Stacking it Up

Experimental Observations on the operation
of Dual Stack Services

Geott Huston, APNTC

OO

00
RIPE 62 2
May 2011

1



If working with one protocol has its
problems ...




Then just how much damage can
we do with two protocols?






Dual Stack End-to-End Service
Measurements

Examine IPv6 / IPv4 use from the perspective of a
service delivery platform (web server)

— IPv6 is used by clients only when all the various IPv6

infrastructure components support IPv6, otherwise the
client will fall back to IPv4 use

— Service metrics for IPv6 are reflective of end-to-end IPv6
capability



Methodology

Test every web client with 3 different retrieval tasks of a 1x1 pixel image:
* V6only
e Dual-Stack
* V4 Only

Take just one test result for each unique source address per 24 hours
Use server packet dump and and web logs as the basis of the analysis

Look at retrieval rates, failure behaviour and transaction times



Access Combinations

Test

Host Type

-m

X

v

V6

V6
V4

X

V4-Only
V6-Only

V6-Preferred
V6-Capable (V4-Preferred)

Dual-Stack Loss



IPv6: “could” vs “will”

|IPv6-Capable End Hosts

12%

0%

8% |

2% 1

——r 71 ‘* 1 ~ °~ T T~ ~ 1 °~ T © T~ T T T~ T T T T T T T T "1 V'6 Ca'pabillity LA
V6 DualStack Pref

IPv6 Preferred

||||||||||||||||||||||||||||||||||||

Y E Y IR Y A

01-08-10

01-10-10

01-12-10
Jan

01-02-11 01-04-11
Mar

www.aobnic.net



5% 71

45 -

35

30/0 N
2% t
1% |

05

IPv6: “could” vs “will”

|Pv6-Capable End Hosts

IPv6 Ca

W

pable

" V6 Capability
V6 DualStack Pref

Nov

Dec

Jan

Feb

Mar

Apr

May .
Site “C™



Where are we with IPv6?

The ‘size’ of the IPv6 deployment in terms of
end-to-end host IPv6 preference is around
0.3% of the total number of Internet end
hosts at present

However, a further 4% of hosts can use IPv6,
even though they prefer IPv4 in dual stack
mode. These hosts generally use auto-
tunnelled 6to4 for IPv6 access

10



Why is there so much “hidden” IPv6
capability?

Why is the number of client hosts who are
capable of performing an end-to-end IPv6
object retrieval 15 times greater than the

number of client hosts who prefer to use
IPv6 in a dual stack context?

11



Dual-Stack V6 Preferred by Address Type

0.5% b

0.1% [/

0 AAAA AN ‘A AA A AAM“M
ov Jan

Dec Fe Ma

6to4 |

\/
AN AR
b r Apr M

Teredo

ay

12



Dual-Stack V4 Preferred by Address Type

4% Lty A

2% Lo

1% L

Teredo~,

P—— -

Nov Dec Jan Feb Mar Apr May
13



Native vs Tunnels

* Most hosts with unicast IPv6 generally
prefer V6 in a dual stack scenario

* Hosts with 6to4 auto-tunnel capability
appear to generally prefer V4 in a dual
stack scenario

14



Native vs Tunnels

* Older versions of dual stack software in hosts
preferred IPv6 over IPv4 in all situations, including
auto-tunnels
— This resulted in very slow and erratic performance when

accessing some dual stack servers due to the local IPv6
failure timers

* For example, Windows XP takes 20 seconds to recover a connection
if a 6to4 connection is not functioning correctly

 Recent OS releases have de-pref’ed auto-tunneled
IPv6 below that of IPv4

15



Performance Observations

16



Performance and Tunnels

+4Secs f{ |

+2 Secs |||\

el
_____ s .h ______ MWM& ilﬂ m ‘ |

0 Sec:

-2 Secs

4Secs L . .+ .
Nov

Teredo

--bto4d -

B | V6 Unicast |

Dec Jan Feb Mar Apr May



Performance and Tunnels

* Unicast IPv6 performance is on average
equivalent to IPv4 performance for web

object retrieval

* Auto-tunnel performance is on average

considerably worse

— Teredo is highly variable with 1 — 3 seconds of
additional delay per retrieval

— 6to4 is more consistent with an average 1.2
seconds additional delay per retrieval

