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Abstract
As our economy and critical infrastructure increasingly rely on
the Internet, securing routing protocols becomes of critical impor-
tance. In this paper, we present four new mechanisms as tools for
securing distance vector and path vector routing protocols. For
securing distance vector protocols, our hash tree chain mecha-
nism forces a router to increase the distance (metric) when for-
warding a routing table entry. To provide authentication of a re-
ceived routing update in bounded time, we present a new mecha-
nism, similar to hash chains, that we call tree-authenticated one-
way chains. For cases in which the maximum metric is large, we
present skiplists, which provides more efficient initial computa-
tion cost and more efficient element verification; this mechanism
is based on a new cryptographic mechanism, called MW-chains,
which we also present. For securing path vector protocols, our cu-
mulative authentication mechanism authenticates the list of routers
on the path in a routing update, preventing removal or reordering
of the router addresses in the list; the mechanism uses only a sin-
gle authenticator in the routing update rather than one per router
address. We also present a simple mechanism to securely switch
one-way chains, by authenticating the next one-way chain using
the previous one. These mechanisms are all based on efficient
symmetric cryptographic techniques and can be used as building
blocks for securing routing protocols.

1. Introduction
Routing protocols are difficult to efficiently secure. An
attacker may, for example, attempt to inject forged routing
messages into the system, or may attempt to modify legit-
imate routing messages sent by other nodes. An attacker
may also attempt to exploit mechanisms in the routing pro-
tocol, such as those intended to quickly spread new routing
information, to instead consume large amounts of network
and router resources. Even the addition of cryptographic
mechanisms to a routing protocol may make the protocol
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vulnerable to such attacks, since traditional security mech-
anisms are generally expensive in terms of CPU time; an
attacker may be able to cripple several routers simply by
flooding each router with large numbers of randomly gen-
erated, forged routing messages, which then must be au-
thenticated and rejected by the router, leading to a denial of
service by consuming all router CPU time.

Current routing protocols in use in the Internet today,
such as the Border Gateway Protocol (BGP) [36] or the
Routing Information Protocol (RIP) [23], were originally
designed to operate in a trusted environment, assuming no
malicious nodes. However, with the growing importance
and usage of the Internet, an increasing number of corpo-
rations and public services are becoming dependent on the
correct functioning of the Internet, and routing protocol se-
curity has become a significant issue. The command and
control of critical infrastructures (such as the control of the
power grid) and the emerging use of the Internet to carry
voice traffic are two examples of this trend. The importance
of securing Internet routing has also been illustrated by re-
cent BGP misconfigurations [22], in which non-malicious
BGP speakers have been able to disrupt Internet routing as
a result of incorrect configuration.

Several researchers have proposed secure network rout-
ing protocols, but most have used standard digital signatures
to authenticate routing update messages [18, 19, 20, 32, 38,
39, 40]. Similarly, in the area of secure multihop wireless
ad hoc network routing, most researchers use standard dig-
ital signatures to authenticate routing messages [5, 41, 43].
Unfortunately, generation and verification of digital signa-
tures is relatively inefficient, and it is thus challenging to
design a scalable, efficient, and viable secure routing proto-
col based on such asymmetric cryptography.

Symmetric cryptographic primitives are much more ef-
ficient than asymmetric primitives, but so far, few security
mechanisms based on symmetric cryptography have been
designed for the requirements of routing protocols. We now
discuss the exceptions of which we are aware.

Three mechanisms based on symmetric cryptography
have been proposed to secure link state routing updates.
Cheung [2] presents an efficient time-based authentication
protocol to authenticate link state routing updates. The



proposed authentication is optimistic, though, and routers
use the routing update before it is authenticated. Hauser,
Przygienda, and Tsudik [10] propose to use efficient one-
way hash chains to authenticate link state routing up-
dates. Zhang [42] subsequently improves their mechanism
and presents a chained Merkle-Winternitz one-time signa-
ture [27, 26], similar to our basic MW chains scheme that
we present in Section 4.6, although our technique is more
space-efficient.

Heffernan [12] assumes that neighboring routers share
secret keys, and routers use MD5 to authenticate each
other’s messages. This approach allows BGP to protect
itself against the introduction of spoofed TCP segments
into the connection stream (TCP resets are of particular
concern).

Basagni et al. [1] present a protocol with a network-wide
shared key for use in routing, purely based on symmet-
ric cryptography. However, their approach assumes secure
hardware to protect the key.

We have previously developed two efficient secure rout-
ing protocols based on symmetric cryptography. Our SEAD
protocol [13] introduces a new efficient mechanism, based
on one-way hash chains, to secure distance vector routing
updates. Our Ariadne routing protocol [14] is a secure
on-demand ad hoc network routing protocol using source
routing.

In this paper, we present four new security mechanisms
based on efficient symmetric cryptographic techniques, that
can be applied to strengthen current distance vector and path
vector routing protocols or can be incorporated into the de-
sign of new secure routing protocols. For securing distance
vector protocols, our hash tree chain mechanism forces a
router to increase the distance (metric) when forwarding a
routing table entry. To provide authentication of a received
routing update in bounded time, we present a new mecha-
nism, similar to hash chains, that we call tree-authenticated
one-way chains. For cases in which the maximum metric
is large, we present skiplists, which provides more efficient
initial computation cost and more efficient element verifi-
cation; this mechanism is based on a new cryptographic
mechanism, called MW-chains, which we also present. For
securing path vector protocols, our cumulative authentica-
tion mechanism authenticates the list of routers on the path
in a routing update, preventing removal or reordering of the
router addresses in the list; the mechanism uses only a sin-
gle authenticator in the routing update rather than one per
router address. We also present a simple mechanism to se-
curely switch one-way chains, by authenticating the next
one-way chain using the previous one.

In Section 2 of this paper, we discuss the assumptions
underlying our secure mechanisms. Section 3 describes the
basic cryptographic mechanisms that we use. Section 4
describes our new mechanisms for improving security in

distance vector protocols, and Section 5 presents our new
mechanisms for building efficient and secure path vector
routing protocols. Finally, we present our conclusions in
Section 6.

2. Assumptions
In designing our mechanisms to build secure routing proto-
cols, we make the following assumptions on node capability
and key setup.

2.1. Node Assumptions

The computational resources of network nodes vary greatly,
from a high-end Internet backbone router to a tiny ad hoc
network node. To make our results as general as possi-
ble, we design our mechanisms to be extremely lightweight
and efficient. This allows our mechanisms to be used on
resource-constrained ad hoc network nodes and enables
large Internet routers to scale to high bandwidth links. In
particular, we design our mechanisms from purely symmet-
ric cryptographic functions, such as message authentication
codes (MACs) or cryptographic hash functions. In contrast,
mechanisms based on asymmetric cryptography are often 3
to 4 orders of magnitude slower than hash functions.

Most previous work on secure Internet and ad hoc
network routing relies on asymmetric cryptography [18,
20, 32, 38, 39, 40]. However, computing such signatures
on resource-constrained nodes is expensive, and such high
overhead computations may hinder the routing protocol’s
scalability to large networks.

We do not assume trusted hardware such as tamperproof
modules. Secure routing with trusted hardware is much
simpler, since node compromise is assumed to be impos-
sible.

