Some Lessons Learned from Designing the Resource PKI

Geoff Huston
Chief Scientist, APNIC

May 2007
Address and Routing Security

• The basic security questions that need to be answered are:
 – Is this a valid address prefix?
 – Who injected this address prefix into the network?
 – Did they have the necessary credentials to inject this address prefix?
 – Is the forwarding path to reach this address prefix an acceptable representation of the network’s forwarding state?
 – Can I trust my routing peer / customer / transit ISP to deliver me accurate information?

• Can these questions be answered **reliably, quickly** and **cheaply**?
A Resource Validation Framework

- To use a framework to support validation of attestations about addresses and their use

- Queries made within this validation framework should include
 - the **authenticity** of the **address object**
 - the **authenticity** of the **origin AS** of an advertisement
 - the **explicit authority** from the address holder to the AS holder that permits an **originating routing announcement** from that AS
 - the **authenticity** of the **AS path** information representing reachability to the address object. i.e. is the next hop address a valid forwarding action for this address prefix?
Choices, Choices, Choices

• As usual, there is no shortage of potential technologies that could conceivably support such a validation framework
 – Certificate Extensions
 – Attribute Certificates
 – Internet Routing Registries++
 – Signed bindings
 – Signed reports
 – The DNS
Design Principles for a Validation Framework

- Don’t force any party to claim to be authoritative beyond its actual authority and knowledge
- Use existing standards
- No new organizations in novel trust roles
- Leverage existing roles and authorities
- Don’t ignore existing processes and functions
- Offer incremental improvements to existing work procedures
- Allow highly reliable and trustable outcomes to be achieved efficiently
What is a **Public Key Infrastructure**?

- Public/private key pairs can be used for encryption and digital signatures
- Digital signatures can be used to validate the integrity and authenticity of a message

 By using the public key, I can confirm that the message has not been tampered with and the message was originated by the owner of the matching private key

- The integrity of the signature validation depends on the knowledge of the public key owner

- A public key is just a bit sequence

 But:

 - **WHOSE** bits?
 - **WHERE** can these bits be used?
 - **WHEN** can these bits be considered valid?

- A **Public Key Infrastructure** is intended answer these questions
PKI Rooted Hierarchy

• Explicitly avoid various forms of web of trust models, and use deterministic uniform validation methods based on a combination of issuer subject chains and resource extensions

• Exploit and mirror address allocation hierarchy
 – Each CA in the hierarchy can only validly make attestations and generate certificates about resources that have been delegated to them from the parent CA in the hierarchy
 – Exploit existing authoritative data regarding resource distribution
Modelling the Environment

• Use an X.509 + PKIX certificate hierarchy aligned to address distribution points
• The certificate “topic” is the resources allocated from the issuer to the subject at this distribution point
• Certificates allow for the generation of subordinate certificates at delegation distribution points
• Validation of a certificate entails a backwards walk towards the root of the distribution hierarchy
• Revocation can model the return of a resource prior to the termination of the current certificate’s validity period
The Resource PKI

IANA

RIR

ISP

LIR

End user

NIR
The Resource PKI

Its not just another technology project
 – Requires organizational, procedural and legal inputs
 – Draws upon many skills to design
 – Highly complex space
Issues

- Certificate Requests and Issuance
- Identification of the parties
- Retrieval of certificates by Relying Parties
- Validation of Signatures
- Revocation of Certificates
- Trust Anchor Models
Properties of the Resource PKI

What is the intended use case for this RPKI?

- Validation of attestations about rights-of-use and title?
 - On-demand intermittent single signature validation
 - Can tolerate some amount of visible state transition
 - Outcomes are related to supporting a level of confidence
 - Relying parties do not necessarily require high performance from validation

AND / OR

- Validation of routing protocol updates?
 - In the worst case this could require comprehensive validation across the entire RPKI, within very demanding time constraints, by many replying parties at the same time
 - Real time validation performance
 - Limited / no tolerance for invalid transitional states
Resource Certificates

Resources are not necessarily permanently bound to an identity

– I may have a “right-of-use” for a resource today, but not tomorrow
– While most forms of identity-based PKIs have stable certificate products, there is the potential for greater levels of “churn” in resource certificates
– Relying parties need to constantly refresh their knowledge of the current overall RPKI state
– Efficient repository structures may be critical if there are ~20,000 independent publishers and ~300,000 products to sync against constantly
Certificate Revocation Lists

