - 20% of Internet users have IPv6 capability

In the loT world the IPv6 numbers appear to be far lower
than this

Most new IP deployments use IPv6+ (NATTED) IPV4

IPv4-only Legacy networks are being (gradually) migrated to
dual stack

We're stuck in Phase 2

. e,(“so‘\

NC \)‘\N\a\'\“\c’

Some 15% - 20% of In*- \\,\o}‘ \Q\I‘)\n ‘bility
OO 2 a0 A
In the 'y RV ex < QQQ\V(_ appear to be far lower
R s e
'<\‘\ " O .\ 0\(\ o
X

IPv4-only Legacy networks are being (gradually) migrated to
dual stack

Today

We appear to be in the middle of the transition!

Dual Stack networks cannot drop support for IPv4 as long as
significant services and user populations do not support IPv6

Today

We appear to be in the middle of the transition!

Dual Stack networks cannot drop support for IPv4 as long as
significant services and user populations do not support IPv6
—and we can’t tell when that may change

Nobody is really in a position to deploy a robust at-scale ipv6-
only network service today, even if they wanted to!

And we are not even sure if we can!

Today

We appear to be in the middle of the transition!

Dual Stack networks cannot drop support for IPv4 as long as
significant services and user populations do not support IPv6
—and we can’t tell when that may change

Nobody is really in a position to deploy a robust at-scale ipv6-
only network service today, even if they wanted to!

And we are not even sure if we can!

The Issue

We cannot run Dual-Stack services indefinitely
At some point we need to support networks that only have IPv6

Is that viable?

In other words..

What do we rely on today in IPv4 that does not appear to have a clear
working counterpart in IPv6?

In other words..

What do we rely on today in IPv4 that does not appear to have a clear
working counterpart in IPv6?

If the answer is “nothing” then we are done!

But if there is an issue here, then we should be working on it!

IPv6: What changed?

PV Header

Version | IHL Type of Service Total Length
Identification Flags Fragment Offset
Time To Live Protocol Header Checksum
Source Address
Destination Address
Options Padding

‘\Pv6 \'\GO\er

Version | Class Flow
Payload Length ‘ Next Header Hop Limit
Source Address

Destination Address

IPv6: What changed?

Type of Service is changed to Traffic Class

Flow Label Added

Options and Protocol fields replaced by Extension Headers

32 bit Fragmentation Control were pushed into an Extension Header

Checksum becomes a media layer function

IPv6: What changed?

Options and Protocol fields replaced by Extension Headers

32 bit Fragmentation Control were pushed into an Extension Header

IPv6: What changed?

IPv6: What changed?

IPv4 "Forward Fragmentation"

PV weaser — ——(’ 2_ ‘ f f PV weader

\ TCP/UDP weader — TCP/UDP weader

Pagload —— o lL r\ ij\ / Payloaa
& 7] &/3/
E—) L T

IPv6: What changed?

IPv4 "Forward Fragmentation"

PV weaser —s ‘——(’ 2_ f f PV weader

1 TCP/UDP weader —> || TCP/UDP weader

Payloaa E— "\ LR / Payloaa

@/
NG

-

— . |

\Pv6 weader N __r

TCP/UDP win weader — | IPv6 "Source Fragmentation”
\ qu\oqd B

X \Pv6 Rouder | /

=7
(m—‘ 1 cvpve o1 7 |

2_ k
f F \PV6 weader

r " . Fragwentadion win weader
5 -Z;LZ/ TC P/UDP wh weader

i w Peload

=

ICMPv6 and Anycast

A«\~/cqs-\ C onstellation

/ D\ Client

Qender \nstance

e
J—
-

-
-
P
-

P

-
-
-
-
-

It is not obvious (or even assured) that every router on the path from an anycast
instance to a client host will necessarily be part of the same anycast instance “cloud”

The implication is that in anycast, the reverse ICMPv6 PTB messages will not necessarily
head back to the original sender!