2.2. Security Assumptions and Key Setup

We assume a mechanism that enables the secure and authen-
tic distribution of keying material. Most of our mechanisms
require the distribution of authentic public values to enable
authentication of subsequent values. However, the cumula-
tive authentication mechanism assumes pairwise shared se-
cret keys, or authentic public keys of other nodes if a broad-
cast authentication system such as TESLA [34, 35] is used.

Digital signatures and a public-key infrastructure may be
used to set up the authenticated public values, as well as to
establish pairwise shared secret keys if used in conjunction
with a key agreement protocol such as Diffie-Hellman [6].

We assume protection against the immediate replay of
routing packets. In a wired network or a static wireless
network, each router can be configured with a list of possi-
ble neighbors; a router that receives an update from a node
not on this list can silently discard that update. In mobile
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Figure 1: Tree authenticated values

wireless networks, such as ad hoc networks, we have de-
veloped packet leashes which restrict such immediate re-
play [15]. In this paper, we assume that one of these mech-
anisms is used.

3. Cryptographic Mechanisms
In this section, we review the basic cryptographic mech-
anisms that we use in this work. We first review tree-
authenticated values, also known as Merkle hash trees [25].
We also review one-way hash chains, a frequently used
cryptographic primitive.

3.1. Tree-Authenticated Values

The mechanism of tree-authenticated values is an effi-
cient hash tree authentication mechanism, first presented by
Merkle and also known as Merkle hash trees [25]. To au-
thenticate values v0,v1, . . . ,vw−1, we place these values at
the leaf nodes of a binary tree. (For simplicity we assume
a balanced binary tree, so w is a power of two.) We first
blind all the vi values with a one-way hash function H to
prevent disclosing neighboring values in the authentication
information (as we describe below), so v′i = H[vi]. We then
use the Merkle hash tree construction to commit to the val-
ues v′0, . . . ,v

′
w−1. Each internal node of the binary tree is

derived from its two child nodes. Consider the derivation of
some parent node mp from its left and right child nodes ml
and mr: mp = H[ml || mr], where || denotes concatenation.
We compute the levels of the tree recursively from the leaf
nodes to the root node. Figure 1 shows this construction
over the eight values v0,v1, . . . ,v7, e.g., m01 = H(v′0 || v′1),
m03 = H[m01 || m23].

The root value of the tree is used to commit to the en-
tire tree, and in conjunction with additional information, it
can be used to authenticate any leaf value. To authenticate a
value vi the sender discloses i, vi, and all the sibling nodes of
the nodes on the path from vi to the root node. The receiver
can then use these nodes to verify the path up to the root,
which authenticates the value vi. For example, if a sender
wants to authenticate key v2 in Figure 1, it includes the val-

ues v′3,m01,m47 in the packet. A receiver with an authentic
root value m07 can then verify that

H
[

H
[

m01 || H
[

H[ v2 ] || v′3
]]

|| m47

]

equals the stored root value m07. If the verification is suc-
cessful, the receiver knows that v2 is authentic.

The extra v′0,v
′
1, . . . ,v

′
7 in Figure 1 are added to the tree

to avoid disclosing (in this example) the value v3 for the
authentication of v2.

3.2. One-Way Hash Chains
One-way hash chains, or simply one-way chains, are a fre-
quently used cryptographic primitive in the design of secure
protocols. We create a one-way chain by selecting the final
value at random, and repeatedly apply a one-way hash func-
tion H. (In our description, we discuss the one-way chain
from the viewpoint of usage, so the first value of the chain is
the last value generated, and the initially randomly chosen
value is the last value of the chain used.) One-way chains
have two main properties (assuming H is a cryptographi-
cally secure one-way hash function):

• Anybody can authenticate that a value v j really be-
longs to the one-way chain, by using an earlier value
vi of the chain and checking that H j−i(v j) equals vi.

• Given the latest released value vi of a one-way chain,
an adversary cannot find a later value v j such that
H j−i(v j) equals vi. Even when value vi+1 is released,
a second pre-image collision resistant hash function
prevents an adversary from finding v′i+1 different from
vi+1 such that H[vi+1] equals vi.

These two properties result in authentication of one-way
chain values: if the current value vi belongs to the one-way
chain, and we see another value v j with the property that
H j−i(v j) equals vi, then v j also originates from the same
chain and was released by the creator of the chain.

Jakobsson [16] and Coppersmith and Jakobsson [3] pro-
pose a storage-efficient mechanism for one-way chains,
such that a one-way chain with N elements requires only
O(log(N)) storage and O(log(N)) computation to access an
element.

4. Mechanisms for Securing
Distance Vector Protocols

In this section, we first review distance vector routing pro-
tocols, and then discuss attacks, previous work on securing
distance vector routing, and the remaining research chal-
lenges. We then present new mechanisms to address these
challenges.

The utility of the mechanisms we present is not limited
to routing protocols. In particular, the skiplists mechanism



we present in Section 4.7 allows highly efficient genera-
tion and verification of elements in long hash chains, giving
a constant factor speedup in both generation and verifica-
tion. Skiplists are thus particularly useful for protocols that
use long one-way hash chains, such as TESLA [34, 35] or
BiBa [33].

4.1. Overview of Distance Vector Routing
A distance vector routing protocol finds shortest paths be-
tween nodes in the network through a distributed implemen-
tation of the classical Bellman-Ford algorithm. Distance
vector protocols are easy to implement and are efficient in
terms of memory and CPU processing capacity required at
each node. A popular example of a distance vector rout-
ing protocol is RIP [11, 23], which is widely used in IP
networks of moderate size. Distance vector routing can
also be used for routing within a multihop wireless ad hoc
network by having each node in the network act as a router
and participate in the routing protocol [17, 30, 31].

In distance vector routing, each router maintains a rout-
ing table listing all possible destinations within the network.
Each entry in a node’s routing table contains the address
(identity) of some destination, this node’s shortest known
distance (usually in number of hops) to that destination, and
the address of this node’s neighbor router that is the first hop
on this shortest route to that destination; the distance to the
destination is known as the metric in that table entry. When
routing a packet to some destination, the node transmits the
packet to the indicated neighbor router for that destination,
and each router in turn uses its own routing table to forward
the packet along its next hop toward the destination.

To maintain the routing tables, each node periodically
transmits a routing update to to each of its neighbor routers,
containing the information from its own routing table. Each
node uses this information advertised by its neighbors to up-
date its own table, so that its route for each destination uses
as a next hop the neighbor that claimed the shortest distance
to that destination; the node sets the metric in its table entry
for that destination to 1 (hop) more than the metric in that
neighbor’s update.

4.2. Attacks to Distance Vector Routing
Without security mechanisms, a distance vector routing pro-
tocol may be vulnerable to a number of attacks from mali-
cious routers. For example, a malicious router could per-
form the following types of attacks [8, 14, 18, 20, 21, 28,
38, 40]:

• Try to attract as much traffic as possible by adver-
tising short distances to all destinations. This attack
is sometimes referred to as a blackhole attack [14].
The blackhole attack is quite powerful, because the
malicious router can control any communication that
passes through it. The router can eavesdrop on data,

selectively drop or alter packets, or inject packets.
Otherwise eavesdropping on a specific target may be
challenging in in today’s Internet, as one would need
to access the network link to the target, but by claim-
ing a short distance to the target, a malicious router can
attract the target’s traffic.

