ECDSA P-256 support in DNSSEC-validating Resolvers

Geoff Huston, George Michaelson
APNIC Labs
October 2014
ECDSA

• Elliptic Curve Cryptography allows for the construction of “strong” public/private key pairs with key lengths that are far shorter than equivalent strength keys using RSA
 “256-bit ECC public key should provide comparable security to a 3072-bit RSA public key” *

• And the DNS protocol has some sensitivities over size
 – UDP fragmentation has it’s issues in V4 and V6

So let's use ECDSA for DNSSEC

– Yes?
– Or maybe that's a Bad Idea!

– Is ECDSA a “well supported” crypto protocol?
– If you signed using ECDSA would they validate it?
The Test Environment

We used the Google Ad network to deliver a set of DNS tests to clients to determine whether (or not) they use DNSSEC validating resolvers.

We used 4 tests:

1. no DNSSEC-signature at all
2. DNSSEC signature using RSA-based algorithm
3. DNSSEC signature using broken RSA-based algorithm
4. DNSSEC signature using ECDSA P-256 algorithm
The Test Environment

d.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dashnxdomain.net Unsigned

e.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net RSA Signed

f.t10000.u2045476887.s1412035201.i5053.vne0001.4f168.z.dotnxdomain.net RSA signed (Badly)

g.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.y.dotnxdomain.net ECDSA-Signed

Mapped to a wildcard in the zone file
Unique Signed Zone
A Naïve View

A non-DNSSEC-validating resolver query:

A DNSSEC-Validating resolver query:
Theory: DNSSEC Validation Queries

e.t10000.u2045476887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net

Query for the A resource record with EDNS0, DNSSEC-OK
query: e.t10000.u204546887.s1412035201.i5053.vne0001.4f167.z.dotnxdomain.net IN A +ED

Query the parent domain for the DS resource record
query: 2f7b3.z.dotnxdomain.net): query: 4f167.z.dotnxdomain.net IN DS +ED

Query for the DNSKEY resource record
query: 2f7b3.z.dotnxdomain.net): query: 4f167.z.dotnxdomain.net IN DNSKEY +ED
Practice: The DNS is “messy”

- Clients use multiple name servers, and use local timeouts to repeat the query
- Resolvers may use server farms, so that queries from a common logical resolution process may be presented to the authoritative name server from multiple resolvers, and each resolver may present only a partial set of validation queries
- Resolvers may use forwarding resolvers, and may explicitly request checking disabled to disable the forwarding resolver from performing validation itself
- Clients and resolvers have their own independent retry and abandon timers
First Approach to answering the ECDSA question – Statistical Inference

• A DNSSEC-aware resolver encountering a RR with an attached RRSIG that uses a known algorithm will query for DS and DNSKEY RRs

• A DNSSEC-aware resolver encountering a RR with an attached RRSIG that uses an unknown/unsupported crypto algorithm appears not to query for the DNSKEY RRs
Results

Over 22 days in September 2014 we saw:

- 3,773,420 experiments
 - 937,166 experiments queried for the DNSKEY RR of a validly signed (RSA) domain (24.8%)

 - 629,726 experiments queried for the DNSKEY RR of a validly signed (ECC) domain (16.6%)
Results

Over 22 days in September 2014 we saw:

3,773,420 experiments
 937,166 experiments queried for the DNSKEY RR of a validly signed (RSA) domain (24.8%)

629,726 experiments queried for the DNSKEY RR of a validly signed (ECC) domain (16.6%)

If we assume that the DNSKEY query indicates that the resolver “recognises” the protocol, then it appears that there is a fall by 8.2% in validation when using the ECDSA protocol

1 in 3 experiments that fetched the DNSKEY in RSA did not fetch the ECDSA-signed DNSKEY
Hmmm

• How does this relate to affected users?
• How do validating resolvers manage an unrecognised algorithm failure?

• Lets try again and look at both DNS query and web log data
DNS resolver failure modes for an unknown signing algorithm

If a DNSSEC-Validating resolver receives a response RRSIG with an unknown crypto algorithm does it:

- Immediately stop resolution and return a status code of SERVFAIL?
- Fetch the DS RR and then return a status code of SERVFAIL?
- Fetch the DS and DNSKEY RRs and return a status code of SERVFAIL?
- Abandon validation and just return the unvalidated query result?
Second Approach to answering the ECC question – DNS + WEB

Data collection: 10/9/14 – 4/10/14

552,104 clients who appear to be exclusively using RSA DNSSEC-Validating resolvers