New Dependencies

For IP fragmentation to work in IPv6 then:

- all ICMPv6 messages have to be passed backwards from the interior
of the network to the sender

- IPv6 packets containing a IPv6 Fragmentation Extension
header should not be dropped

Processing incoming ICMPv6 messages

Only the sending host now has control of fragmentation — this is a new twist
A received ICMPv6 message needs to alter the sender’s state to that destination

For TCP, if the ICMP payload contains the TCP header, then you can pass this to the
TCP control block. TCP can alter the session MSS and resend the dropped data

For UDP — um, err, um well

Processing incoming ICMPv6 messages

Only the sending host now has control of fragmentation — this is a new twist
A received ICMPv6 message needs to alter the sender’s state to that destination

For TCP, if the ICMP payload contains the TCP header, then you can pass this to the
TCP control block. TCP can alter the session MSS and resend the dropped data

For UDP — um, err, um well

Maybe you should store the revised path MTU in a host forwarding table cache for a
while

If you ever need to send another UDP packet to this host you can use this cache entry
to guide your fragmentation behaviour

IPv6 and Fragmentation

The theory is that TCP in IPv6 should never send a fragmented packet - TCP should use the session MSS as a
guide to packet sizes and segment the stream according to the session MSS

However, UDP cannot avoid fragmentation - large payloads in UDP simply need to be fragmented to fit
within the path MTU

Fragmentation in IPv6 uses the same control fields as IPv4 — a packet identifier, a fragmentation
offset and a More Frags flag

BUT they are located in an inserted “shim” that sits between the IPv6 packet header and the UDP
transport header - this is an instance of the IPv6 “Extension Header”

IPve Fragmentation Extension Header Handling

The extension header sits between the IPv6 packet header and the
upper level protocol header for the leading fragged packet, and sits
between the header and the trailing payload frags for the trailing
packets

WPvb header Practically, this means that transport-protocol aware packet
processors/switches need to decode the extension header chain, if its
present, which can consume additional cycles to process/switch a
packet —and the additional time is not predictable. For trailing frags

Frqswxcw\q#\of\ w4+ header

TCP/UDP wdn weader

Palond there is no transport header!

Or the unit can simply discard all Ipv6 packets that contain extension
headers!

Which is what a lot of transport protocol sensitive IPv6 deployed
switching equipment actually does (e.g. load balancers!)

IPve Fragmentation Extension Header Handling

There is a lot of “drop” behaviour in the IPv6 Internet for Fragmentation Extension
headers

RFC7872 — recorded drop rates of 30% - 40%

This experiment sent fragmented packets towards well-known servers and observed
whether the server received and reconstructed the fragmented packet

But sending fragmented queries to servers is not all that common — the reverse
situation of big responses is more common

So what about sending fragmented packets BACK from servers — what’s the drop
rate of the reverse case?

IPve Fragmentation Extension Header Handling

We used an ad-based measurement system, using a custom packet
fragmentation wrangler as a front end to a DNS and Web server to
test IPv6 fragmentation behaviour

/\

| "Pv6 DNS Server |

\Pv(: F rqgwxe«\-\e/r\lg

’ / RL\M NG \NX Serverj
C\m \ /)

\ NS Vsew\verj

IPv6e Fragmentation Extension Header Handling

We use a tecwnique of “glucless” delegation and
Cragwentation of twe N query response 4o allow us to
actect f e DND resolver recewved dwe {ragwented response

\ DNS ‘Leso\vej@—)k/w k\?vé; DNS Server/\

~ L\vve NG INX Server |

\?T\<///7f

a We drack TCP ACKs o} dne server 3o see \f dne cliend
cecewed the {ragwentea TCP response

IPve Fragmentation Extension Header Handling

Our Experiments were run across some 40M individual sample points
in August 2017:

37% of end users who used IPv6-capable DNS resolvers could not
receive a fragmented IPv6 DNS response

IPve Fragmentation Extension Header Handling

Our Experiments were run across some 40M individual sample points
in August 2017:

37% of end users who used IPv6-capable DNS resolvers could not
receive a fragmented IPv6 DNS response

20% of IPv6-capable end users could not receive a fragmented
IPv6 packet

IPve Fragmentation is wery unreliable

Why don’t we see this unreliability in today’s IPv6 networks
affecting user transactions?

IPv6 Fragmentation is very unreliable

Why don’t we see this unreliability in today’s IPv6 networks
affecting user transactions?

Because IPv4 papers over the problem!

IPve Fragmentation is very unreliable

Why don’t we see this unreliability in today’s IPv6 networks
affecting user transactions?

Because IPv4 papers over the problem!

In a Dual-Stack environment there is always the option to flip to
use IPv4 if you are stuck with lpv6.