• Try to claim longer distances. This attack results in
less traffic flowing across the attacking router, poten-
tially allowing the attacker to obtain network services
without (for example, in the case of a multihop wire-
less ad hoc network) using its own network band-
width and battery power to forward packets from other
nodes. We do not attempt to prevent this attack, since
it is weaker than a malicious router arbitrarily discard-
ing, delaying, or reordering packets sent to it for for-
warding.

• Inject routing loops. This is a powerful attack if the
resulting routing loop does not go through the mali-
cious router, since a single packet sent along that loop
can cause the packet to be forwarded a large number
of times. However, if the routing loop goes through
a malicious router, this attack is equivalent to a data
flooding attack: for example, if an attacker forms a
loop from itself through routers n1,n2, . . . ,nx and back
to itself, then each time it forwards the packet around
the loop, it is equivalent to sending a packet traversing
x routers.

• Inject a large number of route updates, to consume
network bandwidth and router processing time.

Most of these attacks are forms of denial-of-service
attacks, either consuming network resources or preventing
packet delivery. Of these attacks, the most powerful attacks
are the blackhole attack and the routing loop attack (when
the attacker is not in the loop). As a result, we aim to pre-
vent a malicious router from claiming a shorter distance to a
target than it actually has, and to prevent a loop from form-
ing such that an attacker is not in the loop.

4.3. Overview of Previous Work on Securing Distance
Vector Routing and the Remaining Challenges

We briefly reviewed previous work on secure routing in
Section 1. SEAD is a recent secure distance vector routing
protocol we designed, that is particularly efficient because
it uses one-way hash chains and no asymmetric cryptogra-
phy. We briefly overview SEAD and discuss the remaining
research challenges.

SEAD, the Secure Efficient Ad hoc Distance vector rout-
ing protocol [13], is based on based on DSDV [30], and we
secure SEAD using hash chains. As in other distance vec-
tor protocols such as RIP [11, 23], SEAD requires some
limit on hop count (metric), denoted as k − 1. A dis-
tance vector update originated from a node in SEAD con-
tains a sequence number and a metric for each destina-
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Figure 2: An example of a SEAD hash chain, with k = 5 and n = 3. Arrows show the direction of hash chain
generation; hash chain usage proceeds in the opposite direction.

tion. The sequence number is used to indicate the fresh-
ness of each route update. The metric is the distance,
measured in number of hops, from the originating node
to the destination. When a node receives a route update,
for each entry in the route update, it accepts the entry if
the entry has a higher sequence number, or if the entry
has equal sequence number and a lower metric than the
route entry currently in the node’s route table for that des-
tination. In order to prevent attacks on the route updates,
the sequence number and metric must both be authenti-
cated.

SEAD authenticates the sequence numbers and met-
rics in route updates using one-way hash chains. As out-
lined in Section 4.2, we are mainly concerned about the
authenticity of a route update, and that a node cannot
make a route shorter (in order to prevent the blackhole
attack). To initialize, each node N forms a one-way hash
chain vkn,vkn−1, . . . ,v0, with vi−1 = H[vi], as we describe in
Section 3.2, where k− 1 is the maximum hop count, and n
is the maximum sequence number this hash chain allows.
These values are used to authenticate routing update entries
that specify this node N as a destination. To allow values
vkn,vkn−1, . . . ,v1 to be authenticated, an authentic v0 is pub-
lished as an authenticated seed value for the node N, for
example by a Certificate Authority. The value vki+ j will
be used to authenticate a route update entry with sequence
number i and metric k− j for the node N as a destination
when 1 ≤ j ≤ k.

For example, a hash chain for a node N is depicted in
Figure 2, where k = 5 and n = 3. To initialize, v0 is pub-
lished as an authenticated seed value for node N. To start
the first route update for entries with N as the destination,
the node N first sends v5 as an authenticator for sequence
number 0 and metric 0. A recipient would first authenticate
v5 using the public authenticated value v0, and then compute
v4 from v5; the node would then advertise sequence number
0 and metric 1 using authenticator v4. Similarly, recipients
of that update would advertise sequence number 0 metric 2
using authenticator v3, and so forth. The next time the node
N starts route updates for entries with N as the destination,

it would disclose v10 to authenticate sequence number 1 and
metric 0.

Because of the properties of a one-way hash chain, a
node cannot forge a routing update with higher sequence
number, nor can it forge a routing update with an equal
sequence number and lower metric. Larger sequence
numbers take precedence over smaller ones, so nodes would
simply drop updates with smaller sequence numbers, even
if the metric is lower.

Since a node selects the next-hop router towards a des-
tination to be the source address of the routing update with
the shortest distance it receives, the source address of each
routing update must be authenticated. This authentication
can be achieved with a signature, broadcast authentication,
or pairwise shared keys. SEAD specifies the use of pair-
wise shared keys, which exploits the periodic nature of the
protocol. When two nodes A and B move within range, one
of the two nodes (for example, A) will hear an update sent
by the other (B). That node A can begin including in each
of its updates symmetric authentication to the new neigh-
bor B. Conversely, when B hears one of A’s updates, it will
respond by including in B’s updates symmetric authentica-
tion to its new neighbor A. When the two nodes move away
from each other such that they are no longer neighbors, their
routing tables will reflect that. For example, when A and B
move apart, A’s routing table will show that B is no longer
a neighbor, as an update with a fresh sequence number will
override an older update received directly from B. A can
then stop including in its routing updates symmetric authen-
tication to node B.

Although SEAD does prevent a number of attacks, some
attacks and shortcomings remain:
• SEAD does not prevent same-distance fraud: that

is, a node receiving an advertisement for sequence
number s and distance (metric) d can re-advertise the
same sequence number s and distance d. Section 4.4
presents an approach that prevents this same-distance
fraud.

• Another drawback of SEAD is that an attacker can
force a victim node to verify a hash chain as long as



O(ks), where k is the maximum number of hops and
s is the maximum number of sequence numbers rep-
resented by a hash chain. Section 4.5 describes the
tree-authenticated one-way chains mechanism, which
bounds this effort by O(k + lgs). The same scheme
prevents the sequence number rushing attack, which
we present in Section 4.5.

• The overhead to verify authentication values can be
large if a node has missed several routing updates.
An attacker can exploit this overhead to perform a
denial-of-service attack by sending bogus routing up-
dates, forcing a node to spend considerable effort ver-
ifying the authenticity. In Section 4.6, we introduce a
novel authentication scheme that is a hybrid between
a one-way chain and a one-time signature which we
call an MW-chain. Based on the MW-chain, we intro-
duce in Section 4.7 a one-way chain that is very effi-
cient to verify in case of missed routing updates. In a
network with maximum diameter k, this approach re-
duces the verification overhead to O(c c

√
k+ lgs) for ar-

bitrary positive integers c. Finally, we reduce the over-
head of setting up a single hash chain from O(ks) to
O(s).

We now discuss mechanisms that can solve these remain-
ing challenges. Our mechanisms can be generalized to se-
cure many other distance vector protocols.