ECC Results:
Success: 76.45% 361,698 Saw fetch of the DNSSEC RRs and the URL

Fetched the URL but appeared not to validate
Failure (1) 19.64% 108,411 Did not see query of DNSKEY, but fetched the URL
Failure (2) 1.47% 8,121 Saw only A queries, but fetched the URL
Failure (3) 0.84% 4,615 Saw queries with DO set and not set, fetched the URL

Did not fetch the URL
Failure (4) 1.07% 5,927 Saw query of the DNSSEC RRs, NOT URL
Failure (5) 0.34% 1,875 Saw query of A, DS, not DNSKEY, NOT URL
Failure (6) 0.12% 655 Saw only A queries, NOT URL
Failure (7) 0.08% 436 Saw queries with DO set and not set, NOT URL

Apparent Fail: 23.55% 130,040
Results

• These results show that 76% of clients who appeared to exclusively use RSA DNSSEC-Validating resolvers were also seen to perform validation using ECDSA

• 22% of the remaining clients fetched the object, even though the DNS queries showed that there was not a complete DNSSEC validation pass being performed

• Just 1.6% of clients did NOT fetch the URL
What? Really?

23.6% ECDSA validation failure is very surprising

- Don’t forget that the subsection of users’ resolvers being polled here already did RSA validation and appeared to correctly return SERVFAIL when the DNSSEC crypto was broken

The fact that most of the failures result in a fetch of the URL is even more surprising

- The expectation was that we would see far more SERVFAIL and far higher URL fail-to-fetch rates
- It seems that the resolvers involved in this behaviour appear to be tagging the domain as “not validatable” and passing back an “insecure” outcome
Where?

ECDSA failure rates – the % of users in each country who use RSA DNSSEC validating resolvers, but fail to validate when the DNSSEC crypto algorithm is ECC. Top 24 countries, ranked by Observed ECC Validation failure rates

1 MN 96.82 Mongolia
2 MT 96.68 Malta
3 FI 95.75 Finland
4 AD 93.41 Andorra
5 CY 92.61 Cyprus
6 BB 90.59 Barbados
7 FJ 89.93 Fiji
8 ZA 85.94 South Africa
9 AG 84.51 Antigua and Barbuda
10 LU 83.28 Luxembourg
11 AU 79.93 Australia
12 SI 79.51 Slovenia
13 NO 78.91 Norway
14 LY 77.13 Libya
15 YE 75.81 Yemen
16 GR 69.64 Greece
17 KW 68.69 Kuwait
18 RW 66.67 Rwanda
19 BY 63.38 Belarus
20 UA 62.15 Ukraine
21 KE 60.57 Kenya
22 BA 56.35 Bosnia and Herzegovina
23 JP 56.06 Japan
24 KZ 49.50 Kazakhstan
ECDSA failure rates – the % of users in each AS who use RSA DNSSEC validating resolvers, but fail to validate when the DNSSEC crypto algorithm is ECDSA – top 25 Ases ranked by ECC failure rate