The DNS does this, and Happy Eyeballs does this

So there are few user-visible problems in a dual stack
environment

This means that there is no urgent imperative to correct these
underlying problems in deployed IPv6 networks

IPve Fragmentation is very unreliable

Why don’t we see this unreliability in today’s IPv6 networks
affecting user transactions?

Because IPv4 papers over t;n ! \,.\ O‘C)C.\Co‘\
\\d
WA
Twece S * o 3,\,\\5 Yo 60\‘1 _ _puun to flip to
WA

\(\CC’J‘\)' WNCS PVO.
The DNS does this, and Happy Eyeballs does this

70&” 33

So there are few user-visible problems in a dual stack
environment

This means that there is no urgent imperative to correct these
underlying problems in deployed IPv6 networks

Living without IPv6 Fragmentation

If we apparently don’t want to fix this, can we live with it?

We are living with it in a Dual Stack world, because IPv4 just makes it
all better!

But what happens when there is no IPv4 left?

Living without IPv6 PFragmentation

If we apparently don’t want to fix this, can we live with it?

We are living with it in a Dual Stack world, because IPv4 just makes it
all better!

But what happens when there is no IPv4 left?

We wave Yo avoid \PV6 Fragwentation!

TCP can work as long as IPv6 sessions use conservative MSS sizes

UDP can work as long as UDP packet sizes are capped so as to avoid
fragmentation

Living without IPv6 PFragmentation

We wave Yo avoid \PV6 Fragwentation!

TCP can work as long as IPv6 sessions use conservative MSS sizes

UDP can work as long as UDP packet sizes are capped so as to avoid
fragmentation

Living without IPv6 PFragmentation

We wave Yo avoid \PV6 Fragwentation!

TCP can work as long as IPv6 sessions use conservative MSS sizes

UDP can work as long as UDP packet sizes are capped so as to avoid
fragmentation

o LDV Qackes o«\j\r\o\j?

Wwo weeas Yo vse oD

DNSSEC!

What can we 40 about it?

A Ged all e deployed routers and swidches do
aeliver \CMPVE packeds and accepd fackeds widw
W6 F radwentation Headers

What can we 40 about it?

B. Get all dwe deployed rovders and swidches 4o alter
e vay \PVE wanages facked fragmentation

What can we do sbout it?

C. Move tve DN of(UDP

Pick one?

All of these options have a certain level of pain, cost and potential
Inconvenience

Its hard to work out what is the best course of action, but it seems like
a lot of extra effort if we take on all three at once!

For TCP ..

Working around this issue in TCP can be as simple as a very careful
selection of a default IPv6 TCP MSS

e Large enough enough to offer a tolerable data carriage efficiency

* Small enough to avoid Path MTU issues

And perhaps you might want to to support TCP path MTU discovery
(RFC 4281)

For TCP ..

But you have to take into account the observation that Path MTU
discovery without reliable ICMPv6 signaling takes a number of Round
Trip Times (delay)

And time is something no application designer has enough of to waste
on probing path characteristics

So choose your TCP MSS very carefully

Hint: Smaller TCP MSS sizes are Better in IPv6!

For UDP ..

* Working around this issue can be challenging with UDP
* |ICMPv6 Packet Too Big filtering causes silence

* Fragment drop is silent drop
* Which means that protocols need to understand timeouts

* An effort to work around this necessarily involves application-level
adaptation to pass large responses without relying on UDP packet
fragmentation

If we can't fix IPvé6

* And we can’t fix end-to-end transport

* Then all that’s left is to look at the application protocol and see if we
can re-define the protocol behaviour in a way eliminates
fragmentation behaviour

"0ld Style"™ DNS

* The original DNS protocol had this behaviour
* If the DNS payload was <= 512 bytes send the answer over UDP
* Otherwise send as much as will fit in 512 bytes set the truncate bit
* The receiver is meant to re-query using TCP upon receipt of a truncated response

 Why did we change this behaviour?
* Because we thought that fragmentation was “safe” and TCP was too costly

* So we added Extension options for DNS to signal it was OK to send large
fragmented UDP responses

 But its not OK

Large DNS Responses and IPv6

Change the protocol behaviour?