18



Performance and Tunnels

Two causes of incremental delay:

—Tunnel setup time

 Stateful Teredo tunnels require initial packet
exchanges to set the tunnel up (min 1 x RTT)

—Tunnelling can extend the RTT delay

» addition of tunnel relays between the source
and destination

* This is exacerbated when the forward and
reverse paths are asymmteric

19



6to4 Packet Path

192.88.99.1 Relay

4

B
,‘4" N Ne'tWGrk“m.’
<" V4-Only— .

-~

"'--Netm;k____\ﬁ//' Dual-Stack
Client o Server

2002::/16 Relay

20



Partial Mitigation of 6to4 Packet
Path

192.88.99.1 Relay

4

L \ Network -
ﬁf/ V4-Only. e :'
T Network A\/ Dual-Stack
Client sal-Sta

2002::/16
Relay

21



6to4 Performance

Setup Time

% 6to4 clients

40

35

30

25

20

15

10

5

0

6to4 Setup Delay

10

22



6to4 Performance

Tunnel RTT Cost

% 6to4 clients

14

12 5

10 H

6to4 RTT Incremental Delay

23



6to4 Relative Performance

6to4 adds an average of 1.2 seconds to the object retrieval time

— note this is one-way (as the server has a local 6to4 relay for the response
traffic, so the 6to4 response path is the same as the V4 path)

— that’ s a very long transit time if this is just added transit time

— There may be a congestion load delay added in here
— But the level of 6to4 traffic is very low, so congestion overload is unlikely

24



Teredo vs 6to4

What we see:
— 4% of hosts use 6to4 (native V4, auto-tunnel)
— 0.1% of hosts use Teredo (NAT V4, auto-tunnel)

25



Sniffing in the dark...

00.080499 2001:0:4137:9e76:837:232d:xxx > xxx:563a ICMP6 echo req Teredo
00.081248 2002:dba7:xxx::dba7:xxx.52791 > xxx:37ca.27653: TCP [S] 6tod

00.081374 2001:0:4137:9e76:8e7:3d9f:xxx > xxx:ff79: ICMP6 echo req Teredo
00.081744 2001:0:4137:9e76:346¢:383:xxx > xxx:70be: ICMP6 echo req Teredo
00.082123 2001:0:4137:9e76:3832:35ce:xxx > xxx:6f5f: ICMP6 echo req Teredo
00.082245 2001:0:4137:9e76:20e6:1dcb:xxx > xxx:84c1: ICMP6 echo req Teredo
00.083247 2001:0:4137:9e76:304a:fbff:xxx > xxx:ab99: ICMP6 echo req Teredo
00.083251 2002:dc96:xxx::dc96:xxx.51138 > xxx.34a1.36959: TCP [S] 6tod

00.083372 2001:0:4137:9e76:1c32:d51:xxx > xxx:a609: ICMP6 echo req Teredo
00.084496 2001:0:4137:9€76:201a:37d4:xxx > xxx:5908: ICMP6 echo req Teredo
00.084500 2001:0:4137:9e76:2c3a:377e:xxx > xxx:5277: ICMP6 echo req Teredo
00.084997 2001:0:4137:9e76:87a:fbff:xxx > xxx:856¢: ICMP6 echo req Teredo
00.085371 2001:0:4137:9e76:2454:1bc2:xxx > xxx:cdb1: ICMP6 echo req Teredo
00.085496 2001:0:5ef5:79fd:20c2:3761:xxx > xxx:d562: ICMP6 echo req Teredo
00.085995 2001:0:4137:9e76:18ec:1a66:xxx > xxx:fbcf: ICMP6 echo req Teredo
00.087120 2001:0:5ef5:79fd:2cd8:228:xxx > xxx:2292: ICMP6 echo req Teredo
00.087495 2001:0:4137:9e76:b1:266e:xxx > xxx:5038: ICMP6 echo req Teredo
00.088120 2001:0:4137:9e76:2c65:18f:xxx > xxx:cc80: ICMP6 echo req Teredo
00.088994 2001:0:4137:9e76:3cac:3497:xxx > xxx:5aal: ICMP6 echo req Teredo
00.089868 2001:0:4137:9e76:14d3:5ca:xxx > xxx:ceee: ICMP6 echo req Teredo

98% of “dark traffic” in IPv6 is Teredo!!!



