

The ISP Column

A monthly column on things Internet

June 2010

Geoff Huston

DNSSEC – A Review

After many years, the root of the DNS is evidently going to be signed in the coming weeks using
DNSSEC with a verifiable root key, or at least that’s the plan if the National Telecommunications
and Information Administration of the United States Federal Department of Commerce follow
through with their proposed actions that have been foreshadowed in the Federal Register of the
United States bureaucracy of Wednesday, 9 June 2010. It will all happen by July 15 2010, if all
happens in accordance with the plans outlined in that notice, and on that date we should have a
DNSSEC-signed root of the DNS. Given that this is an event that has taken more than fifteen
years to come to fruition, I thought it might to useful to have another look at DNSSEC to mark
this long anticipated milestone.

Figure 1 The View of DNSSEC in 2006 – T-Shirt by Olaf Kolkman

DNSSEC and the DNS

In looking at the general topic of trust and the Internet, one of the more critical parts of the
Internet's infrastructure that appears to be a central anchor point of trust is that of the Domain
Name Service, or DNS. The mapping of “named” service points to the protocol-level address is a
function that every Internet user relies upon, one way or another. While almost every single user
transaction deals with names, such as www.potaroo.net, every single network packet has to deal
with protocol level addresses, such as 203.119.0.116 or 2401:2000:6660::2.

Given that every single Internet user and every Internet service provider ultimately relies on the
integrity of the DNS, then how is the DNS itself protected against malicious attack? If the DNS is
the cornerstone upon which the integrity of operation of all other user level Internet applications
are constructed, then how can we be assured that the DNS itself is working as intended?

The ability to corrupt the operation of the DNS is one of the more effective ways of corrupting the
integrity of Internet-based applications and services. If a malicious attacker can, in some fashion,
alter a DNS response without being detected, then a large set of attack vectors are exposed.

Page 2

For example, an altered DNS response may cause some users of your service to believe that your
online services are associated with the addresses of the attacker's servers. For those unfortunate
users who attempt to communicate with your servers, their traffic will be redirected by the DNS
to communicate with the attacker's servers. While at one level this can appear to be simply an
annoying piece of vandalism, when the same form of attack is directed against financial services
or critical public emergency services or other forms of valuable or critical service elements, then
this is an extremely serious form of attack with serious financial or even political implications.
Web servers, email, VOIP services, and indeed any service where the initial rendezvous is made
through the DNS is vulnerable to such forms of attack on the DNS, and most services do indeed
rely on the DNS.

The DNS was designed as a widely distributed database to enable it to scale and to perform
extremely efficiently under a wide variety of operational conditions. There are, unfortunately,
many ways in which the Internet's name resolution function is vulnerable to attack, and it
appears that the DNS has been the subject of many forms of attack over the years. However, the
purpose of this article is not intended to be a collection of recipes on how to attack the DNS, or
even a description of the weaknesses of DNS. RFC 3833 contains an excellent summary of the
vulnerabilities in the DNS [RFC3833].

Figure 2 Potential Vulnerabilities in the DNS

The more useful question here is whether it is possible to strengthen the DNS such that such
efforts to corrupt the DNS are detectable. The DNS is a query-response application, and the
critical question in terms of strengthening its operation is whether it is possible to authenticate
the responses provided by the DNS. The question of "securing" the DNS becomes one of
establishing whether it is possible to add some form of credentials to DNS responses that would
allow the client to check that the data provided in the response corresponds exactly to the data
as it was entered into the authoritative zone. The client would like to validate that they have
received the entirety of the answer, and that no part has been altered in any way.

The way DNSSEC achieves this is through the use of public key cryptography and digital signing
of DNS data. When data is entered into the DNS via the original zone data, the zone data is
signed by the zone administrator. When the client performs a DNS query, the signature is
provided to the client as part of the DNS response, and the client can verify the signature and in
so doing be assured that the response is an accurate representation of the original zone data.