4.4. Hash Tree Chains for Preventing
Same-Distance Fraud

We present an alternative called hash tree chains to one-way
hash chains for authenticating the distance metric in dis-
tance vector protocols, to prevent the same-distance fraud
attack introduced above. Our new mechanism forces a node
to increase the distance to the destination when sending
a routing update. As noted in Section 2, we use packet
leashes [15] to prevent an adversary from replaying a rout-
ing update in wireless networks, so that the adversary would
be a “stealth node” on that route. The packet leash also pro-
vides hop-by-hop authentication, preventing an adversary
from impersonating another node.

To prevent same-distance fraud, we need to prevent an
attacker from replaying the same hash value (thus without
increasing the metric) but replacing the node id with the
attacker’s node id. We construct a special one-way chain,
which we call a hash tree chain, where each element of the
chain encodes the node id, thus forcing a node to increase
the distance metric if it wants to encode its own id. Each
step in this one-way chain contains a collection of values,
one or more of which are used to authenticate any partic-
ular node. These values are authenticated using a Merkle
tree, and the root of that Merkle tree is used to generate the
collection of values in the next step.

A hash tree chain is a hybrid between a hash tree and
a one-way chain. The one-way chain property is used in
the same way as in SEAD (to enforce that nodes cannot
decrease the distance metric), and the hash tree property is
used to authenticate the node id. We construct the hash tree
between each pair vi−1,vi of one-way chain values as fol-
lows. From the value vi, we derive a set of values b0, . . . ,bn,
using a one-way hash function H as b j = H[vi || j], for each
j. We then build a hash tree above those values as described
in Section 3.1. The root of the tree becomes the previous
value of the one-way chain vi−1 = b0n. Figure 3 shows an
example. The node with the id 1 forwards the shaded val-
ues b′0, b1, and b23 to the neighboring nodes, which can
compute the one-way hash tree chain forward to verify the
authenticity of values b′0, b1, and b23, and use the value b03
to sign their own id when forwarding the route update, thus
automatically increasing the distance metric.

We now present two examples of how the hash tree chain
can be used: when a single value corresponds to a node,
and when a γ-tuple of values corresponds to a node. For
notational and analytic convenience, we describe hash tree
chains for which the number of values between each hash
chain value is a power of two.

In a small network, each value b j can correspond to a
single node; since no two nodes share a single value, an
attacker has no way to derive its value from the advertise-
ments of neighboring nodes, and hence it must follow the
hash tree chain to the next step in order to provide a valid
authenticator.

In larger networks, with n nodes, the O(n) overhead of
generating each step of the chain may be too great; as a
result, we authenticate each node with a γ-tuple of val-
ues. Although two nodes share the same γ-tuple of val-
ues, an attacker could learn each of its γ values from dif-
ferent neighbors that advertise the same metric, and could
then forge an advertisement without increasing the metric.
We show that an attacker’s probability of success may be
sufficiently small. We also change the encoding of a node
id for each update, so that an attacker in a static network
cannot continue to forge updates once it finds an appropri-
ate set of values from its neighbors. Consider a hash tree
chain with 2m values in each step (and thus a hash tree
of height m + 1). For example, if each node has a unique
node id between 0 and

(2m

γ
)

− 1, then the γ-tuple encodes

x = (node id + H[sequence number]) mod
(2m

γ
)

, such that
the γ-tuple changes for each sequence number.

We now analyze the security of hash tree chains as the
probability that a malicious node can forge an advertisement
based on the advertisements from its neighbors. Clearly,
if each value corresponds to a single node id, no forgery
is possible. We now consider the case in which a pair of
values (i.e., γ = 2) represents each node. For our analy-
sis, we consider a hash tree chain with 2m values at each
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Figure 3: Authenticating one distance metric within a sequence of a hash tree chain. In this example, each element
bi stands for one router, so this hash tree chain supports 4 routers.

step, used in a network with n =
(2m

2

)

nodes. We compute
the probability that an attacker can claim the same metric
after it has heard the same metric advertised from q other
nodes. For each of the two values the attacker must produce,
there are 2m −2 other nodes that have that particular value.
It follows that the attacker has

((n−1)−(2m−2)
q

)

=
(n−2m+1

q

)

ways of failing to get a predetermined one of the two val-
ues. We now compute the probability that the attacker is
unable to obtain either value. Since the set of nodes from
which an attacker can receive either value are disjoint, there
are 2(2m−2) nodes that have one of those two values. As a
result, the attacker has

(

(n−1)−2(2m−2)
q

)

=
(n−2m+1+3

q

)

ways
of failing to get either of the two values. Applying the
inclusion-exclusion principle, we now compute the number
of ways the attacker can fail to obtain both values it needs:
2
(n−2m+1

q

)

−
(n−2m+1+3

q

)

, of
(n−1

q

)

possible distributions.
The probability of successful defense, then, is

2
(n−2m+1

q

)

−
(n−2m+1+3

q

)

(n−1
q

) .

For example, when m = 8, then n = 32640, and an
attacker that hears q = 3 advertisements has a 0.000361

(3.61×10−4, or 1.49×2−12) probability of forging a valid
authenticator from the three advertisements, without in-
creasing the distance to the destination. In other words,
an attacker can decrease its advertised metric by 0.00036
in expectation, or on average once every 2752 rounds. To
improve security and reduce route oscillations, we can also
require that a node advertise a particular metric for several
consecutive sequence numbers before we choose that route.
For example, if we require a route to be advertised three
consecutive times before we accept it, and if routing up-
dates are sent (and accepted if valid) once per second, then
the attacker can successfully send a forged routing update
on average only once in over 660 years, given the parame-
ters of n, m, and q above.

To generalize our analysis, we consider the security of
the hash tree chain scheme, where a node corresponds to
a set of β values. First, we consider the number of ways
that an attacker can fail to obtain a specific set of γ different
values. There are

(2m−γ
β

)

nodes that do not help the attacker,

so there are a total of
((2m−γ

β )
q

)

ways to pick q nodes that do
not help the attacker.

Let Ai be the set of combinations of nodes that do not
include value bi needed by the attacker. The attacker, then,
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Figure 4: Sample network to demonstrate the sequence number rushing attack.

has | ∪γ
i=1 Ai| ways to fail. We now apply the inclusion-

exclusion principle:
∣

∣

∣

∣

γ
∪

i=1
Ai

∣

∣

∣

∣

= ∑
i
|Ai|− ∑
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∣

∣

∣

∣

γ
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∣

∣

∣

∣

=
γ

∑
i=1

(−1)i+1
(

γ
i

)(
(2m−i

γ
)

q

)

Then the probability of a successful defense is

γ
∑

i=1
(−1)i+1(γ

i

)((2m−i
γ )
q

)

((2m
γ )−1

q

)

We can now use this to analyze variants of the scheme
described earlier. In particular, we look for n > 32000.

When m = 6, γ = 3. (This represents a four-fold re-
duction in computation, in exchange for a 17% increase
in overhead). Using q = 3 as before, an attacker has a
1.675× 10−3 probability of success; when three consecu-
tive advertisements are required for the same metric before
a routing change is made, the attacker succeeds once every
6.74 years.