Exposing Teredo

But why so little Teredo?

— Windows Vista and Windows 7 gethostbyname() will not query for a
AAAA record if the only local IPv6 interface is Teredo

— Can we expose latent Teredo capability?

27



Exposing Teredo

Use an IPv6 literal as the object URL:
http://[2401:2000:6660::f003]/1x1.png

28



100

80

60

% Clients

40

20

0

Exposing Teredo

Client IPv6 Capability by URL Type (**)

"~ CAN: IPv6 with IPv6-Only Literal URL ———
COULD: IPv6 with IPvB-Only URL e
WOULD: Prefer IPv6 with Dual-Stack URL  se—

05/0 12/02  19/02  26/02  05/03 12/03  19/03 26/03  02/04

Date

29



Exposing Teredo

Use an IPv6 literal as the object URL:
http://[2401:2000:6660::f003]/1x1.png

— In the context of the experimental setup it was observed
that ~30% of the client base successfully fetched this IPv6
URL using Teredo!

— Conversely, 70% of the clients did not manage a successful
object retrieval of this URL

30



Performance and Tunnels

Teredo adds a further performance
penalty in the form of state setup between
the Teredo relay and the client

/3 i

IPv4 Network

Restricted
NAT

Teredo Client

TEREDO

SERVER IPv6 Network

1. Teredo ICMPv6 Echo Request from Teredo Client to Server
2. Forwarded IMCPv6 Echo Request from Server to Host

3. IMCPvE Echo Reply from Host to Relay

4. Teredo hubble from Relay to Server

5. Teredo bubble from Server to Client

6. Teredo hubble from Client to Relay

7. Forwarded Teredo ICMPv6 Echo Reply from Relay to Client
8. Initial packet Teredo-tunnelled from Client to Relay

9. Forwarded initial packet from Relay to host

31



Teredo Performance

Tunnel Setup Time

Teredo Delay Distribution (Seconds)

14 T T T T T T T T T

10

% Teredo Clients

il
1 2 3

4 5 6 7 8 9

Teredo Setup Delay (Seconds)

32



Tunnel RTT Cost

% of Teredo Clients

12

10 H

Teredo Performance

Teredo RTT Distribution

il

100

Teredo Incremental RTT Delay (msecs)

200

300

400

500

33



Teredo Relative Performance

Teredo adds an average of 1 - 3 seconds to the object retrieval time

Teredo setup takes between 0.6 second to 3 seconds
Average RTT cost of Teredo is 300ms

Object retrieval takes ~3 RTT intervals to complete
Total time cost is some 2 seconds on average

34



IPv6 Performance

* Unicast IPv6 appears to be as fast as IPv4 for object
retrieval

e Auto-tunnelling IPv6 attracts major performance
overheads
— these are strongly context dependent

— widespread deployment of 6to4 relays and Teredo relays
and servers would mitigate this, to some extent

— Dual Stack servers may want to consider using local 6to4
relays to improve reverse path performance for auto-

tunnelling clients

35



Failure Observations

36



Dual Stack Failure

How many clients retrieve the V4 only

object but DON’ T retrieve the Dual Stack
objects?

i.e. how many clients exhibit “Dual Stack
Failure”?

