RPKI and Routing Security

ICANN 44
June 2012
Today’s Routing Environment is Insecure

- Routing is built on mutual trust models
- Routing auditing requires assembling a large volume of authoritative data about addresses and routing policies
 - And this data does not readily exist
- We have grown used to a routing system that has some “vagueness” at the edges
Telling “Good” from “Bad”

Can we set up a mechanism to allow an automated system to validate that the use of an address in routing has been duly authorized by the holder of that address?

This looks a lot like an application of public/private key cryptography, with “authority to use” conveyed by a digital signature

– Using a private key to sign the authority, and the public key to validate the authority
– We could use a conventional certificate infrastructure to support public key validation at the scale of the Internet
– But how can we inject trustable authority into this framework?
Trustable Credentials

How can we inject trustable authority into this framework?

• Use the existing address allocation hierarchy
 – IANA, RIRs, NIRs & LIRs, End holders

• Describe this address allocation structure using digital certificates

• The certificates do not introduce additional data – they are a representation of registry information in a particular digital format
Resource Certificates

• A resource certificate is a digital document that binds together an IP address block with the IP address holder’s public key, signed by the certification authority’s private key

• The certificate set can be used to validate that the holder of a particular private key is held by the current legitimate holder of a particular number resource – or not!

• Community driven approach
 – Collaboration between the RIRs since 2006
 – Based on open IETF standards
 • Based on work undertaken in the Public Key Infrastructure (PKIX) and Secure Inter-Domain Routing (SIDR) Working Groups of the IETF
The RPKI Certificate Service

• Enhancement to the RIR Registry
 – Offers validatable proof of number holdership

• Resource Certification is an opt-in service
 – Number Holders choose to request a certificate
 • Derived from registration data
A Number Resource PKI

• The RPKI is a service that offers a means to validate attestations about addresses and their current holder
 • The ability to validate assertions about an entity being the holder of a particular address or autonomous system number
 – “I am the holder of 1.1.1.0/24”
 • The ability to make more reliable routing decisions based on signed credentials associated with route objects
 – “I authorise AS 23456 to originate a route to 1.1.1.0/24”
Community Concerns

1. External Intervention
 – Certificate Issuer could be forced to tamper with the certificate contents (court order)
 • This is no different from the existing external intervention factors with the registry contents itself – the certificates do not add or detract from the issues here

2. Security
 – The certificate system could get compromised (hack, error, etc.)
 • Much effort has been invested in industry best practices of key management and certificate issuance system integrity by the RIRs

3. Resilience
 – The system could suffer from a failure
 • Signed data allows for widespread replication of the data itself. The signature can be used to validate the currency and legitimacy of the data.
Current Activities

• Certificate Infrastructure
 – Integration of Certificate Issuance Systems into production services
 – Signing and validation service modules as plugin modules for other apps
 – Tools for the distribution and synchronization of the certificate store

• Secure Routing Systems
 – Specification of AS Path signing extensions to BGP
Questions?