When m = 5, γ = 4. (This represents a eight-fold re-
duction in computation, in exchange for a 33% increase
in overhead). Using q = 3 as before, an attacker has a
8.023× 10−3 probability of success; when four consecu-
tive advertisements are required for the same metric before
a routing change is made, the attacker succeeds once every
7.65 years.

4.5. Tree-Authenticated One-Way Chains for
Preventing the Sequence Number Rushing Attack

In protocols such as SEAD, a node that has missed a number
of sequence numbers may need to perform a large number
of hash operations to bring its chain up-to-date. This creates
a potential denial-of-service vulnerability: if an attacker
knows that a victim missed several recent updates for a
destination, the attacker can flood the victim with updates
containing recent sequence numbers but bogus authentica-
tors; the victim must then perform many hash operations

for each update received in an attempt to verify each up-
date. Alternatively, the attacker can fabricate an update with
sequence numbers far in the future, thus requiring each node
receiving such an update to perform a large number of hash
operations to determine that the update is bogus, although
this attack can be somewhat mitigated using loose time syn-
chronization, and rate limiting the use of new sequence
numbers.

Another attack is the sequence number rushing attack.
We explain this attack with an example. Consider the case
in which a malicious node A tries to attract traffic flowing
from a source S to a destination D through S’s neighbor
N. Figure 4 shows the network setup. Let the attacker A
be 4 hops from D, and N be 3 hops from D. If A hears
new routing updates from D before they reach N, A can
rush the routing update to N. If we use the policy that a
node always uses the routing update with the most recent
sequence number, N will forward traffic from S to D through
A until it hears the routing update with the new sequence
number from F which contains a shorter route. To rem-
edy this rushing attack, we adapt a delayed route update
adoption policy: always use the shortest route from the pre-
vious sequence number. For example, when node N hears
the first routing update with sequence number i for destina-
tion D, it will use the shortest update of sequence number
i− 1. Unfortunately, this approach is still vulnerable to an
attack in which A sends two routing updates to N after it
hears the update for sequence i: it forges an update with
distance 0 of sequence number i−1, followed by an update
of distance 3 for sequence number i. The tree-authenticated
one-way chain mechanism we present in this section pre-
vents A from forging low distance metrics for previous route
updates. Together with the delayed route update adoption
policy, we can prevent the sequence number rushing attack.

We describe here our efficient tree-authenticated one-
way chain mechanism, which has two properties in addition
to those of the hash chain in SEAD: first, it bounds the ef-
fort to verify an update; and second, it prevents a node with
fresh sequence number information from fabricating lower
metric authenticators for old sequence numbers.

In our new scheme, we use a new hash chain for each
sequence number. A node using this scheme generates a
random hash chain root h0,s for each sequence number s,
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v01 = F (X ,0)

v11 = F (X ,1)

v21 = F (X ,2)

v31 = F (X ,3)

v02 = H[v01] v03 = H[v02] v04 = H[v03] m0 = H[v04]

v12 = H[v11] v13 = H[v12] v14 = H[v13] m1 = H[v14]

v22 = H[v21] v23 = H[v22] v24 = H[v23] m2 = H[v24]

v32 = H[v31] v33 = H[v32] v34 = H[v33] m3 = H[v34]

m01 = H[m0 || m1]

m23 = H[m2 || m3]

m03 = H[m01 || m23]

Figure 5: Example tree-authenticated one-way chain construction for authenticating a sequence of one-way chains.
The instance in this figure allows 4 sequence numbers to be authenticated, and metrics up to 3. The shaded values
represent sequence number 1 metric 1.

for example by using a PRF F and a secret master key X
to derive h0,s = F (X ,s). Given the authentic anchor of this
hash chain hk,s = Hk[h0,s] (where k is the maximum metric),
any node can authenticate hm,s, which is the authenticator
for sequence number s and metric m.

To allow nodes to authenticate these anchors hk,s, each
node builds a hash tree, using the hash chain anchors as
leaves (Section 3.1). When a node sends an update with
a new sequence number s, it includes the root of the hash
chain h0,s, the anchor of the hash chain hk,s, and the path
to the root of the hash tree. To authenticate any update, the
node verifies the anchor by following the path to the root of
the hash tree. It then verifies the hash value hm,s by verify-
ing that hk,s = Hk−m[hm,s]. Since the maximum hash chain
length is k and the anchor verification requires O(log(s))
effort, where s is the number of sequence numbers repre-
sented by any root, the computation required to verify any
update is bounded by k + log(s).

4.6. The MW-Chains Mechanism

In this section, we present a new cryptographic mechanism,
which we use in the next section to improve the efficiency
of secure network routing and to prevent a class of denial-
of-service attacks. This mechanism is an extension to
the Merkle-Winternitz one-time signature construction [26].
That construction was subsequently used and extended by
Even, Goldreich, and Micali [7], and by Rohatgi [37]. Our
extension to this signature construction, which we call a
one-way Merkle-Winternitz chain, or MW-chain, provides
instant authentication and low storage overhead. This one-
way chain contains a list of values, called heads, and be-
tween any two heads are a set of signature branches and
a set of checksum branches. To achieve low storage over-
head, we derive these branches from a single head using a
one-way hash function H.

The most basic way to construct an MW-chain is with
one signature branch and one checksum branch between
each head. Assuming we want one set of branches to
sign up to N values, we choose the length of the signature
branch and the checksum branch to be N; that is, we choose
`1 = `′1 = N. A random value that is ρ bits long is chosen
as the first head value vn. Next, the signature and checksum
branches are computed using

s1,`1 = H [vi || “s” || 1]

s1,x−1 = H [s1,x]

c1,`′1
= H [vi || “c” || 1]

c1,x−1 = H [c1,x]

for 2 ≤ x ≤ `1. Finally, the next head value is
vn−1 = H [s1,1 || c1,1]. The signature of a value n using
this MW-chain is the ordered set {s1,n,c1,N−n}. An attacker
can produce s1, j, for j < n, but then cannot produce c1,N− j.
Similarly, an attacker can produce c1,N− j for j > n, but then
cannot produce s1, j.

More generally, an MW-chain can have m signature
branches and m′ checksum branches. We call the lengths of
the signature branches `1, `2, . . . , `m and the lengths of the
checksum branches `′1, `

′
2, . . . , `

′
m′ . The signature for some

value n is the ordered set

{s1,n1 ,s2,n2 , . . . ,sm,nm ,c1,n′1
,c2,n′2

, . . . ,cm′,n′
m′}

where ni =

(⌊

n
∏i

j=1 ` j

⌋

mod `i

)

+1, and

n′i =

(⌊

∑m
j=1 ` j−n j−1

∏i
j=1 `′j

⌋

mod `′i

)

+1.

