Stacking it Up

Experimental Observations on the operation of Dual Stack Services

Geoff Huston, APNIC

RIPE 62
May 2011
If working with one protocol has its problems ...
Then just how much damage can we do with two protocols?
Dual Stack End-to-End Service Measurements

Examine IPv6 / IPv4 use from the perspective of a service delivery platform (web server)

- IPv6 is used by clients only when all the various IPv6 infrastructure components support IPv6, otherwise the client will fall back to IPv4 use
- Service metrics for IPv6 are reflective of end-to-end IPv6 capability
Methodology

Test every web client with 3 different retrieval tasks of a 1x1 pixel image:

- V6 only
- Dual-Stack
- V4 Only

Take just one test result for each unique source address per 24 hours

Use server packet dump and web logs as the basis of the analysis

Look at retrieval rates, failure behaviour and transaction times
Access Combinations

<table>
<thead>
<tr>
<th>Test</th>
<th>Host Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td>V4-Only</td>
</tr>
<tr>
<td>✗</td>
<td>V6-Only</td>
</tr>
<tr>
<td>✗</td>
<td>V6-Preferred</td>
</tr>
<tr>
<td>☑</td>
<td>V6-Capable (V4-Preferred)</td>
</tr>
<tr>
<td>☑</td>
<td>Dual-Stack Loss</td>
</tr>
</tbody>
</table>
IPv6: “could” vs “will”

IPv6 Capable

IPv6 Preferred
IPv6: “could” vs “will”
Where are we with IPv6?

The ‘size’ of the IPv6 deployment in terms of end-to-end host IPv6 preference is around 0.3% of the total number of Internet end hosts at present.

However, a further 4% of hosts can use IPv6, even though they prefer IPv4 in dual stack mode. These hosts generally use auto-tunnelled 6to4 for IPv6 access.
Why is there so much “hidden” IPv6 capability?

Why is the number of client hosts who are capable of performing an end-to-end IPv6 object retrieval 15 times greater than the number of client hosts who prefer to use IPv6 in a dual stack context?
Dual-Stack V6 Preferred by Address Type

Clients who Prefer V6 in Dual Stack by V6 Address Type

- V6 Unicast
- 6to4
- Teredo

Percentage over time from November to May.
Dual-Stack V4 Preferred by Address Type
Native vs Tunnels

- Most hosts with unicast IPv6 generally prefer V6 in a dual stack scenario
- Hosts with 6to4 auto-tunnel capability appear to generally prefer V4 in a dual stack scenario
Native vs Tunnels

• Older versions of dual stack software in hosts preferred IPv6 over IPv4 in all situations, including auto-tunnels
 – This resulted in very slow and erratic performance when accessing some dual stack servers due to the local IPv6 failure timers
 • For example, Windows XP takes 20 seconds to recover a connection if a 6to4 connection is not functioning correctly

• Recent OS releases have de-pref’ed auto-tunneled IPv6 below that of IPv4
Performance Observations
Performance and Tunnels

Avg V6 Load Time Differential (secs) by V6 Type

-4 Secs
-2 Secs
0 Sec
+2 Secs
+4 Secs

V6 Unicast
6to4
Teredo

November
December
January
February
March
April
May
Performance and Tunnels

• Unicast IPv6 performance is on average equivalent to IPv4 performance for web object retrieval

• Auto-tunnel performance is on average considerably worse
 – Teredo is highly variable with 1 – 3 seconds of additional delay per retrieval
 – 6to4 is more consistent with an average 1.2 seconds additional delay per retrieval
Performance and Tunnels

Two causes of incremental delay:

– Tunnel setup time
 • Stateful Teredo tunnels require initial packet exchanges to set the tunnel up (min 1 x RTT)

– Tunnelling can extend the RTT delay
 • addition of tunnel relays between the source and destination
 • This is exacerbated when the forward and reverse paths are asymmetric
Partial Mitigation of 6to4 Packet Path

Client → V4-Only Network → 192.88.99.1 Relay → Dual-Stack Network → Dual-Stack Server 2002::/16 Relay
6to4 Performance

Setup Time

6to4 Setup Delay

Seconds

% 6to4 clients
6to4 Performance

Tunnel RTT Cost

6to4 RTT Incremental Delay

% 6to4 clients

0 50 100 150 200 250 300 350 400 450 500

msecs
6to4 Relative Performance

6to4 adds an average of 1.2 seconds to the object retrieval time

– note this is one-way (as the server has a local 6to4 relay for the response traffic, so the 6to4 response path is the same as the V4 path)

– that’s a very long transit time if this is just added transit time

– There may be a congestion load delay added in here

– But the level of 6to4 traffic is very low, so congestion overload is unlikely
Teredo vs 6to4

What we see:

– 4% of hosts use 6to4 (native V4, auto-tunnel)
– 0.1% of hosts use Teredo (NAT V4, auto-tunnel)
98% of “dark traffic” in IPv6 is Teredo!!!
Exposing Teredo

But why so little Teredo?

– Windows Vista and Windows 7 `gethostbyname()` will not query for a AAAA record if the only local IPv6 interface is Teredo

– Can we expose latent Teredo capability?
Exposing Teredo

Use an IPv6 literal as the object URL:

http://[2401:2000:6660::f003]/1x1.png
Exposing Teredo

Client IPv6 Capability by URL Type (***)

- **CAN:** IPv6 with IPv6-Only Literal URL
- **COULD:** IPv6 with IPv6-Only URL
- **WOULD:** Prefer IPv6 with Dual-Stack URL

![Graph showing percentage of clients by IPv6 capability over time.](image-url)
Exposing Teredo

Use an IPv6 literal as the object URL:

http://[2401:2000:6660::f003]/1x1.png

– In the context of the experimental setup it was observed that ~30% of the client base successfully fetched this IPv6 URL using Teredo!