Page 3

Figure 3 DNSSEC and the operation of the DNS

What is DNSSEC?

In answering this question, it may first help to look at what DNSSEC is not.

DNSSEC is not a security panacea. It is not a robust defence against all forms of attack against
DNS servers and clients. DNSSEC is not an exercise in encryption of DNS data. Within the scope
of DNSSEC, DNS protocol interactions remain in the clear, and DNS transactions can be prone to
eavesdropping with DNSSEC. DNSSEC does not attempt to construct secured private DNS realms
that are protected from third party inspection. Encryption of DNS exchanges using mechanisms
such as TSIG for data protection between DNS servers (see RFC 2845), address a different set of
functional objectives than that of DNSSEC. DNSSEC does not support secure communications
channels between clients and resolvers, nor between primary and secondary servers of a domain.
DNSSEC does not prevent various forms of DNS denial of service attacks, nor does it prevent the
DNS being used as part of an amplification attack.

The DNSSEC objective is a tightly focused objective of allowing clients to authenticate the
contents of a DNS response. It is focused on allowing a client to detect various forms of "man-in-
the-middle" attacks where the attacker has modified the original information that is in the
authoritative zone file. It does not prevent the possibility of such an attempt to manipulate a DNS
response, but it is intended to allow a client to detect that such an alteration of a DNS response
has occurred. Again this is not a universal level of protect, but one that is qualified such that the
detection is possible in those cases where evidence that the DNS zone from which the DNS
response has been assembled has been DNSSEC-signed is still visible to the client.

DNSSEC is a specification of an extension to the DNS through the definition of additional DNS
Resource Records (RRs) that can be used by DNS clients to validate the authenticity of a DNS
response, the data integrity of the DNS response. In addition, where the DNS response indicates
no such name, or no such resource type exists, DNSSEC allows for this negative information to
also be authenticated by the client. In other words, if an attacker attempts to create a DNS
response that substantively differs from the original authentic response in some fashion, and the
attacker then attempts to pass the response off as an authentic response, then a DNSSEC-aware

Page 4

client should be able to detect the fact that the response has been altered and that the response
does not correspond to the authoritative DNS information for that zone.

A succinct summary of the problem that DNSSEC is intended to address is that DNSSEC is
intended to protect DNS clients from believing forged DNS data.

The way this is achieved in DNSSEC is by using public key cryptography (see Appendix I). The
DNS zone administrator digitally signs every Resource Record set (RRset) in the zone, and
publishing this collection of digital signatures, along with the zone administrator's public key, in
the DNS itself. DNSSEC does not make use of Digital certificates or any other form of external
credentials. The intention with DNSSEC is to publish all the necessary security credentials in the
DNS itself, and use the DNS for both the storage of such security credentials and the means of
distribution of this information.

In checking a DNS response for a given RRset, a DNSSEC-aware client can retrieve the related
digital signature RRs and then check this signature using the zone administrator's published
public key against the locally calculated hash value of the RRset. The client can then validate the
zone administrator's public key using a hierarchical signature path that leads to a point of trust. If
all these checks succeed than the client has some confidence that the DNS response was
complete and authentic.

To achieve its objective, DNSSEC defines a number of new DNS RRs, namely the DNSKEY, RRSIG,
NSEC and DS RRs (see Appendix II). DNSSEC also introduces two new message header bits:
checking Disabled (CD) and Authenticated Data (AD), and it uses functions provided by Extended
DNS mechanisms (EDNS). This creates a backwards compatible extension to DNS.