For example, Figure 6 shows an example MW-chain
being used to sign the value 58. In this example, there are 3
signature chains, each of length 4, and 2 checksum chains,
also each of length 4. To sign the value 58 in this case,
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s1,4 =H [vi||“s”||1] s1,3 =H [s1,4] s1,2 =H [s1,3] s1,1 =H [s1,2]

s2,4 =H [vi||“s”||2] s2,3 =H [s2,4] s2,2 =H [s2,3] s2,1 =H [s2,2]

s3,4 =H [vi||“s”||3] s3,3 =H [s3,4] s3,2 =H [s3,3] s3,1 =H [s3,2]

c1,4 =H [vi||“c”||1] c1,3 =H [c1,4] c1,2 =H [c1,3] c1,1 =H [c1,2]

c2,4 =H [vi||“c”||2] c2,3 =H [c2,4] c2,2 =H [c2,3] c2,1 =H [c2,2]

Head vi Head vi−1 =
H [s∗,1||c∗,1]Branches

Generation

Verification

Figure 6: An example MW-chain being used to sign the value 58

n1 = (58 mod 4) + 1 = 3, n2 =
(⌊ 58

4

⌋

mod 4
)

+ 1 = 3,
and n3 =

(⌊ 58
16

⌋

mod 4
)

+ 1 = 4, so
n′1 = ((12− (2+2+3)) mod 4) + 1 = 2 and

n′2 =
(⌊

12−(2+2+3)
4

⌋

mod 4
)

+ 1 = 2. The signature
is thus the ordered set {s1,3, s2,3, s3,4, c1,2, c2,2}.

Every signature chain i can sign log2(`i) bits. All signa-

ture chains together can sign b =
m
∑

i=1
log2(`i) bits. To sign

a message M of b bits, the signer splits the message into m
chunks M1, . . . ,Mm, each of size log2(`) bits. The signer
adds the values si,Mi+1 to the signature. Note that the first
value of a signature chain signs the number 0, the second
value a 1, and so on.

To prevent an attacker from forging a message M′, where
Mi ≥ M′

i ,1 ≤ i ≤ m (because anybody can compute the one-
way chain into that direction to know the previous values)
the sender uses a checksum chain that moves in the op-
posite direction of the signature chains. Consequently, an
attacker that tries to sign M′ as described above would need
to invert the checksum chain, which is computationally in-
feasible. The checksum chains need to be long enough to
sign the maximum sum that might occur in the signature

chains:
m′

∏
i=1

`′i ≥ 1+
m
∑

i=1
(`i −1).

The signer computes the checksum of the signature
chains by summing all the values that it signed with the sig-

nature chains: s =
m
∑

i=1
Mi. The signer splits the checksum

into m′ checksum chunks. The checksum chunks are en-
coded in reverse in the checksum chains, compared to how
the message chunks are encoded n the signature chains. For
checksum chunk si, the signer adds the value ci,`′−si to the
signature.

Rohatgi [37] proposes a concrete instantiation to sign
an 80-bit message: 20 signature chains of length 16, and
3 checksum chains of length 16. Zhang [42] presents a sim-
ilar mechanism, except that he does not bring the multiple
hash chains together into heads. As a result, MW-chains
have an advantage in reduced storage overhead.

In retrospect, it may seem that the development of
hash tree chains was unnecessary: a node could use an
MW-chain to sign its node identifier, thus preventing a node
from directly replaying its authenticator. Unfortunately,
using MW-chains in this context is not secure, since an
attacker receiving several advertisements of equal metric
can recover many values of the signature and checksum
chains. For example, we performed a Monte Carlo simula-
tion for a scenario in which n = 32640 nodes are represented
using 5 signature chains of length 8, and 2 checksum chains
of length 4, and each attacker hears 3 advertisements. In this
case, an attacker was able to forge a valid signature with
a probability of 0.196, in contrast to the hash tree chain,
where the probability of successful forgery was 3.6×10−4.
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Figure 7: One step in a skiplist with k = 4

4.7. Skiplists for Preventing Denial-of-Service Attacks
and for Faster Hash Chain Authentication

In Section 4.5, we described a mechanism that allows each
node to verify a hash chain without needing to perform a
large number of hash functions. However, the amount of
effort required to verify an element is O(k + lgs), where k
is the length of the hash chain and s is the number of hash
chains. The network overhead is O(lgs), and initial com-
putation cost is O(ks). If the maximum metric is large, this
approach may be prohibitively expensive, either in terms of
initial computation cost or for element verification.

In this section, we describe an approach which, when
combined with the Merkle tree authentication described in
Section 4.5, has O(c c

√
k+ lgs) verification cost and O(s c

√
k)

generation cost, at the cost of O(c+ lgs) overhead, where c
is any positive integer. We achieve this by creating a skiplist,
which is a chain that, when followed for one step, skips over
many steps in a virtual hash chain. In the most basic version,
a skiplist is

√
k long, and each step in a skiplist represents√

k steps in a hash chain, which represents c = 2. In general,
skiplists can be embedded inside skiplists, allowing values
of c > 2. Skiplists can also be used in protocols such as
TESLA [34, 35] and BiBa [33], to improve the efficiency of
following long hash chains.

Each skiplist is represented by an MW-chain capable
of signing enough bits to ensure security (for example, 80
bits). Each step in this MW-chain represents m steps in a

virtual hash chain. To generate the hash chain (or skiplist)
associated with this step, a new head is chosen by hash-
ing the head of this step. The anchor of this hash chain (or
skiplist) is computed, and that step in the MW-chain is used
to sign this new anchor. For example, if the head of one step
in a skiplist is vi, a node forms h0,i = H[vi], computes the
corresponding anchor (for example hm,i = Hm(h0,i), if this
is the last level of skiplists). It signs this anchor using vi, as
described in Section 4.6.

More concretely, we consider the case in which there
is one level of skiplist, and each step in the skiplist corre-
sponds to m steps in the virtual hash chain. If the MW-chain
is n steps long, then the virtual hash chain is mn steps
long. The leftmost element in this virtual hash chain is
vn, from which all chain elements can be derived. An al-
ternative representation is the pair (h0,n,Svn(hm,n)), where
Svn(hm,n) represents hm,n signed using vn. The next ele-
ment is the pair (h1,n,Svn(hm,n)). The element at position
(m + 1) from the left is (h1,n−1,Svn−1(hm,n−1)). In gen-
eral, the xth element from the left is represented by the pair
(hx mod n,y,Svy(hm,y)), where y = n−b x

mc.
To verify a hash element, a node follows the hash chain

to the anchor, and verifies the signature of the anchor. If
there are multiple levels of skiplists (that is, if c > 2), the
signature is verified recursively: that is, the verification of
the signature requires the verification of a signature in a
higher level chain. For example, if there are two levels
of skiplists (c = 3), then the hash chain is followed to its



Table 1: Our mechanisms compared with public key equivalents

Initialization Computation Per-Hop Computation Overhead (Bits)
Hash tree chain M·120µs (M-m)·120µs 1680
RSA Equivalent (CPU Optimized) .235µs .235µs +m·401µs 1024m + 80mlg2 Nη
RSA Equivalent (Minimal Overhead) 7669µs η·7669µs +m·401µs 1040m
Tree Authenticated One-Way Chains 1.5µs 3µs 1600
RSA Equivalent 7669µs 401µs 1024
Skiplist (M/α)·120µs + α·step (M/α)·120µs + 2α·step 1920
RSA Equivalent (M/α)·7669µs + α·step 401µs + 2α·step (M/α)·1024

Notation: M is the maximum metric, m is the metric at a hop, n is the total network size, η is the average number of neighbors, α is the
number of hops covered by one skiplist hop, and step is the cost of one hash chain step. RSA timings were performed with 1024-bit keys,
using OpenSSL [29]. Hash tree chain performance is based on a network of size 32640, roughly the number of ASes in the Internet, and
uses hash tree of size 26, with 3 values corresponding to each node. CPU optimized RSA equivalent combines all routing table elements
using a Merkle tree, amortizing signature costs across all routing table elements. Tree-authenticated one-way chain is of size 220, and the
calculation of initialization cost is amortized over all elements.

anchor, the second level skiplist signature is checked by
following that skiplist to its anchor, and the anchor of that
skiplist is verified by verifying the signature in the top-level
skiplist.