- Often regarded as the weakest part of the X.509 framework
- CRLs must be issued regularly, must be kept up to date and must be available to relying parties
- Preventing access to a CRL is one of the weaknesses of the RPKI
 - Leads to false positives in validation
- CRLs are used whenever a party no longer has a “right-of-use” over a resource
 - Issue a new certificate with a smaller resource set
 - Revoke the previous certificate

- Design question:
 - Must a CRL be signed with the same private key that was used to sign the certificate that is being revoked?
Certificate Revocation Lists

• Tradeoffs with CRLs and Certificates
 – Smaller validity intervals
 • Reduce CRL size
 • Increase certificate issuance loads
 • Less stable certificates
 – Longer validity intervals
 • CRL bloat
 • More stable certificates
Repository Model

• How do you publish certificates and digitally signed statements?
 – Simple publication process
 Or
 – Ease of use by relying parties for validation

• Single repository model?
 – Critical single resource
 – Potential single point of failure of the entire RPKI
 – Issues of object name uniqueness
 – Issues of management of access control

• Multiple repository model?
 – Each CA publishes in its own repository
 – Issues of name persistence in backward and forward pointers in certificates
 – More complex operations for maintenance of local certificate cache by relying parties
Repositories and Relying Party Access

• How to reference published certificates?
 – In this case it’s a URL
 – A URL with what access method?
 • How many access tools does an relying party need to have at hand?
 • What is the optimal case for access?
 - Fast object retrieval
 - Efficient retrieval of altered objects
 • Optimise for access operations for the server or the client?

• Vulnerabilities
 – Can detect attempts of third party alteration and insertion
 – What about third party disruption by denial?
 • Should the access channel be protected?
 - What are the overheads?
 • Should a repository include a manifest as well as a CRL?
 - A signed list of what should be available in the repository
 - What happens in a denial attack on the manifest?
 - Are there “manifest” PKI standards?
The Identity Bootstrap Question

How does an issuer know that they are certifying the same party as the resource recipient?

– Good question!

– The “its magic” option
 • Somehow, somewhere, sometime in the past, some form of entity-based trust relationship based on key exchange was established between resource issuer and resource recipient
 • This can then be used to establish a key to validate the certificate request as coming from the same entity as the resource recipient
Trust Anchor Models

• What / who are the trust anchors for this RPKI?
 – *Standard answer*: the choice of trust anchors is made by a relying party as a local configuration task
 – *In practice*, proposed Trust Anchors are provided with the distribution of relying party toolkits
 • IE: Tools -> Internet Options -> Content -> Certificates -> Trusted Root CAs
 • Trust anchors should be (relatively) stable
 – *Pragmatic answer #1*: the root of the resource distribution hierarchy: IANA
 • But what if we get into a DNSSEC-styled impass over signing at the “root” of the hierarchy?
 – *Pragmatic answer #2*: Use RIR-issued self-signed certificates as trust anchors with delegated resources
 • But these certificates will change as blocks are passed to the RIRs (i.e. monthly!)
 • So how can this regularly updated trust anchor material be distributed to all potential relying parties?
Key Rollover

Is hard!

- How quickly can you re-issue all subordinate certificates with the new key?
 - How far down the hierarchy do you need to re-issue?
- How quickly can you revoke products signed with the old key?
- Are there intermediate states that create unintentional invalidity of signed products?
Digitally Signed Products

• How can you “revoke” an authority granted through a signed authority document?
 – Signed objects are not certificates
 • No lifetime
 • No CRL
 • No …

• Propose to use “one-off” keys and end-entity certificates
 – Generate a key pair
 – Generate an end-entity certificate for this key pair
 – Publish the certificate
 – Sign the object with the private key
 – Destroy the key pair
What have we learned so far?

• There’s an entirely new terminology universe in the X.509 certificate space!
 – Dark Rites of Initiation into the security world appear to be necessary!

• X.509 certificate specifications appear to include a vast repertoire of extensions with elastic semantics
 – choose carefully!

• There is limited PKI deployment experience out there
 – each PKI development exercise is a learning experience

• Distributed authority models are very challenging to design in a robust manner
 – Think carefully about the model of synchronization across a realm of multiple issuers and multiple repositories with dynamic authoritative information
What have we learned so far?

- Resource Certificates are a means to an end, not an end in and of themselves
 - make the certificate work to suit the business model rather than the reverse

- This is not an exercise that is done lightly
 - considerable investment in expertise, tools, documentation, and navel-gazing over process is useful

- Outcomes need to represent superior choices for players
 - Risk mitigation is an ephemeral and diverse motive for widespread adoption
 - Better, faster, and cheaper solutions tend to produce better adoption motivations

- Good (and Useful) security in a very diverse environment is a very challenging objective
Thank You