
Happy Eyeballs for the
DNS

Geoff Huston,
George Michaelson

APNIC Labs
October 2015

Recap: “Happy Eyeballs”
Plan A:

If you are Dual Stack and the service you are attempting to
connect to is Dual Stack then try to connect using V6 first,
and if the connection attempt fails then try using V4

Which “naturally” propels the V6 transition – as more clients and
services support Dual Stack then more transactions will shift to
use V6

Recap: “Happy Eyeballs”
But Connection Failure took forever:

Windows: 21 seconds
BSD: 75 seconds
Linux: 189 seconds

So what we wanted in the Web was a “fast fail” to keep the
eyeballs on the content

Recap: “Happy Eyeballs”
Plan B:

If you are Dual Stack and the service you are attempting to
connect to is Dual Stack then try to connect using both
protocols, but give V6 a (small) head start

The V6 SYN is typically given a head start of 300ms over the V4
SYN, and the first protocol to complete the TCP handshake is
used for the ensuing session

Happy DNSballs?
00003.y.dotnxdomain.net. IN NS ns1.00003.y.dotnxdomain.net.
ns1.00003.y.dotnxdomain.net. IN A 162.223.8.90
 IN AAAA 2607:fc50:1001:9500::2

This zone is served by an authoritative name server that has both a V4 and a V6
address

•  How should a “Happy Eyeballs” DNS resolver behave?

•  How do resolvers behave today?

Fast Failover in the DNS?

Plan A:

Wait for timeout?

Resolver timeout / retry algorithm is specific to the
DNS resolver implementation:

RFC1034:

 “Send them queries until one returns a response.”

Observed DNS Resolver Re-
Query Times

1	 Second	 Retry	
0.8	 Second	 Retry	

0.37	 Second	 Retry	

Fast Failover in the DNS?

If the DNS were to behave like the Web:
–  assemble a sorted list of V4 and V6 addresses
–  launch a query to the “best” V6 server
–  wait for <small time>
–  launch a query to the “best” V4 server

But this is not what typically happens today.

What does happen?

Where <small time> is around the

 order of an ex
pected RTT for the query

Measuring DNS Resolver
Behaviour

Aside: Understanding DNS
Resolvers is “tricky”

What we would like to think happens in DNS resolution!

Client DNS Resolver

x.y.z?
Authoritative
Nameserver

x.y.z?

x.y.z? 10.0.0.1 x.y.z? 10.0.0.1

Aside: Understanding DNS
Resolvers is “tricky”

A small sample of what appears to happen in DNS resolution

Aside: Understanding DNS
Resolvers is “tricky”

The best model we can use for DNS resolution in these experiments

We can measure the
behaviour of these
resolvers

We can measure the
DNS resolution of
these clients

All this DNS
resolver
infrastructure
is opaque

Aside: Understanding DNS
Resolvers is “tricky”

The best model we can use for DNS resolution in these experiments

We can measure the
behaviour of these
resolvers

We can measure the
DNS resolution of
these clients

All this DNS
resolver
infrastructure
is opaque

Maybe
we can

 improve o
n this

Glueless Delegation

Glueless Delegation

DNS	 OARC	 2015	 Spring	 Workshop	

1	

2	

3	

The resolver can only ask
question 3 if it receives answer 2

Glueless Delegation
We can change the behaviour of the DNS response to the NS
domain query

And we observe that the resolver has received the response
by the subsequent query to the child domain

Testing V6 Preference in
the DNS

We set up three domain structures:
Glueless V4 only - NS name has only an A RR
Glueless V6 only – NS name has only a AAAA RR
Glueless Dual Stack – NA name has both A and AAAA RRs

And tested this in an online Ad campaign using a pool of
unique names to circumvent DNS name caching in resolvers

The Experiment
25 July 2015 – 31 August 2015
43,679,222 completed experiments

Web results:

 DNS V4 Only 42,515,729 97%
 DNS V6 Only 16,605,301 38%
 DNS Dual Stack 41,653,531 95%

38% of tests involved using DNS resolvers that were able to perform DNS
queries over IPv6

The Experiment
25 July 2015 – 31 August 2015
43,679,222 completed experiments

Web results:

 DNS V4 Only 42,515,729 97%
 DNS V6 Only 16,605,301 38%
 DNS Dual Stack 41,653,531 95%

38% of tests involved using DNS resolvers that were able to perform DNS
queries over IPv6

So if

resolve
rs wer

e “neu
tral” w

ith res
pect to

 A and
 AAAA

RRs

in nam
e serv

ers, th
en we

would
see app

roximately 1
9% of

queries

to the
Dual S

tack st
ructur

e take
 place

over IP
v6 – y

es?

