Routing 2016

Geoff Huston Chief Scientist, APNIC

E APRICOT 2017 APNIC 43

#apricot2017

Through the Routing Lens

There are very few ways to assemble a single view of the entire Internet

The lens of routing is one of the ways in which information relating to the entire reachable Internet is bought together

Even so, its not a perfect lens...

23 Years of Routing the Internet

23 Years of Routing the Internet

2015-2016 in detail

2015-2016 in detail

October 24, 0800 UTC

Active BGP entries (FIB)

Plot Range: 24-Oct-2016 0024 to 25-Oct-2016 0025

AS	net	+	-	AS-Name
AS6327	744	744	0	SHAW - Shaw Communications Inc., CA
AS9829	211	221	10	BSNL-NIB National Internet Backbone, IN
AS18881	92	92	0	TELEFONICA BRASIL S.A, BR
AS43754	80	89	9	ASIATECH, IR
AS18566	80	80	0	MEGAPATH5-US - MegaPath Corporation, US
AS9116	78	79	1	GOLDENLINES-ASN 012 Smile Communications Main Autonomous System, IL
AS4800	76	1036	960	LINTASARTA-AS-AP Network Access Provider and Internet Service Provider, ID
AS38264	70	70	0	WATEEN-IMS-PK-AS-AP National WiMAX/IMS environment, PK
AS40676	61	85	24	AS40676 - Psychz Networks, US
AS16322	60	61	1	PARSONLINE Tehran - IRAN, IR

AS Adjacencies (Route-Views)

19,700 out of 57,064 ASNs have 1 or 2 AS Adjacencies (72%)

3,062 ASNs have 10 or more adjacencies

22 ASNs have >1,000 adjacencies

6,202 AS6939 HURRICANE - Hurricane Electric, Inc., US 5.069 AS174 COGENT-174 - Cogent Communications, US 4,767 AS3356 LEVEL3 - Level 3 Communications, Inc., US 2,632 AS3549 LVLT-3549 - Level 3 Communications, Inc., US 2,397 AS7018 ATT-INTERNET4 - AT&T Services, Inc., US 1,959 AS209 CENTURYLINK-US-LEGACY-QWEST - Qwest, I 1.953 AS57463 NETIX . BG 1,691 AS37100 SEACOM-AS, MU 1.620 AS34224 NETERRA-AS. BG

What happened in 2016 in V4?

Routing Business as usual – despite IPv4 address exhaustion!

- From the look of the growth plots, its business as usual, despite the increasing pressures on IPv4 address availability
- The number of entries in the IPv4 default-free zone is now heading to 700,000 by the end of 2017
- The pace of growth of the routing table is still relatively constant at ~54,000 new entries and 3,400 new AS's per year
 - IPv4 address exhaustion is not changing this!
 - Instead, we are advertising shorter prefixes into the routing system

How can the IPv4 network continue to grow when we are running out of IPv4 addresses?

We are now recycling old addresses back into the routing system

Some of these addresses are transferred in ways that are recorded in the registry system, while others are being "leased" without any clear registration entry that describes the lessee

IPv4 in 2016 - Growth is Steady

- Overall IPv4 Internet growth in terms of BGP is at a rate of some ~54,000 entries p.a.
- But we've run out of the unallocated address pools everywhere except Afrinic
- So what's driving this post-exhaustion growth?
 - Transfers?
 - Last /8 policies in RIPE and APNIC?
 - Leasing and address recovery?

IPv4 Advertised Address "Age"

2010

Relative Age of Announced Addresses

Registration Age (Years)

IPv4 Advertised Address "Age"

Relative Age of New Advertised Addresses (Years)

IPv4: Advertised vs Unadvertised Addresses

IPv4: Unadvertised Addresses

IPv4 Address Disposition: Unadvertised Address Pool 2016

IPv4:Assigned vs Recovered

2.5 Growth in Advertised Addresses 1.5 RIR Allocations "draw down" Address Count (/8s) 0.5 'recovery" -0.5 Change in the Unadvertised Address Pool -1 -1.5 Jan-16 Mar-16 May-16 Jul-16 Sep-16 Nov-16 Jan-17

IPv4 Address Disposition: RIR Allocations, AUnadvertised Address Pool and Advertised Addresses 2016

