An Introduction to Routing the Internet

Geoff Huston
APNIC

- 2 85.132.40.1 (85.132.40.1) 1.202 ms 1.272 ms 1.425 ms
- 3 94.20.50.141 (94.20.50.141) 2.394 ms 2.649 ms 2.044 ms
- 4 r02-greenxchange-r04.az-ix.net (85.132.60.61) 2.634 ms 2.700 ms 2.292 ms
- 5 so-7-0-0-ycr1.skt.cw.net (166.63.220.21) 71.707 ms 77.259 ms 78.499 ms
- 6 xe-0-3-1-xcr2.amd.cw.net (195.2.9.217) 102.346 ms
 - xe-0-2-1-xcr2.amd.cw.net (195.2.9.233) 103.459 ms
- xe-0-3-1-xcr2.amd.cw.net (195.2.9.217) 100.372 ms
- 7 ae3-xcr1.amd.cw.net (195.2.30.105) 98.816 ms 99.660 ms 97.998 ms
- 8 xe-4-1-0-xcr1.lsw.cw.net (195.2.25.93) 97.892 ms
- xe-7-2-0-xcr2.lsw.cw.net (195.2.25.138) 97.840 ms
- xe-4-1-0-xcr1.lsw.cw.net (195.2.25.93) 132.251 ms
- 9 xe-3-0-1-xcr1.lns.cw.net (195.2.25.250) 101.963 ms 97.870 ms 97.707 ms
- 10 195.66.236.166 (195.66.236.166) 102.975 ms 101.481 ms 107.319 ms
- 11 i-2-0-0.ulco-core01.bi.telstraglobal.net (202.40.148.218) 104.572 ms 98.277 ms 102.415 ms
- 12 i-6-0-0.eig-core01.bx.telstraglobal.net (202.84.249.21) 241.369 ms 238.537 ms 240.648 ms
- 13 i-0-4-1-0.eqnx-core01.bi.telstraglobal.net (202.84.249.34) 239.569 ms 239.580 ms 239.513 ms
- 14 i-0-4-0-0.sydo-core02.bx.telstraglobal.net (202.84.144.186) 386.366 ms 386.084 ms 398.815 ms
- 15 tengige0-2-0-0.oxf-gw1.sydney.telstra.net (203.50.13.29) 388.800 ms 399.029 ms 397.750 ms
- 16 bundle-ether1.ken-core4.sydney.telstra.net (203.50.6.5) 394.591 ms 406.403 ms 396.072 ms
- 17 bundle-ether5.cha-core4.brisbane.telstra.net (203.50.11.73) 410.061 ms 411.584 ms 413.307 ms
- 18 tengigabitethernet7-1.cha30.brisbane.telstra.net (203.50.51.40) 432.973 ms 401.504 ms 400.854 ms
- 19 4608resolvers.brisbane.telstra.net (139.130.130.194) 405.478 ms 407.010 ms 408.246 ms
- 20 wattle.rand.apnic.net (203.133.248.2) 406.757 ms 410.261 ms 410.676 ms

The Objective of Routing

- To ensure that every packet gets delivered
 - To ensure that every packet gets delivered in the shortest possible time
- This implies that every router needs to understand the relative direction of all possible destinations
- So every router needs to know the current relative location of all possible destinations
- This is the task of the routing system

Routing Architecture

- The Internet uses a decoupled routing architecture
 - A routing protocol is designed to pass forwarding information between routers. It does not perform the forwarding function itself
 - Different networks may (and do) use different routing protocols
 - Routing protocols change over time
 - But need not change all at once

Routing Protocols

- Routing protocols are "self discovery" distributed protocols
 - Two flavours of algorithm:
 - Distance vector (rumours)
 - I tell you everything I know
 - You tell me everything you know
 - Repeat until nothing more to day!
 - Link State (map drawing)
 - I tell everyone about my links (link state messages)
 - I listen to all link state messages
 - I compute a optimal path map of the network

