Internet Area

IPv6 Multi-Addressing, Locators and Paths
Objective

- To facilitate an Internet Area discussion in the next 45 (or so) minutes on IPv6, Multi-Addressing and Path Maintenance approaches

Goals:
- Raise awareness of the concepts
- Summarize current activities
- Flag open issues
- Consider further activity
Background

- Conventionally, IP addresses are
 - Endpoint identifiers
 - Routing objects
 - Key value for Forwarding Lookup
 (but you knew this already)
Background

- Challenges to the IP Address Model
 - Mobility and nomadism
 - Multi-homed endpoints
 - Scoped address realms
 - Routing Complexity and Scaling
 - VOIP and Peer-to-Peer applications
 - NATs, ALGs, and firewalls
 - Unwanted traffic, session hijacking and disruption
Our current direction appears to be developing solutions in diverse permutations of this split identity / locator space simultaneously:

- Multi-Party Applications
- Application Agents
- Rendezvous protocols
- DNS Incremental Updates and DNSSEC
- DNS Indirection and Referral
- SCTP, HIP at the transport-layer
- Mobile IPv6
- Mobile IPv4
- Multi6
- And probably many more!

* Let a hundred flowers bloom: let a hundred schools of thought contend
Mao Zedong, 1956
Background

- Generic approach: decouple the semantics of identity and location:
 - Associate multiple locations to a single identity

- Consequent “binding state”: mapping an identity into a viable locator
 - in a packet header for the sender
 - reverse mapping for the receiver

- Using the IP layer as the point where this binding state is maintained

- Once a binding state is established
 - transport and above uses identifiers
 - IP and below uses locators
Background

- A number of current IETF activities are looking at aspects of decoupling identity and location at the IP layer:
 - IKEv2 + MOBIKE (+ BTNS)
 - MIP4 + MIP6 + combinations (MIPSHOP, MOBOPTS)
 - NEMO
 - SHIM6
 - HIP
Functional Components

From a functional perspective, the approaches appear to have similar structural components:

- Discovery of locator functionality between end-hosts
- Identity / Locator mapping state Setup
- State Update (locator set change)
- Path Maintenance
We already have multiple **Discovery** and **Setup** protocols …

- Different security assumptions behind each approach
 - IKEv2 (+MOBIKE), MIPv6, SHIM6, HIP, …
- Different functionality requirements
- Different domains of intended applicability

- There appears to be limited capacity and/or benefit in attempting to unify these approaches
Could we have a single **locator / path** Update and Maintenance module?

- Is it possible to use a single common locator update protocol as a plug-in to the signalling protocol?

- Is it possible to use a single common path property discovery / maintenance mechanism as a plug-in to the signalling protocol?
Issues – Transport Requirements

- Who cares about locator switch events (and why)?

- Various different transport session requirements:
 - TCP
 - avoid session resets
 - optimise path performance
 - UDP streamers
 - avoid stream disruption
 - Prefer rapid failover to pre-configured path
 - match path performance to media requirements
 - UDP transactions
 - avoid excessive transaction overhead
Issues - Locator / Path Maintenance

- Path integrity monitoring: Upper Level Signalling vs IP Level Monitoring

 - Indirect: Use Transport Session referred signals
 - Transport session timeout generates a locator switch signal
 - Locator pair testing?
 - Interpretation of signals? (Firewalls and filters for specific transport ports?)

 - Direct: Use pseudo-transport session
 - Probe and response within the shim layer
 - Complete pair-wise locator maintenance
 - On failure locator testing
Issues - Identity Equivalences

- Locator State Maintenance
 - What is an identity state equivalence set?
 - Per Host pair
 For some generic form of associating multiple IDs with a single endpoint
 - Per ID pair
 The ID pair forms a unique lookup key to the mapping state
 - Per session class
 The ID pair plus a session “type” value forms the state lookup key
 - Per transport session
 The ID Pair plus the session identifier forms the state lookup key

- What is required to identify an incoming packet in terms of selecting the correct mapping state?
Issues - Path Maintenance

- Passive: await locator switch signal and then select a “new” pair and test
 - Maintain timed cache of ‘bad’ pairs
 - Test new candidate locator pair
 - Testing may generate n^2 probes
 - Testing of new pairs requires extended timeouts
 - Parallel vs serial test procedures

- Active: Actively maintain and probe all locator pairs asynchronously
 - Rapid failover – high overhead

- Active ++ : maintain path characteristics per locator pair
 - Path matching failover options – higher overhead
So - is it possible...

- To construct the identifier / locator mapping module in such a way that it can be modular?
- That the signals in / out of the module can be defined in a functionally complete manner?
- That the module can support multiple setup and signalling protocols?
 - Sharing the mechanisms and probe information but
 - Probably not sharing the (complete) state
- That the module’s internal operation can be opaque to the calling interface?