Implementing DNSSEC implies different actions for different roles. For a DNS zone administrator,
DNSSEC is essentially the process of signing all RRsets with a private key, publishing these
signatures for each RRset in the zone file, and also publishing the public key in the zone file. In
addition the zone administrator has to ensure that the zone’s public key is signed by the parent
zone administrator and published in the parent's zone. For a parent DNS zone administrator
DNSSEC also includes the task of validation of the DNSSEC zone's public keys of the zone's
children, signing over them using the zone's private key, and publishing this material as RRs in
this DNS zone. For a DNS client DNSSEC is the ability to perform a number of additional checks
on a DNS response that can result in greater trust in the authenticity and accuracy of the DNS
response. And for the DNS itself, DNSSEC essentially represents a number of additional Resource
Records that hold digital signatures of DNS information, as well as key information.

The technical specifications for DNSSEC are in RFC4033 (Security Requirements), RFC4034
(DNSSEC Resource Record Types) and RFC4035 (DNS Protocol Modifications). Further
specifications related to the NSEC RR are in RFC4470 (Epsilon Functions for NSEC responses) and
RFC5155 (NSEC3 Resource Record). RFC4641 describes DNSSEC operational practices.

How does DNSSEC work?

When requested by the client in the DNS query, the authoritative DNS server will add additional
DNSSEC data to the DNS responses. This additional data is, in effect the digital signature of the
DNS data contained in the response. This is intended to allow the DNS client to authenticate the
DNS response. The way in which this is done is by the addition of a RRSIG part to the additional
data of the DNS response. If there is no authoritative DNS data to respond to the query, such as
when no such domain name exists, then the DNS response will include an NSEC RR response,
plus its accompanying RRSIG record. In addition to an RRSIG response covering the RRset
records in the answer section of the DNS response, there is also an RRSIG response covering the
records in the authority section and one or more RRSIG responses relating to records in the
additional response section.

Page 5

The first task that the DNSSEC-aware client should perform is to use the RRSIG data to check the
validity of the DNS response. To do this the client can take the RRset response and use the
algorithm referenced in the RRSIG record to generate the hash of the data. The second task is to
take the RRSIG value and encrypt it using the DNSKEY public key. To do this the client must also
have at hand the DNSKEY record for the zone. This will result in decrypting the hash in the RRSIG
record. The results of these two operations are now compared. If the DNS response is authentic
then the hash of the RRset data will match the decrypted RRSIG hash value.

The DNSKEY RR would normally be provided as part of the additional section of a DNSSEC
response. If the client has not already validated the DNSKEY within some locally defined period,
then the client should also validate the DNSKEY value.

The DNSKEY may match a local trust anchor, in which the DNSKEY can be accepted without
further tests. Otherwise the DNSKEY RR will need to be validated.

This validation procedure entails verifying the RRSIG record associated with the DNSKEY RR,
using the same procedure as described above for other RRs. However domain zone key validation
also entails the construction of a trust chain back to a trust anchor point. If this domain key is not
already a trust anchor then the client needs to query the parent zone for the DS record of the
child zone. This DS query should return both a public key value as the value of the DS RR, an
RRSIG RR associated with the DS RR, and a DNSKEY RR for the parent zone. The DS RR can be
validated against the RRSIG RR, using the public key contained in the DNSKEY RR. This public key,
in turn, must be validated. This iterative process constructs a trust chain that, hopefully, leads
back to a locally configured trust anchor. At that point the DNS response can be considered to be
validated.

Figure 4 – DNSSEC validation framework

Page 6

DNSSEC: For and Against

There are some very useful properties of this DNSSEC approach to the use of public key
cryptography to the DNS.

Record Level Granularity
Signing is at the granularity of a DNS response, while keys are at the level of granularity
of a domain zone. While an entire DNS zone has a single key pair, the entire zone file is
not signed - individual RRsets are signed. When thinking of DNS as a transaction protocol
this makes a lot of sense, as the major use of DNS is in presenting queries that are
answered by DNS RRset responses. A signed zone would imply that authentication of a
single response would entail an entire zone transfer, which is a preposterous overhead for
a simple DNS transaction!

The RRset signing model also implies that incremental changes to a DNS zone file entail
generating new signature objects (RRSIG RRs) only for those RRsets that have been
altered. Again, this minimizes the amount of overhead in key generation in response to a
single change to the zone file.