37



Dual Stack Failure Rate

0.8% r

0.6% ml

0.4% |

0.2% r

Apr

38



Dual Stack Failure

This rate of 0.7% of clients is the rate of failure
of IPv4 clients to retrieve a dual stack object

39



Dual Stack Failure

This rate of 0.7% of clients is the rate of failure
of IPv4 clients to retrieve a dual stack object

But this is not a reliable metric of underlying
protocol communication failure

— This is the rate of failure of the client to retrieve a dual
stack object from within a javascript code object
— The client may:
* Not execute the javascript at all

* User reset of the retrieval before completion

* |n addition to the failure to fallback to IPv4 retrieval 20



Connection Failure

To attempt to look more precisely for some instances
of connection failure, lets looking for connections that
fail after the initial TCP SYN

Server SYN + ACK

Response fails

Client SYN

Note that this approach does not detect failure of the initial SYN packet, so
the results are a lower bound of total connection failure rates

41



% Protocol Connections

16

14

12

10

0

Connection Failure

Relative Percentage of Failed Connections

'IPv6 Connection Failure Rate

IPv4 Connection Failure Rate

Nﬁ:ﬁﬁa@a—aggémmm

18/12 01/01 15/01 29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05

Date



% Connections

IPv6 Connection Failure

V6 Failed Connections

ftod IPv6 Failure Rate
18 b eredo [Pv6 Failure Rate
nicast IPvig,Failu

18/12 01/01 15/01 29/01 12/02 26/02 12/03 26/03 09/04 23/04 07/05
Date 4



Is Teredo really THAT good?



Teredo Connection Failure

Teredo uses an initial ICMPv6 exchange to assist in the
Teredo Server / Relay state setup

Server
ICMPv6 Echo Resp SYN + ACK
ICMP fails SYN fails
Client ICMPv6 SYN
Echo Req

Note that this approach does not detect failure of the initial ICMPv6 echo
request, so the results are a lower bound of total connection failure rates

45



No.

46



IPv6 Connection Failure using V6 Literal

V6 Failed Connections (%)

40
btod |Pv6 Failure Rate

Teredo |HK6 (S Failure R
35 o Teredo | CMP) Fallwe R ate N
Unjcast IPvE Failure Hate
30

L T —_—t————-—.., i i ]

9

©

ST J AN |G | R | 172 N 4 WU A VO ]

c

o

O

L 19 - NCXF LYY YN .
[ S A A A e A A S |
5 b _
0 ..... l ....................

05/02 12/02 19/02  26/02 05/03 12/03 19/03  26/03 02/04
Date 47



IPv6 Connection Failure

Some 12% - 20% of 6to4 connections fail!
— This is a very high failure rate!

— The failure is most likely a protocol 41 filter close to the
client that prevents incoming 6to4 packets reaching the
client

Some 40% of Teredo connections fail!
— Again this is a very high failure rate

— Local ICMP Filters + ???? SYNACK Filters
Some 2%-5% of unicast IPv6 connections fail!

— This rate is better than auto-tunnels, but is still 20x the
rate of IPv4 connection failure

48



Conclusions

What can we say about the performance and
robustness of a Dual Stack network environment
as a result of these observations?

49



For an Online Service...

Converting a service to operate as a Dual
Stack service is a viable option in today’s
environment

But:

— a small fraction of existing clients will experience a
much slower service

— a very small fraction of existing clients will fail to
connect to the dual stack service at all

50



What about IPv6-Only Services?

Is an IPv6-only service a viable option today?

Not really.

— Only ~4% of the existing client base would successfully
connect to an IPv6-only service

51



What about IPv6 Transition?

52



What about IPv6 Transition?

End-host auto-tunnelling is not a solution!

53



What about IPv6 Transition?

End-host auto-tunnelling is not a solution!

— Auto-tunnelling appears to encounter many more
performance and reliability problems than it solves in
terms of IPv6 connectivity

— Auto-tunnelling is not proving to be a useful mainstream
transition tool for IPv6

54



What about IPv6 Transition?

If we want this transition to operate in a manner
where IPv6 operates at least as well as IPv4 then
end hosts need to be connected to a IPv6 Unicast
service delivered from their service provider

55



Of course!

Can | run these tests?

http://labs.apnic.net

56



Thank You

_Questions!