IPv4 in 2016

The equivalent of 1.8 /8s was added to the routing table across 2016

- Approximately 1.3 /8s were assigned by RIRs in 2015
 - 0.7 /8's assigned by Afrinic
 - 0.2 /8s were assigned by APNIC, RIPE NCC (Last /8 allocations)
 - 0.1 /8s were assigned by ARIN, LACNIC
- And a net of 0.5 /8's were recovered from the Unadvertised Pool

The Route-Views view of IPv6

2015-2016 in detail

BGP IPv6 RIB Size - RIS and Route Views Peers

Date

AS Adjacencies (Route Views)

9,105 out of 13,197 ASNs have 1 or 2 AS Adjacencies (69%) 917 ASNs have 10 or more adjacencies 4 ASNs have >1,000 adjacencies

3,276 AS6939 HURRICANE - Hurricane Electric, Inc., US 1,607 AS174 COGENT-174 - Cogent Communications, US 1,310 AS3356 LEVEL3 - Level 3 Communications, Inc., US 1,112 AS37100 SEACOM-AS, MU

Number of Adjacencies

IPv6 in 2015

• Overall IPv6 Internet growth in terms of BGP is steady at some 6,000 route entries p.a.

This is growth of BGP route objects is 1/9 of the growth rate of the IPv4 network – as compared to the AS growth rate which is 1/2 of the IPv4 AS number growth rate

What to expect

BGP Size Projections

For the Internet this is a time of extreme uncertainty

- Registry IPv4 address run out
- Uncertainty over the impacts of market-mediated movements of IPv4 on the routing table
- Uncertainty over the timing of IPv6 takeup leads to a mixed response to IPv6 so far, and no clear indicator of trigger points for change for those remaining IPv4-only networks

V4 - Daily Growth Rates

IPv4 RIB Daily Change

V4 - Daily Growth Rates

IPv4 RIB Daily Change

V4 - Relative Daily Growth Rates

IPv4 RIB Daily Relative Change

Date

V4 - Relative Daily Growth Rates

Growth in the V4 network appears to be constant at a long term average of 120 additional routes per day, or some 45,000 additional routes per year

Given that the V4 address supply has run out this implies further reductions in address size in routes, which in turn implies ever greater reliance on NATs

Its hard to see how and why this situation will persist at its current levels over the coming 5 year horizon

V4 - Relative Daily Growth Rates

Growth in the V4 network appears to be constant at a long term average of 150 additional routes per day, or some 54,000 additional routes per year

Given that the V4 address supply has run out this implies further reductions in address size in routes, which in turn implies ever greater reliance on NATs

Its hard to see how and why this situation can persist at its current levels over the coming 5 year horizon

IPv4 BGP Table Size Predictions

	Jan 2017 PREDICTION	Jan 2016 PREDICTION	Jan 2015 PREDICTION
Jan 2013	441,000		
2014	488,000		
2015	530,000		
2016	586,000		580,000
2017	646,000	628,000	620,000
2018	700,000	675,000	670,000
2019	754,000	722,000	710,000
2020	808,000	768,000	760,000
2021	862,000	815,000	
2022	916,000		
	$\overline{\mathbf{n}}$		

These numbers are dubious due to uncertainties introduced by IPv4 address exhaustion pressures.

V6 - Daily Growth Rates

Daily V6 RIB Change

IPv6 Daily RIB Change

V6 - Relative Growth Rates

IPv6 Relative Daily RIB Change (%)

IPv6 Relative Daily RIB Change

Date

Growth in the V6 network appears to be increasing, but in relative terms this is slowing down.

Early adopters, who have tended to be the V4 transit providers, have already received IPv6 allocation and are routing them. The trailing edge of IPv6 adoption are generally composed of stub edge networks in IPv4. Many of these networks appear not to have made any visible moves in IPv6 as yet.

If we see a change in this picture the growth trend will likely be exponential. But its not clear when such a tipping point will

occur

IPv6 BGP Table Size predictions

		Exponential Model	Linear Model
Jan 2014	16,100		
2015	21,200		
2016	27,000		
2017	35,000		
2018		50,000	43,000
2019		65,000	51,000
2020		86,000	59,000
2021		113,000	67,000
2022		150,000 🧲	75,000

Range of potential outcomes

BGP Table Growth

Nothing in these figures suggests that there is cause for urgent alarm -- at present

- The overall eBGP growth rates for IPv4 are holding at a modest level, and the IPv6 table, although it is growing at a faster relative rate, is still small in size in absolute terms
- As long as we are prepared to live within the technical constraints of the current routing paradigm, the Internet's use of BGP will continue to be viable for some time yet
- Nothing is melting in terms of the size of the routing table as yet

BGP Updates

- What about the level of updates in BGP?
- Let's look at the update load from a single eBGP feed in a DFZ context

IPv4 Announcements and Withdrawals

IPv4 Announcements and Withdrawals

IPv4 Convergence Performance

Updates in IPv4 BGP

Nothing in these figures is cause for any great level of concern ...