Routing Architecture

- The Internet uses a *two level* routing hierarchy:
 - Interior Routing Protocols, used by each network to determine how to reach all destinations that line within the network
 - Interior Routing protocols maintain the current topology of the network

Routing Architecture

- The Internet uses a *two level* routing hierarchy:
 - Exterior Routing Protocol, used to link each component network together into a single whole
 - Exterior protocols assume that each network is fully interconnected internally

Exterior Routing: BGP

- BGP is a large set of bilateral (1:1) routing sessions
 - A tells B all the destinations (prefixes) that A is capable of reaching
 - B tells A all the destinations that B is capable of reaching

BGP decisions

- BGP is an "offer and accept" protocol
 - A network "offers" to a neighboring network prefixes that it is prepared to act as a forwarder
 - The network need not offer all its prefixes to a routing neighbour
 - It may have internal routing policies to moderate what it is prepared to offer
 - The neighboring network is not obliged to accept the offer
 - It may have better offers from other routing peers that show a preferred path
 - It may have policies about redistribution of prefixes that determine what is offered and what is accepted

A view of a Routing Table

show ip bgp

```
BGP table version is 0, local router ID is 203.133.248.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
              r RIB-failure, S Stale, R Removed
Origin codes: i - IGP, e - EGP, ? - incomplete
   Network
                                        Metric LocPrf Weight Path
                    Next Hop
  1.0.0.0/24
                    202.12.28.1
                                                            0 4777 15169 i
                    203.119.76.3
*>
                                                            0 4608 15169 i
  1.0.4.0/22
                                                            0 4777 2516 6453 7545 7545 7545 56203 i
                    202.12.28.1
                    203.119.76.3
                                                            0 4608 1221 2764 24130 7545 7545 56203 i
*>
                                                            0 4777 2519 i
*> 1.0.16.0/23
                    202.12.28.1
                    203.119.76.3
                                                            0 4608 1221 4637 3356 2516 2519 i
*> 1.0.18.0/23
                    202.12.28.1
                                                            0 4777 2519 i
                    203.119.76.3
                                                            0 4608 1221 4637 3356 2516 2519 i
*> 1.0.20.0/23
                    202.12.28.1
                                                            0 4777 2519 i
                    203.119.76.3
                                                            0 4608 1221 4637 3356 2516 2519 i
*> 1.0.22.0/23
                    202.12.28.1
                                                            0 4777 2519 i
                    203.119.76.3
                                                            0 4608 1221 4637 3356 2516 2519 i
*> 1.0.24.0/23
                                                            0 4777 2519 i
                    202.12.28.1
                                                            0 4608 1221 4637 3356 2516 2519 i
                    203.119.76.3
*> 1.0.26.0/23
                    202.12.28.1
                                                            0 4777 2519 i
```

Routing Properties

- Routing is designed to be robust
 - Within a richly connected topology the interior routing protocol is designed to "self heal" in the even of breakage
 - Within the exterior network, connectivity will also "self heal" if there are alternative paths that route around the break
- Routing is efficient
 - Interior routing can be tuned to converge in milliseconds
 - Exterior routing will converge across the span of the Internet within 70 seconds on average following a change in local connectivity

Routing Policies

- Exterior routing systems are often used to express a number of objectives:
 - Business requirements (e.g.: customer, peer, upstream)
 - Traffic Engineering requirements (e.g.: traffic flow balancing)
 - Robustness requirements (e.g.: alternate connection arrangements and automated failover)

Routing Insights

 Routing is essentially a view of "all of the network" at once, and as such it provides a number of useful insights into the

connected network 450000 RIB Entries 50000 150000 100000 50000

The Big Picture of the v4 Routing Table

Routing Issues

The Big Picture of the v4 Routing Table

Hot topics in Routing

Security

Hot Topics in Routing

Scaling

Open Routing Standards

- Interior Routing Protocols
 - Open Shortest Path First (OSPF)
 - Intermediate System Intermediate System (IS-IS)
- Exterior Routing Protocols
 - Border Gateway Protocol (BGP)