– Conversely, 70% of the clients did not manage a successful object retrieval of this URL
Performance and Tunnels

Teredo adds a further performance penalty in the form of state setup between the Teredo relay and the client.
Teredo Performance

Tunnel Setup Time

Teredo Delay Distribution (Seconds)
Teredo Performance

Tunnel RTT Cost

Teredo RTT Distribution

% of Teredo Clients vs. Teredo Incremental RTT Delay (msecs)
Teredo Relative Performance

Teredo adds an average of 1 - 3 seconds to the object retrieval time

- Teredo setup takes between 0.6 second to 3 seconds
- Average RTT cost of Teredo is 300ms
- Object retrieval takes ~3 RTT intervals to complete
- Total time cost is some 2 seconds on average
IPv6 Performance

- Unicast IPv6 appears to be as fast as IPv4 for object retrieval
- Auto-tunnelling IPv6 attracts **major** performance overheads
 - these are strongly context dependent
 - widespread deployment of 6to4 relays and Teredo relays and servers would mitigate this, to some extent
 - Dual Stack servers may want to consider using local 6to4 relays to improve reverse path performance for auto-tunnelling clients
Failure Observations
Dual Stack Failure

How many clients retrieve the V4 only object but DON’T retrieve the Dual Stack objects?

i.e. how many clients exhibit “Dual Stack Failure”?
Dual Stack Failure Rate

Dual Stack Loss Rate

- Nov
- Dec
- Jan
- Feb
- Mar
- Apr
- May

End Hosts

- 0.2%
- 0.4%
- 0.6%
- 0.8%

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Dual Stack Failure

This rate of 0.7% of clients is the rate of failure of IPv4 clients to retrieve a dual stack object.
Dual Stack Failure

This rate of 0.7% of clients is the rate of failure of IPv4 clients to retrieve a dual stack object.

But this is not a reliable metric of underlying protocol communication failure:

- This is the rate of failure of the client to retrieve a dual stack object from within a javascript code object.
- The client may:
 - Not execute the javascript at all
 - User reset of the retrieval before completion
 - In addition to the failure to fallback to IPv4 retrieval
To attempt to look more precisely for some instances of connection failure, let's looking for connections that fail after the initial TCP SYN.

Note that this approach does not detect failure of the initial SYN packet, so the results are a lower bound of total connection failure rates.
Connection Failure

Relative Percentage of Failed Connections

IPv6 Connection Failure Rate
IPv4 Connection Failure Rate

% Protocol Connections

Date

18/12 01/01 15/01 29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05
IPv6 Connection Failure

V6 Failed Connections

- 6to4 IPv6 Failure Rate
- Teredo IPv6 Failure Rate
- Unicast IPv6 Failure Rate

% Connections

Date

18/12 01/01 15/01 29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05
Is Teredo really THAT good?
Teredo Connection Failure

Teredo uses an initial ICMPv6 exchange to assist in the Teredo Server / Relay state setup.

Note that this approach does not detect failure of the initial ICMPv6 echo request, so the results are a lower bound of total connection failure rates.
No.
IPv6 Connection Failure using V6 Literal

V6 Failed Connections (*)

6to4 IPv6 Failure Rate
Teredo IPv6 (SYN) Failure Rate
Teredo IPv6 (ICMP) Failure Rate
Unicast IPv6 Failure Rate

% Connections

05/02 12/02 19/02 26/02 05/03 12/03 19/03 26/03 02/04

Date
IPv6 Connection Failure

• Some **12% - 20%** of *6to4* connections fail!
 – This is a very high failure rate!
 – The failure is most likely a protocol 41 filter close to the client that prevents incoming 6to4 packets reaching the client

• Some **40%** of *Teredo* connections fail!
 – Again this is a very high failure rate
 – Local ICMP Filters + ???? SYNACK Filters

• Some **2%-5%** of *unicast* IPv6 connections fail!
 – This rate is better than auto-tunnels, but is still 20x the rate of IPv4 connection failure
Conclusions

What can we say about the performance and robustness of a Dual Stack network environment as a result of these observations?
For an Online Service...

Converting a service to operate as a Dual Stack service is a viable option in today’s environment

But:

– a small fraction of existing clients will experience a much slower service

– a very small fraction of existing clients will fail to connect to the dual stack service at all
What about IPv6-Only Services?

Is an IPv6-only service a viable option today?

Not really.

– Only ~4% of the existing client base would successfully connect to an IPv6-only service
What about IPv6 Transition?
What about IPv6 Transition?

End-host auto-tunnelling is not a solution!
What about IPv6 Transition?

End-host auto-tunnelling is not a solution!

– Auto-tunnelling appears to encounter many more performance and reliability problems than it solves in terms of IPv6 connectivity

– Auto-tunnelling is not proving to be a useful mainstream transition tool for IPv6
What about IPv6 Transition?

If we want this transition to operate in a manner where IPv6 operates at least as well as IPv4 then end hosts need to be connected to a IPv6 Unicast service delivered from their service provider.
Can I run these tests?

Of course!

http://labs.apnic.net
Thank You

Questions?