- The number of updates per instability event has been relatively constant, which for a distance vector routing protocol is weird, and completely unanticipated. Distance Vector routing protocols should get noisier as the population of protocol speakers increases, and the increase should be multiplicative.
- But this is not happening in the Internet
- Which is good, but why is this not happening?

Likely contributors to this outcome are the damping effect of widespread use of the MRAI interval by eBGP speakers, and the topology factor, as seen in the relatively constant V4 AS Path Length

V6 Announcements and Withdrawals

Daily BGP v6 Update Activity for AS131072

Date

V6 Convergence Performance

V6 Updated prefixes per day

V6 Updates per event

Updates in IPv6

BGP Route Updates are very unequally distributed across the prefix set – they appear to affect a very small number of prefixes which stand out well above the average

Updates in IPv6

50 Most active Prefixes for the past 31 days

RANK	PREFIX	UPDs	%	Origin AS AS NAME
1	2001:e00::/31	49904	2.95%	4795 INDOSATM2-ID INDOSATM2 ASN, ID
2	2402:f080::/48	49823	2.95%	38150 TELNET-AS-ID PT. TIME EXCELINDO, ID
3	2402:f080:1::/48	49821	2.95%	38150 TELNET-AS-ID PT. TIME EXCELINDO, ID
4	2403:ae00::/32	49801	2.95%	38766 BMP-AS-ID PT. Bumi Merbabu Permai, ID
5	2400:8b00:a001::/48	40699	2.41%	45727 THREE-AS-ID Hutchison CP Telecommunications, PT, ID
6	2001:df5:b400::/48	38068		131735 IDNIC-TNC-ID PT Telemedia Network Cakrawala, ID
7	2403:8000::/32	36252	2.14%	4796 BANDUNG-NET-AS-AP Institute of Technology Bandung, ID
8	2804:14d:baa2::/48	29735	1.76%	28573 CLARO S.A., BR
9	2a00:86c0:98::/48	27722	1.64%	2906 AS-SSI - Netflix Streaming Services Inc., US
10	2a00:86c0:99::/48	27614	1.63%	2906 AS-SSI - Netflix Streaming Services Inc., US
11	2402:ab00:140::/48	27160		24206 CHANNEL11-AS-ID PT Cakra Lintas Nusantara, ID
12	2620:10c:7007::/48	26703		2906 AS-SSI - Netflix Streaming Services Inc., US
13	2406:9600::/32	25991	1.54%	10208 THENET-AS-ID-AP PT. Millenium Internetindo, ID
14	2402:a600::/32	25392	1.50%	17996 UIINET-ID-AP PT Global Prima Utama, ID
15	2a06:f6c0::/29	21149	1.25%	50107 AS_TCPCLOUD , CZ
	2804:14d:90af::/48	19537		28573 CLARO S.A., BR
17	2804:14d:9081::/48	19536		<u> 28573 CLARO S.A., BR</u>
18	2804:14d:90ae::/48	19501	1.15%	28573 CLARO S.A., BR
19	2804:14d:90ad::/48	19134		28573 CLARO S.A., BR
20	2804:14d:90a6::/48	18939	1.12%	28573 CLARO S.A., BR

The busiest 50 IPv6 prefixes accounted for 1/2 of all BGP IPv6 prefix updates

Compared to IPv4

Updates in IPv6 BGP

IPv6 routing behaviour is similar to IPv4 behaviour:

Most announced prefixes are stable all of the time

And as more prefixes are announced, most of these announced prefixes are highly stable.

But for a small number of prefixes we observe highly unstable behaviours that dominate IPv6 BGP updates which appear to be more unstable (relatively) than IPv4

The State of Routing

"Mostly Harmless"

The levels of growth of the tables, and the levels of growth of updates in BGP do not pose any immediate concerns

The trends are predictable and steady, so network operators can plan well in advance for the capacity of routing equipment to meet their future needs

But:

The advanced levels of instability by a small number of networks are always annoying! How can we prevent these highly unstable prefixes?

That's if!

E APRICOT 2017 APNIC **43**

#apricot2017