<table>
<thead>
<tr>
<th>AS</th>
<th>Fail Rate</th>
<th>Samples</th>
<th>AS Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7155</td>
<td>100.00</td>
<td>WB-DEN2 - Viasat Communications Inc.,US</td>
</tr>
<tr>
<td>2</td>
<td>44143</td>
<td>100.00</td>
<td>VIPMOBILE-AS Vip mobile d.o.o.,RS</td>
</tr>
<tr>
<td>3</td>
<td>22363</td>
<td>100.00</td>
<td>PHMGMT-AS1 - Powerhouse Management, Inc.,US</td>
</tr>
<tr>
<td>4</td>
<td>12638</td>
<td>99.53</td>
<td>AS12638 E-Plus Mobilfunk GmbH & Co. KG,DE</td>
</tr>
<tr>
<td>5</td>
<td>33929</td>
<td>99.39</td>
<td>MASICOM-AS Telemach d.o.o.,SI</td>
</tr>
<tr>
<td>6</td>
<td>37457</td>
<td>99.36</td>
<td>Telkom-Internet,ZA</td>
</tr>
<tr>
<td>7</td>
<td>16014</td>
<td>99.25</td>
<td>EE-EMT AS EMT,EE</td>
</tr>
<tr>
<td>8</td>
<td>10219</td>
<td>99.17</td>
<td>SKYCC-AS-MAIN SKY C&C LLC,MN</td>
</tr>
<tr>
<td>9</td>
<td>7679</td>
<td>99.11</td>
<td>QTNET Kyushu Telecommunication Network Co.,Inc.,JP</td>
</tr>
<tr>
<td>10</td>
<td>1759</td>
<td>98.98</td>
<td>TSF-IP-CORE TeliaSonera Finland IP Network,FI</td>
</tr>
<tr>
<td>11</td>
<td>11815</td>
<td>98.97</td>
<td>Cooperativa Telefonica de V.G.G. Ltda.,AR</td>
</tr>
<tr>
<td>12</td>
<td>16232</td>
<td>98.79</td>
<td>ASN-TIM TIM (Telecom Italia Mobile) Autonomous System,IT</td>
</tr>
<tr>
<td>13</td>
<td>5603</td>
<td>98.77</td>
<td>SIOL-NET Telekom Slovenije d.d.,SI</td>
</tr>
<tr>
<td>14</td>
<td>17711</td>
<td>98.71</td>
<td>NDHU-TW National Dong Hwa University,TW</td>
</tr>
<tr>
<td>15</td>
<td>4804</td>
<td>98.70</td>
<td>MPX-AS Microplex Pty LTD,AU</td>
</tr>
<tr>
<td>16</td>
<td>12644</td>
<td>98.60</td>
<td>TELEMACH Telemach Autonomous System,SI</td>
</tr>
<tr>
<td>17</td>
<td>15735</td>
<td>98.58</td>
<td>DATASTREAM-NET GO p.l.c.,MT</td>
</tr>
<tr>
<td>18</td>
<td>53142</td>
<td>98.57</td>
<td>Friburgo Online LTDA ME,BR</td>
</tr>
<tr>
<td>19</td>
<td>41164</td>
<td>98.13</td>
<td>GET-NO GET Norway,NO</td>
</tr>
<tr>
<td>20</td>
<td>7992</td>
<td>97.94</td>
<td>COGECOWAVE - Cogeco Cable,CA</td>
</tr>
<tr>
<td>21</td>
<td>44489</td>
<td>97.31</td>
<td>STARNET Sternet s.r.o.,CZ</td>
</tr>
<tr>
<td>22</td>
<td>39651</td>
<td>96.82</td>
<td>COMHEM-SWEDEN Com Hem Sweden,SE</td>
</tr>
<tr>
<td>23</td>
<td>27813</td>
<td>96.70</td>
<td>Teledifusora S.A.,AR</td>
</tr>
<tr>
<td>24</td>
<td>47956</td>
<td>96.50</td>
<td>XFONE XFONE COMMUNICATION LTD,IL</td>
</tr>
<tr>
<td>25</td>
<td>52263</td>
<td>96.14</td>
<td>Telecable Economico S.A.,CR</td>
</tr>
</tbody>
</table>
Why?

IPR issues:

• OpenSSL only added ECDSA support as from 0.9.8 (2005)

• Other bundles and specific builds added ECC support later

• Others still do not include ECC today
The Words of the Ancients
RFC 4035

If the resolver does not support any of the algorithms listed in an authenticated DS RRset, then the resolver will not be able to verify the authentication path to the child zone. In this case, the resolver SHOULD treat the child zone as if it were unsigned.
What About Google’s Public DNS?

$ dig geoff.00001.bad.x.dotnxdomain.net @8.8.8.8

;; >>> DiG 9.9.5-P1 >>> geoff.00001.bad.x.dotnxdomain.net @8.8.8.8
;; global options: +cmd
;; Got answer:
;; ->>>HEADER<<< opcode: QUERY, status: NOERROR, id: 1767
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;geoff.00001.bad.x.dotnxdomain.net. IN A

;; ANSWER SECTION:
geoff.00001.bad.x.dotnxdomain.net. 3587 IN A 203.133.248.10

;; Query time: 12 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Mon Oct 20 19:25:52 UTC 2014
;; MSG SIZE rcvd: 78

The ‘ad’ flag is missing from the response!
If 8.8.8.8 does not validate ECDSA...

The level of support for the ECDSA algorithm in today’s Internet is really very low indeed!

Data collection: 10/9/14 – 4/10/14

552,104 clients who appear to be exclusively using RSA DNSSEC-Validating resolvers

ECC Results:
 Success: 24.59% 130,220 Saw fetch of the DNSSEC RRs and the URL

 Apparent Fail: 76.41% 421,884
Is ECDSA a viable crypto algorithm for DNSSEC?

If the aim is to detect efforts to compromise the DNS for the signed zone, then signing a zone with ECDSA limits the number of DNS resolvers who will validate the signature.

Which is a shame, because the shorter key lengths could be attractive for DNS over UDP.