Skiplists can be generalized to allow skipping over any
type of one-way chain that is formed from a single arbitrary
head and can be verified using a single anchor. For example,
hash tree chains can be used in conjunction with skiplists.
This generalized skiplist is generated in the same way as
skiplists over hash chains: at the lowest level of skiplist, the
head of one step is used to seed the head of the one-way
chain, and the anchor of that one-way chain is signed by
that step in the skiplist.

Another possible application of such skiplists is to
choose the top-level skiplist to represent k steps, where k is
the maximum diameter of the network. This would reduce
the initial cost of setting up a Merkle tree (as described in
Section 4.5) from O(s c

√
k) to O(s), where s is the number of

sequence numbers covered by the tree. This increases over-
head and computation cost by O(1) for each update sent and
verified, respectively.

4.8. Efficiency Evaluation
To evaluate the efficiency of our mechanisms, we imple-
mented generation and verification procedures for the three
mechanisms described in this section. For efficiency, our
hash function is based on the Rijndael block cipher [4] in
the Matyas, Meyer, and Oseas construction [24], with a
128-bit key and a 128- or 192-bit block size, depending on
the number of bits to be hashed. With a single block to be
hashed, the hash output is the following (with an initializa-
tion vector (IV) as the initial key K): H(x) = EK(x)⊕ x.
We built our implementation on top of Gladman’s imple-
mentation [9]. We implemented hash tree chains with 64
leaves, which represents a 64-node network with a single
element per node, or a 2016-node network, when using two

elements per node. Our skiplist was based on Rohatgi’s
construction [37] of 20 signature chains of length 16 and
3 checksum chains of length 16.

We ran our tests on a laptop with a Mobile Pentium
4 CPU running at 1.6GHz. Verifying a node in a tree-
authenticated one-way chain took 3.08µs on average, com-
puting one step in a hash tree chain took 120µs on aver-
age, and computing one step of an MW-chain took 145µs
on average. As a result, in a network with maximum metric
16 using skiplists of length 4, the worst case verification
takes just over one millisecond. Another advantage of our
approach is that most of the computation needed for verifi-
cation can be used for generation; in particular, the worst
case authentication plus verification operation takes just
480µs more than verification alone.

To compare these results to the efficiency of public-key
cryptography, we analyzed the functionality provided by
each mechanism. A summary of our analysis is shown in
Table 1. The tree-authenticated one-way chain essentially
provides a signature: given a public key (the root value),
private values can be authenticated. Tree-authenticated one-
way chains are significantly more efficient than existing ap-
proaches [41] that authenticate each anchor using RSA.

A hash tree chain uses cryptographic mechanisms to en-
sure that only nodes authorized to advertise a particular
metric can advertise that metric. In particular, only nodes
that hear an advertisement with metric m (or lower) can ad-
vertise metric m + 1. A public-key approach to this prob-
lem can be adapted from the solution proposed by Kent
et al. [18]: each node signs the list of nodes that are al-
lowed to advertise a particular metric. Each routing table
element includes a signature chain, with a length equal to
the metric, which shows the delegation of authority for ad-
vertising particular metrics. A node verifying this chain
would need to verify a number of signatures equal to the
distance to the destination. In addition, each node needs to
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Figure 8: Bootstrapping a new hash chain. The new anchor is signed using the MW-chain element at the far left
side of the old chain.
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Figure 9: Bootstrapping a new tree-authenticated one-way chain. The new root is signed using the MW-chain
element embedded in the old tree.

run a secure neighbor discovery protocol in order to know
which neighbors to authorize. Though such a protocol may
be easy to design in a wired network or a fixed wireless
network, where a list of potential neighbors is easily gener-
ated, it could be prohibitively expensive in a mobile wireless
environment such as an ad hoc network.

Finally, an alternative to skiplists is signatures. For ex-
ample, in a network with maximum metric 16 and one step
in a skiplist is used to skip over 4 elements, a sender can
sign not only the anchor (metric 16 authenticator), it can
also sign metric 4, 8, and 12 authenticators. Naturally,
when a node sends an advertisement with metric 5, it will
not include the signature of the metric 4 authenticator,
and in general, a node advertising metric n will not in-
clude signatures on any metric m authenticators for m < n.
Although skiplists may be slower than public key mecha-
nisms on general-purpose processors, they have four advan-
tages: first, they may require less network overhead for long

chains; second, signature generation overhead is reduced,
especially at the sender; third, they are easier to implement
in hardware; and fourth, verification is easily parallelizable.

4.9. Bootstrapping New Chains and Trees

As time progresses, the elements of one-way hash chains or
hash trees eventually run out and the node needs to securely
distribute the anchor of a new chain or the root of a new
tree. Recall that the security of our schemes relies on the
secure distribution of these initial values, as they are used
to authenticate all subsequent values. One solution to this
problem is to compute a chain that is long enough to out-
last the network; unfortunately, such a computation may be
relatively expensive.

An alternative solution is to use the old chain or tree to
authenticate the new anchor or root. To achieve this, we
place a single MW-chain element at on the left-hand side of
each hash chain or hash tree chain, or as the last element of



Figure 10: The Big Picture. Each leaf (except the bottom leaf) of the hash tree is identical to the top leaf, but the
structure is omitted for clarity.

a tree-authenticated one-way chain (as used in Section 4.5).
When a node comes close to running out of its current chain,
it generates a new chain, and uses the MW-chain element
from its old chain to form a one-time signature on the an-
chor of the newly generated chain. It then distributes this
new anchor by piggybacking it on several updates around
the time the old chain expires. Figure 8 shows the use of
a skiplist element in a hash chain for authenticating a new
hash chain anchor, and Figure 9 shows the use of a skiplist
element in a tree-authenticated one-way chain for authenti-
cating a new tree-authenticated one-way chain root.

This approach can be extended in several ways: each
chain could contain several MW-chain elements to allow
nodes to more easily reenter the network should they miss
an entire chain of another node. Furthermore, a node may
choose to piggyback a newly authenticated anchor often,
when it first switches to the new chain, and progressively
less often as the node consumes that chain. For example, the
node may distribute the authentication information when-
ever the chain element used is a power of 2 from the anchor;
this approach reduces overhead while still allowing nodes to
rejoin the network after an extended time away.