Signed "No Data" Responses
In DNS the "no such domain" and “no such resource record type” responses to queries are
as important as returned information. Of course it is not possible to add authentication
information to such non-responses in the form of a detached signature, and DNSSEC
addresses this problem by generating "gap" NSEC records as a means of authenticating
these DNS "gaps". This concept of using synthetic information as material to assist in
authentication of a non-response is an interesting approach which is not commonly seen in
commonly used secure applications.

Validation exploits the DNS delegation hierarchy.
Validation of the public keys in a zone exploits the DNS delegation model and uses the
parent as the means of validating a child zone. It should be noted that it is not the identity
nor the bona fides of the zone administrator that is at issue here. The implication is that
conventional X.509 public key certificates are not of direct relevance to this application, as
the task is not to validate that the public key “belongs” to a particular individual, or a
particular role, nor is the private key holder being granted a particular authority. The
objective of the credential structure in DNSSEC is to ascertain that a particular public key
is associated with a given zone.

The manner of confirming that association is to rely on the hierarchical structure of
delegation within the DNS, and to use the DNS delegation parent to confirm the public key
value of the child zone. In an environment of ubiquitous use of DNSSEC, with a signed
DNS root, DNSSEC clients would need to maintain just one public key value, that of the
DNS root zone. All other DNSSEC zone keys can be verified by a process of backward
chaining up to the root zone, following the sequence of DNSKEY and DS records up to the
root zone key.

DNSSEC is not without some additional issues that change the nature of the DNS and have some
significant implications for it’s performance.

Larger Zone Files
The zone file increases in size due to the addition of the additional DNSEC records. The
major contributors here are the NSEC and RRSIG records, and the zone size will increase.
By what factor depends on what is in the zone file of course, but increases by a factor of
up to seven in size have been noted in DNSSEC literature.

Page 7

Larger Responses
The average size of a DNS response message increases, due to the additional signature
records that are attached to the response. Where the message size exceeds the maximum
UDP message size it will need to set the truncated response flag, causing the query to fall
back to the use of TCP, with its attendant higher overheads in terms of client and server
state, and the number of network messages to manage the TCP connection.

The behaviour of a small UDP query generating a large response has been used as a
denial-of-service amplifier by using a spoofed source address in the DNS query. DNS with
DNSSEC makes the DNS an ideal vehicle for this form of denial-of-service attack.

More Queries
The number of DNS transactions increases due to the requirement to perform additional
queries for zone public key records when constructing trust chains. Even though caching
has some potential to reduce much of this traffic, there is still an additional query load that
must be considered with DNSSEC.

Higher Client Overhead
The client has to spend additional time validating the signed data and validating the public
key, potentially slowing the resolution process.

Higher Server Overhead
The server has to generate new signatures over RRset changes, which places an
incremental load on the server function.

Increased Potential for Zone Administration Errors
DNSSEC is complex to implement, and trivial zone configuration errors or expired keys can
cause serious problems for a DNSSEC-aware resolver. Key rollover of the KSK presents
some challenges, particularly when the parent zone is not DNSSEC-signed.

The use of absolute times in the RRSIG records imposes a new regime of some level of
time synchronization across the DNS as part of the signature validation process. Previously,
DNS had only a concept of elapsed time, whereas in DNSSEC if a client has a skewed
concept of time it may believe that expired signatures are still valid. If a zone
administrator has a skewed time then the signature validity timestamps it generates in its
RRSIG records would be incorrect.

Zone Enumeration with NSEC RRs
Perhaps one of the more significant issues lies in the use of the NSEC response. With
judicious use of the NSEC response it is possible to reconstruct the contents of a domain
zone file, analogous to the outcome of a DNS list operation. With the significant business
interests in the DNS today, and the observation that there is more revenue earned in the
name registration business through registration of "unused" names than earned from
"used" names, this implicit zone listing capability is regarded by some zone operators as
an exposure of commercially sensitive information that would normally remain private.