DNS Query Behaviours per
Experiment

Experiment
Behaviour Total
V4 only 38,104,161
V6 only 15,116
V4 and V6 29,546,165

Yes,	 that’s	 a	 total	 of	 67,665,443	 experiments	 in	 the	 DNS,	 while	 only	
43,679,	 222	 completed	 the	 web	 fetch	 cycle	 (64%	 compleOon	 rate)	

Number of experiments
that had >= 1 DNS query
observed at the server

DNS Query Behaviours per
Experiment

Experiment
Behaviour Total
V4 only 38,104,161
V6 only 15,116
V4 and V6 29,546,165

 Dual Stack DNS object fetch behaviour

 Exclusively used V4: 24,257,143 82%
 Exclusively used V6: 1,982,312 7%
 Used V4 and v6: 3,193,945 11%

DNS Queries

Resource v4 Queries v6 Queries
4-only 110,265,765 0
6-only 0 61,601,964
Dual-stack 101,897,693 7,346,050

Total number of DNS queries for A a
nd AAAA

RRs seen at the auth
oritative server fo

r

The DNS name

DNS Queries

Resource v4 Queries v6 Queries
4-only 110,265,765 0
6-only 0 61,601,964
Dual-stack 101,897,693 7,346,050

In a glueless struct
ure we saw 7% of

queries for a

dual stack resource
. From the Web results we were

expecting something closer to 19%

DNS Resolvers
Let’s switch from the queries make by resolvers to the visible
resolvers themselves

Resolvers seen:
IPv4-Only Resolvers:
IPv6-Only Resolvers:
Dual Stack Resolvers:

Aside: Identifying DNS
Dual Stack Resolvers

Identifying a resolver as a dual stack resolver involves some
assumptions, as the logged queries do not implicitly reveal that a V4
and a V6 address are actually addresses of the same resolver:

–  If a test query set involved a single V4 and single V6 address then I tentatively

“join them” to a single resolver

–  6-to-4 addresses are “joined” to each other

–  Loops are preferred

–  If a v4 address is “joined” to multiple V6 addresses in this way (or vv) then I
undo the join except in those cases where the V4 and V6 addresses share a
common final octet/nibble

a.b.c.15	 d::15	 e.f.g.20	

DNS resolvers
Let’s switch from the queries make by resolvers to the visible
resolvers themselves

Resolvers seen: 464,950
IPv4-Only Resolvers: 446,173 (96%)
IPv6-Only Resolvers*: 11,377 (2%)
Dual Stack Resolvers: 7,040 (2%)

*	 Could	 not	 uniquely	 associate	 the	 IPv6	 address	 with	 a	 single	 IPv4	 address	

DNS Dual Stack Resolvers
282 dual stack resolvers use 6-to-4 for their IPv6 connections

–  None of these resolvers prefer IPv6 when querying a dual
stack auth server

4 dual stack resolvers used Teredo (!)
–  They made a mix of V4 and V6 queries (63% v4)

6,759 dual stack resolvers used non-mapped V6 addresses

–  58% of queries using V4, 42% using V6

DNS Dual Stack resolvers

Lets look the queries made by the visible dual stack
resolvers:

Dual Stack Resolvers: 7,290
Always Prefer 4: 1,074 (15%)
Always Prefer 6: 197 (3%)
Mixed: 6,001 (82%)
Did not query DS name: 18 (0%)

DNS V6 Capable resolvers

V6 Capable Resolvers: 18,421
Did not use V6 for Dual Stack: 5,088 (28%)
Always Preferred V6: 1,458 (8%)
Mixed V6/V4 for Dual Stack: 11,875 (64%)

Of the mixed V4/V6 situation V6 was used to resolve the dual stack glue record for 5,651,796 identifiers of a total of 38,782,137 identifiers, or 15% of the time

DNS Protocol Switch Times

DNS Protocol Switch Times

What Does Google’s Public
DNS Do?

Observed V6 resolver addresses for Google PDNS: 566
Observed preference for V6 dual stack: 0
 (using glueless delegation)

What does Bind Do?

Can we see Bind?
–  Well, as far as I am aware (please correct me) Bind is

the only resolver that will not follow a CNAME in a NS
record

–  So lets use that as a working definition for Bind and see
what Bind does

What does Bind do?
Experiments using dual stack BIND resolvers:
Asked for Dual Stack using V4: 4,075,246 (52%)
Asked for Dual Stack using V6: 690,566 (17%)
Asked for Dual Stack using V4 and V6: 1,263,312 (31%)

What does Bind do?
Number of resolvers: 264,501 of 479,468 (55%)

(These are the resolvers who do not follow a CNAME RR)

Compare V4 only to V4 Dual Stack
Used IPv4 to query a dual stack resource: 123,339 / 136,946 (90%)

Compare V6 only to V6 Dual Stack
Used IPv6 to query a dual stack resource: 9,402 / 11,950 (79%)

What does NON-Bind do?
Experiments using dual stack NON-BIND resolvers:
Asked for Dual Stack using V4: 22,135,775 (87%)
Asked for Dual Stack using V6: 1,291,746 (5%)
Asked for Dual Stack using V4 and V6: 1,930,633 (8%)

What does NON-Bind do?
Number of resolvers: 214,967 of 479,468 (45%)

(These are the resolvers who do follow a CNAME RR)

Compare V4 only to V4 Dual Stack
Used IPv4 to query a dual stack resource: 136,039 / 139,834 (98%)

Compare V6 only to V6 Dual Stack
Used IPv6 to query a dual stack resource: 2,554 / 2,693 (94%)

Happy DNS Eyeballs?
Not really.

Only 4% of resolvers appear to be dual stack capable L

And of those that do, they are not favoring IPv6 over IPv4 L

And there is not clear evidence of the use of a fast failover
approach from IPv6 to IPv4 L

Does it matter?
How can you tell when you no longer need to keep running
IPv4 on an authoritative name server?

When there are no longer any queries made using IPv4

But this answer assumes that dual stack resolvers have a
clear preference to use IPv6 first and perform a fast failover to
IPv4

 Which is not happening today in the DNS L

That’s it!