 Shift Additional Records into additional explicit UDP query/response transactions
rather than bloating the original DNS response

e Perform UDP MTU discovery using EDNS(0) UDP Buffer Size variations as a probe
e Add a truncated minimal UDP response to trail a fragmented response (ATR)

Change the transport?
* DNS over TCP by default
 DNS over TLS over TCP by default
* DNS over QUIC

* Devise some new DNS framing protocol that uses multiple packets instead of
fragmentation

Where now?

* We have a decent idea of the problem space we need to resolve

* We'd prefer a plan that allows each of us to work independently
rather than a large scale orchestrated common change

* We’re not sure we can clean up all the ICMPv6 filters and EH packet
droppers in the IPv6 network

* And it sure seems a bit late in the day to contemplate IPv6 protocol
changes

* Which means that we are probably looking at working around the
problem by changing the behaviour of applications

What do the RFC's say?

What do the RFC's say?

Internet Engineering Task Force (IETF) L. Eggert
Request for Comments: 8085 NetApp
BCP: 145 G. Fairhurst
Obsoletes: 5405 University of Aberdeen
Category: Best Current Practice G. Shepherd
ISSN: 2070-1721 Cisco Systems

March 2017

UDP Usage Guidelines
Abstract

The User Datagram Protocol (UDP) provides a minimal message-passing
transport that has no inherent congestion control mechanisms. This
document provides guidelines on the use of UDP for the designers of
applications, tunnels, and other protocols that use UDP. Congestion
control guidelines are a primary focus, but the document also
provides guidance on other topics, including message sizes,
reliability, checksums, middlebox traversal, the use of Explicit
Congestion Notification (ECN), Differentiated Services Code Points

What do the RFC's say?

Due to these issues, an application SHOULD NOT send UDP datagrams
that result in IP packets that exceed the Maximum Transmission Unit
(MTU) along the path to the destination. Consequently, an
application SHOULD either use the path MTU information provided by
the IP layer or implement Path MTU Discovery (PMTUD) itself [RFC1191]
[RFC1981] [RFC4821] to determine whether the path to a destination
will support its desired message size without fragmentation.

However, the ICMP messages that enable path MTU discovery are being
increasingly filtered by middleboxes (including Firewalls) [RFC4890].
When the path includes a tunnel, some devices acting as a tunnel
ingress discard ICMP messages that originate from network devices
over which the tunnel passes, preventing these from reaching the UDP
endpoint.

What do the RFC's say?

Applications that do not follow the recommendation to do PMTU/PLPMTUD
discovery SHOULD still avoid sending UDP datagrams that would result
in IP packets that exceed the path MTU. Because the actual path MTU
is unknown, such applications SHOULD fall back to sending messages
that are shorter than the default effective MTU for sending (EMTU_S
in [RFC11227]). For IPv4, EMIU_S is the smaller of 576 bytes and the
first-hop MTU [RFC1122]. For IPv6, EMTU_S is 1280 bytes [RFC2460].

What do the RFC's say?

A o E NS0 w Yne

pplications that - SwW . o C

dl SCOve~ ' C? \ SQ \{\5 \: \X o QCC Q* \‘\s \‘\ds‘\Q o
Q \ |

in T we cot oanSe \ oW\

tha P\ .
in QCO‘S\M@*Q yon 903 ¥ %O ockexs (an

PMTUD

~J\-CS and Ehe

Fir: \ gt/ oRRVC) 3\
WO \ ULV @ 0 _ .50 bytes [RFC24607.

yeuncore & y S\ ockeXs:

Xv\)*\co‘)‘c X

But would that be enough?

* Is the root cause problem with the way our IPv6 networks handle
Fragmented IPv6 packets?

e Or with the way our IPv6 networks handle IPv6 packets with
Extension Headers?

* The data presented here suggests that EH drop could be the
underlying significant issue here
* Perhaps we might want to think about advice to host stacks and
applications to avoid EH altogether!
* Including fragmentation!

What was the question again?
Oh yes, that’s right:

“Are we ready for an IPv6-only Internet?”

It appears that the answer is “no, not if we want the DNS to work!”

What was the questiop--"ain?

\
- eeﬁe& .
Oh yes, that’s right: - Za" B- x 38

«“ -
Aére)w vo 0P

1\
\ g ©
1% 0

\ .-
-

_.=s "no, not if we want the DNS to work!”

Twanks!