One view of this exposure is to factor in the observation that with NSEC signature
coverage of a zone the zone data is then secure, but public. The other issue exposed with
the NSEC response is the behaviour of “split-domain” DNS servers, which will respond with
authoritative data to some (presumably trusted) parties, while providing a “no such
domain” form of denial response to all others. The vulnerability here is that if the server
synthesises a NSEC response to an untrusted party, an attacker could subsequently replay
this response to a trusted party, generating a form of denial of service attack. These pre-
signed NSEC records expose a considerable amount of information about the zone
contents, and this, in turn, has been cited as one of the significant impediments to
DNSSEC deployment.

The current response to this issue is to use a hash function in the ordering of records the
development of an alternate response to the “no data” condition that would still allow the

Page 8

zone administrator to sign the response, but would not necessarily reveal the enumeration
of the entire zone as a side effect. This approach, currently work in progress within the
IETF, proposes a different RR response, namely the NSEC3 record.

Rather than using the name order within a zone file and explicitly enumerating the next
name in the NSEC record, the NSEC3 approach uses a hash algorithm on the names within
a zone, and then uses a hashed ordering of these names. The next name references in the
NSEC3 RR is the next name corresponding to this hashed name order. The objective of
this approach is to increase the cost of zone enumeration using NSEC3 responses.

DNSSEC Deployment

Deployment of DNSSEC has been quite piecemeal and it has yet to gather any significant
momentum so far. There are a number of reasons why this is the case.

The first, and perhaps the hardest, is that the Internet of today is now a very large system, and
every large system tends to resist change. Any change, and particularly a change to a technology
that is as universally pervasive as the DNS, will take time, and the larger the realm of
deployment, the longer the period to get to a critical mass of deployment.

There are a few other issues with DNSSEC that hinder deployment. One is that the economics of
DNS deployment do not work directly in favour of DNSSEC. It would be good if a security
measure could create outcomes that were simpler, cheaper and more robust, as well as creating
mechanisms to deflect various forms of hostile attack. DNSSEC cannot readily be described in
such terms. There are additional tasks placed on the zone administrator, additional load placed on
DNS servers, additional responsibilities placed on DNS clients, and the potential for additional
tasks to be undertaken by applications. Even in such a situation, deployment proceeds where the
cost of the measure is offset by direct benefits achieved through the measure. Here it is not clear
that there is a cost and benefit equation at work for each player. The DNS zone administrator
inherits a significantly more complex issue, for the existing issues of securing the DNS servers
and ensuring that they can resist various forms of attack do not go away with DNSSEC, and on
top of that DNS places an additional workload of key management and signature generation for
each change to the zone. The benefits that arise from this additional cost in zone administration
are not readily apparent to the DNS zone administrator or to the DNS server system
administrator. The initial benefit would appear to accrue to the client, whose additional work in
validating the DNSSEC responses would lead to a greater level of confidence in the accuracy in
the DNS. When cost and benefit are decoupled to such an extent there is often significant
impediment to widespread deployment as a consequence.

It is also possible that an indirect benefit of DNSSEC is that the DNS is able to be used as a
relatively efficient means of distribution of authenticable data. There is a well established and
high value certificate-based reputation industry. One potential use of DNSSEC is to provide an
alternate distribution and verification framework for short data items, as a potentially lower cost
alternative to certificate-based frameworks. However the history of the DNS is full of inventive
proposals to extend the DNS in various ways, and the number of successful and widely adopted
extensions is far lower than the number of proposals, so the likelihood of DNSSEC assuming a
broader role in service security and integrity and superseding much of the role currently
undertaken by certificate-based frameworks is at best a remote possibility.

