An Update on Multihoming in IPv6
Report on IETF Activity

IPv6 Technical SIG
1 Sept 2004
APNIC18, Nadi, Fiji
Geoff Huston
Resiliency in IP

• How do you create a service that’s available 100% of the time?
 • Use a server architecture and location environment that uses sufficient resiliency to provide 100% availability
 • Connect to the Internet using a service provider that can provide 100% guaranteed availability

• 100% network availability?
 • Multiple connections to a single provider?
 • No – there’s a single routing state that is vulnerable to failure
 • Multiple Connections to multiple providers
 • More attractive, potentially allowing for failover from one provider to another in the event of various forms of network failure
Current approach

Either:
- Obtain a local AS
- Obtain PI space
- Advertise the PI space to all upstream providers
- Follow routing

Or:
- Use PA space fragment from one provider
- Advertise the fragment to all other upstream providers
- Follow routing
The cost of routing

• This approach adds an additional entry into the routing system for each multi-homed end site
• The routing system is not an unbounded system
• Is there an alternative approach that can support multi-homing without imposing a massive load on the routing system?
What we would like...

- The multi-homed site uses 2 address blocks
 - One from each provider
- No additional routing table entry required
The problem space

ISP A

ISP B

Site Exit Router(s)

Path A

Path B

Remote Host

M-H Site

Local M-H Host

Remote Host

Path A

Path B

ISP A

ISP B
Functional goals

- RFC3582 enumerates the goals as
 - Redundancy
 - Load Sharing
 - Traffic Engineering
 - Policy
 - Simplicity
 - Transport-Layer Survivability
 - DNS compatibility
 - Filtering Capability
 - Scaleability
 - Legacy compatibility

- Also we need to think about
 - Interaction with routing
 - Aspects of an ID/Locator split, if used
 - Changes to packets on the wire
 - Names, Hosts, endpoints and the DNS
But this is not IP as we knew it

• The IP protocol architecture has made a number of simplifying assumptions
• One major assumption was that IP hosts didn’t move!
 • Your IP address is the same as your identity (who)
 • Your IP address is the same as your location (where)
 • Your IP address is used to forward packets to you (how)
• If you want multi-homing to work then your identity (who) must be dynamically mappable to multiple locations (where) and forwarding paths (how)
 • “It’s still me, but my location address has changed”
The multi-homing plan

- For multi-homing to work in a scalable fashion then we need to separate the “who” from the “where”
 - Or, we need to distinguish between the identity of the endpoint from the network-based location of that endpoint
 - Commonly termed “ID/Locator split”
Generic approaches

- Insert a new level in the protocol stack (identity element)
 - New protocol element
- Modify the Transport or IP layer of the protocol stack in the host
 - Modified protocol element
- Modify the behaviour of the host/site exit router interaction
 - Modified forwarding architecture
New protocol element

• Define a new Protocol element that
 • Presents an identity-based token to the upper layer protocol
 • Allows multiple IP address locators to be associated with the identity
 • Allows sessions to be defined by an identity peering, and allows the lower levels to be agile across a set of locators
Benefits

• Allow indirection between identity and location
• Provide appropriate authentication mechanisms for the right function
• Allow location addresses to reflect strict topology
• Allow identities to be persistent across location change (mobility, re-homing)
Identity protocol element

ULP → Connect to server.telstra.net → ULP
ULP → Connect to id:3789323094 → ULP
ULP → id:3789323094 ⇔ 2001:360::1 → ULP
ULP → Packet to 2001:360::1 → ULP

ULP → Connect to server.telstra.net → ULP
ULP → Connect to id:3789323094 → ULP
ULP → id:3789323094 ⇔ 2001:360::1 → ULP
ULP → Packet to 2001:360::1 → ULP
Protocol element implementation

• “Conventional”
 • Add a wrapper around the upper level protocol data unit and communicate with the peer element using this “in band” space

[Diagram showing layered protocol elements and data units]
Protocol element implementation

• “Out of Band”
 • Use distinct protocol to allow the protocols element to exchange information with its peer
Protocol element implementation

- “Referential”
 - Use a reference to a third party point as a means of peering (e.g. DNS Identifier RRs)
Modified protocol element behaviour

- Alter the Transport Protocol to allow a number of locators to be associated with a session
 - e.g. SCTP
- Alter the IP protocol to support IP-in-IP structures that distinguish between current-locator-address and persistent-locator-address
 - i.e. MIP6
Modified host / router interaction

• Modify the interaction between the host and the Site Exit router to allow
 • Source-based routing for support of host-based site-exit router selection
 • Site Exit router packet header modification
 • Host / Site Exit Router exchange of reachability information
Identity protocol element location

• It appears that the proposals share a common approach
 • Above the IP forwarding layer (Routing)
 • Below IP fragmentation and IPSEC (IP Endpoint)
Proposals for an identity protocol element

- Use identity tokens lifted from a protocol’s “address space”
 - DNS, Appns, Transport manipulate an “address”
 - IP functions on “locators”
 - Stack Protocol element performs mapping
- FQDN as the identity token
 - Is this creating a circular dependency?
 - Does this impose unreasonable demands on the properties of the DNS?
- Structured token
 - What would be the unique attribute of a novel token space that distinguishes it from the above?
- Unstructured token
 - Allows for self-allocation of identity tokens (opportunistic tokens)
 - How to map from identity tokens to locators using a lookup service?
Issues

• Identity / Locator Binding domain
 • Session or host?
 • Dynamic or static?
 • Configured or negotiated?
• Scope of identity role
 • Locator independent identity
 • Equivalence binding for multiple locators
• Locator Selection
• Application visibility of identity capability
• Scoped identities
• Identity Referrals and hand-overs
• Third party locator rewriting
• Security of the binding
Open questions

• Are structured identity spaces a heavy weight solution to a light weight problem?
• How serious a routing problem is multi-homing anyway?
• Can routing scope be a better solution than complete protocol-reengineering?
• What’s a practical compromise vs an engineered solution to an ill-defined problem space?
• Is per-session opportunistic identity a suitably lightweight solution?
Thank you!

• Questions