4.10. Combining Our Primitives
Two of our primitives (hash tree chains described in
Section 4.4 and tree-authenticated one-way chains in
Section 4.5) protect against specific attacks (namely, same-
metric fraud and the rushing attack); in addition, we provide
skiplists (Section 4.6) for more efficient traversal of long
hash chains. In order to prevent both of the above attacks,
we can combine our approaches as shown in Figure 10. At
the highest level, shown on the right side of the figure, we
use a tree-authenticated one-way chain, which is a Merkle
tree. The root of this Merkle tree is bootstrapped on each
node. Each leaf in the Merkle tree is the anchor of an-
other chain, with each leaf representing a single sequence
number. In this case, the chains are skiplists built on top of
hash tree chains; the chains could also be implemented as
hash tree chains, or, if same-metric fraud is not a concern,

as hash chains. Finally, at the bottom of the figure is an
MW-chain element, which is later used for authenticating
the root of the next tree-authenticated one-way chain.

5. A Mechanism for Securing
Path Vector Protocols

5.1. Overview of Path Vector Routing
Path vector protocols are similar to distance vector proto-
cols, except that in place of the metric, each routing update
includes a list of routers (or, in the case of BGP, a list of
Autonomous Systems) on the route. By default, a path vec-
tor protocol will choose a route with the shortest recorded
path; policies may also specify specific routers to prefer or
to avoid. As a result, a node may wish to authenticate each
hop that the routing update has traversed as recorded in the
path, and to assure that no hops were removed from that
recorded path.

A traditional way to perform this authentication is to
have each node insert an authenticator in the packet, and
to have the recipient individually verify each authentica-
tor when the packet is received. This approach requires
the network overhead of carrying a message authentication
code (MAC) for each node in the path. In this section, we
present a cumulative authentication mechanism that has the
property that the message can be authenticated with only a
single MAC, together with an ordered list of nodes traversed
by the packet.

5.2. Cumulative Authentication
First, we describe the cumulative authentication mechanism
in the case in which private keys are shared between the
authenticating node and each node on the path. Each packet
authenticated in this way maintains a path authenticator and
an address list. When the packet traverses a node, the node
appends its address to the address list. It authenticates its
position in the list by replacing the path authenticator with
a MAC computed over the received path authenticator and
the packet’s immutable fields.
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A B C D E T

ha = MACTA(0||p)

hb = MACTB(ha||p)

hc = MACTC(hb||p)

hd = MACT D(hc||p)

he = MACTE (hd ||p)

Figure 11: Cumulative authentication of packet p to a target T

When the packet reaches the receiver, if the path authen-
ticator was originally initialized to a well known value (such
as 0), then the receiver can reconstruct an expected final
path authenticator value, given the address list. If the recon-
structed value matches the received value, then the packet
is deemed to be authentic and to have in fact traversed each
node in the address list.

Figure 11 shows an example of cumulative authentica-
tion for a packet p. In addition to updating the path authenti-
cator, each node also appends its own address to address list
in the packet. If each node authenticates the packet using a
shared MAC with T , then T can verify the path the packet
traversed by verifying the received path authenticator he by
checking that

he = MACT E(MACT D(MACTC(MACT B(MACTA(0 || p)
|| p) || p) || p) || p) .

Cumulative authentication also resists the removal of
previous nodes from the address list. For example, in
Figure 11, if an attacker C wishes to remove B from
the address list, it must obtain ha to derive a valid
hc = MACTC(ha||p). Since inverting B’s MAC is infeasible,
an attacker generally must have the cooperation of the node
immediately before the node to be removed. This mecha-
nism does not prevent the second node from removing the
first node, but since the first node is the source node, this is
equivalent to the second node dropping the original packet
and originating a packet of the same type to the destination.

Instead of using private, shared keys for authentication, it
is also possible to use our cumulative authentication mech-
anism in the case in which the TESLA broadcast authenti-
cation protocol [34, 35] is used for authentication; the au-
thentication can be performed either by the sender of the
packet to be authenticated or by each recipient. To perform
the authentication at each recipient, as may be desirable
with a proactive routing protocol, such as BGP, each node
along the path verifies the TESLA “security condition” (that
the TESLA keys have not yet been released) and updates a
address list and path authenticator as described above using
its current TESLA key. The node then buffers the packet for
verification. Later, the sender transmits the key, required for
the verification of its authentication, to each node to which
the sender transmitted the original routing packet. Each
node receiving such an authentication packet verifies the
authentication information. After the node performs that
authentication, it appends its previous TESLA key to the

authentication packet and transmits the new authentication
packet to each neighbor to which it sent the original routing
packet.

In an on-demand protocol, such as Ariadne [14], an ini-
tiator floods a route request packet when it needs a route to
a destination; the initiator may then wish to perform the au-
thentication. In this case, each node along the path updates
a address list and path authenticator as described above.
When the packet reaches the destination, the destination
verifies the TESLA security condition. Alternatively, the
destination can include a timestamp, and allow the source
to verify the security condition. The destination then adds
an authenticator to the path authenticator and address list
(and possibly the timestamp), and sends the packet along
the reverse of the route along which it came. Each node
receiving such a packet includes in the packet a key that al-
lows the original authenticator to be reconstructed. If the
end-to-end authentication is also performed using TESLA,
the TESLA key used by the destination for authenticating
the path authenticator, address list, and timestamp must be
sent to the original sender.

5.3. Performance Evaluation

To evaluate the performance of cumulative authentication,
we examined the overhead reduction resulting from using
cumulative authentication together with Ariadne [14]. We
performed 140 simulations, each running over 900 simu-
lated seconds, and examined the number of bytes of over-
head transmitted within control packets. When Ariadne
was run without cumulative authentication, the total over-
head across 50 nodes and 126000 simulated seconds was
1997 megabytes, whereas with cumulative authentication
the same total overhead was 1491 megabytes. This result
represents a 25% reduction in routing overhead.

6. Conclusion
In this paper, we have presented four new mechanisms as
building blocks for creating secure distance vector and path
vector routing protocols. These mechanisms not only pro-
tect the routing protocol against standard routing attacks,
they are based on highly efficient symmetric cryptographic
techniques; our mechanisms thus also help to protect the
routing protocol against denial of service attacks based for
example on simply by flooding large numbers of randomly



generated, forged routing messages, which then must be au-
thenticated and rejected by the routers.

For securing distance vector protocols, our hash tree
chain mechanism forces a router to increase the distance
(metric) when forwarding a routing table entry. To provide
authentication of a received routing update in bounded time,
we presented a new mechanism, similar to hash chains, that
we call tree-authenticated one-way chains. For cases in
which the maximum metric is large, we presented skiplists,
which provide more efficient initial computation cost and
more efficient element verification; this mechanism is based
on a new cryptographic mechanism, called MW-chains,
which we also presented. For securing path vector pro-
tocols, our cumulative authentication mechanism authenti-
cates the list of routers on the path in a routing update, pre-
venting removal or reordering of the router addresses in the
list; this mechanism uses using only a single authenticator
in the routing update rather than one per router address.

As our economy and critical infrastructure increasingly
rely on the Internet, securing routing protocols becomes of
critical importance. The routing security mechanisms we
have described can be applied to conventional routing pro-
tocols such as those in use in the Internet today, as well as
to specialized routing protocols designed for new environ-
ments such as multihop wireless ad hoc networking. Our
mechanisms provide a foundation on which efficient secure
routing protocols can be designed, and we leave the devel-
opment of such protocols to future work.
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