The other part of the consideration of the economics of DNSSEC deployment is the observation
that all security measures are ultimately an exercise in risk evaluation, and the cost of
deployment of the measure has to be evaluated against the practical probability of attack and the
potential consequent costs of the attack. DNS cache poisoning is not a prevalent form of attack in
current DNS implementations, and DNS resolvers are relatively adept at resisting various forms of
cache poisoning. That does not imply that the DNS without DNSSEC is perfect in this respect,
indeed far from it, but it does make the business case for deployment of DNSSEC one that

Page 9

requires some considerable thought. However it should also be remembered that the costs of a
successful attack in the DNS are potentially quite considerable.

The other aspect of DNSSEC that appears to be a hindrance rather than an asset is that
piecemeal deployment of DNSSEC makes DNSSEC resolution harder in some respects rather than
easier. The issue here is that of the identification of trust anchors in the key chains. DNSSEC does
not permit indirection of any form, and either the zone’s immediate parent must be in a position
to countersign the zone’s public key signing key, or the zone must become a trust anchor in its
own right. Now if everyone adopted DNSSEC the task of the client would be very straight forward:
load the key signing key of the root zone of the DNS into DNSSEC and everything else will
validate indirectly via a signing chain against that single trust key. But when there is only
piecemeal deployment then a client needs to track down all the instances of local trust points
where there is no "upward" signature link back towards the root zone. This poses some quite
difficult practical questions: How does a DNS client establish a trusted relationship with all the
current DNSSEC signed zones which have no immediate DNSSEC delegation parent? How does a
DNS client become aware of zone key rollovers of these trust points? How can this process be
managed in some automated fashion outside of the DNS delegation hierarchy? What is the
potential role of intermediaries in this process? Who can a client tell between a genuine
intermediary and a malign intermediary?

And, of course, there is the ultimate issue of use of DNSSEC. It has been commonly reported that
when a browser generates a pop-up screen warning that a browser certificate has expired and
requesting whether the user wishes to proceed in any case, the common response is for the user
to simply request the application to proceed! What form of application behaviour would be
appropriate in the case of a DNSSEC validation failure? In applications that are intended for direct
interaction with a human end user, then there is always the option of a dialog box and some user
direction as to how to proceed. But DNS resolution occurs in many contexts, and it is often the
case that there is no option to enter into a user dialog as to how to proceed. Should an
application deliberately fail if DNSSEC validation fails? Would widespread use of DNSSEC be
opening up a new form of denial of service attack by deliberately corrupting a DNSSEC response
in order to trigger application failure on the end system?

On the other hand, there is the view that exposure of vulnerabilities leads inexorably to
exploitation, and leaving the DNS without the form of data protection provided by DNSSEC will
inevitably lead to more prevalent forms of exploitation. From this perspective measures to allow a
client to validate that a DNS response is authentic and complete is a valuable tool, and
deployment experience with DNSSEC should stimulate the creation of DNS zone management
tools that master the inherent complexities of this technology.

Where are we now?

DNSSEC is a standards-based mechanism that allows a client to validate DNS responses. It can
expose attempts to pass off false DNS data as authentic using an approach of incrementally
signed data and an interlocking hierarchy of signing keys to allow data verification. DNSSEC is a
backwards compatible extension of DNS, and it works entirely within the existing structure of the
DNS.

However, DNSSEC will work best when we all use it. In such a scenario of universal adoption
clients will need to be equipped with a simple single local trust key that will "unlock" the entire
key hierarchy of the DNS. If everyone uses DNSSEC we will not need to rely on the integrity and
good intentions of a bevy of intermediate crypto key brokers to assemble useful and current
lookaside lists to compensate for the lack of a complete interlocking structure of DNS zone keys.

And here "everyone" really means "everyone, from the root all the way down". Within a few days
from now the root of the DNS will be DNSSEC signed with a verifiable key. A critical part of the
scenario of universal adoption of DNSSEC, that of the apex of the key hierarchy will have been
achieved. But when and how will the other parts of the DNS follow? Some DNS registrars are

Page 10

currently offering DNSSEC DS key registration as an extra cost option for name holders. While
this provides some marginal incentive from the registration side for DNSSEC adoption, its difficult
to see the path towards universal use of DNSSEC taking off when many of the incremental costs
are loaded onto the name holder and the zone administrator while the majority of the benefits of
adoption of DNSSEC lie in the intangible area of risk mitigation on the DNS client side.

So the signing of the root of the DNS does not in and of itself cure the DNS of all known security
pitfalls. This particular root zone signing lifts the expectation that widespread adoption of DNSSEC
is a feasible ambition, but its not the complete solution by any means.

It is perhaps more realistic to view the signing of the root of the DNS as one more milestone,
albeit a very important and significant milestone, in a far longer DNSSEC path, rather than
thinking that we've reached the ultimate destination of this particular journey.

Page 11

References and Further Reading

The Code Book by Simon Singh, Anchor, ISBN: 978-0385495323, August 2000.
 A general reading background in cryptography.

Network Security: Private Communication in a Public World (2nd Edition) by Charlie

Kaufman, Radia Perlman, and Mike Speciner, Prentice-Hall, ISBN: 0-13-046019-2,
May 2002.

 A good technical book that covers hash functions, public key cryptography, digital
signatures and related security technologies.

Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd Edition) by Bruce

Schneier, Wiley, ISBN: 0-471-12845-7, 1996.
 This book still the major reference work for core security technologies. I've heard

that "RBS" still stands for "read Bruce Schneier" in some computer security circles.

DNS and BIND (5th Edition) by Cricket Liu and Paul Albitz, O'Reilly, ISBN: 978-0-596-10057-5,

2006.
 By now a venerable item on the bookshelf, this book remains the best practical

reference manual for BIND.

Internet Standards Documents and Drafts

RFC 3833 A Threat Analysis of the Domain Name System, D. Atkins, R. Austein, August

2004.
RFC 4033 DNS Security Introduction and Requirements, R. Arends et al, March 2005.
RFC 4034 Resource Records for the DNS Security Extensions, R. Arends et al, March 2005.
RFC 4035 Protocol Modifications for the DNS Security Extensions, R. Arends et al, March

2005.
RFC 5155 DNS Security (DNSSEC) Hashed Authenticated Denial of Existence, B. Laurie et al,

March 2008.

Page 12

Appendix I

Public Key Cryptography and PKIs

One of the longstanding approaches to this question of authenticity of data is that of public key
cryptography.

Communications networks support interaction at a distance. I can't touch you, see you, or hear
you, nor can you touch, see or hear me, yet we need to exchange information, or messages.
When I receive a message from you, how can I be absolutely sure that it was you who originally
sent it? How can I be assured that the message has not been tampered with? How can I be
assured that you cannot subsequently deny that you sent this message? And if the message was
intended to be a private communication between just the two of us, then how can we ensure that
no one else other than myself, the intended recipient, can read this message?

None of these objectives relating to the authenticity and secrecy of communications are
particularly novel, and the various forms of response to these rather demanding requirements
over the years form the rich and colourful history of cryptography.

A common means of assuring communications is through the use of shared secrets. If you and I
can meet in some secure location, and swap a collection of secret "keys", or cryptographic seeds,
then I can encipher my messages to you using my private enciphering key and then pass the
result into a second encipher process using your shared secret encipher key. If anyone else
intercepts the message it is intended to be unintelligible. When you receive my message you first
decipher it with your private decipher key, and then decipher the result with my shared decipher
key.

This model of secure communication using shared keys still not very useful in the real world. It is
not clear that we are ever able to actually meet and exchange keys, nor is it clear that we are
able to meet every time I want to replace my keys, or you wish to replace your keys.

Some terminology that may help at this juncture: If the key is symmetric the encipher and
decipher keys are the same. If the key is asymmetric the encipher and decipher keys will differ.
The asymmetric keys may be one way, in which case the decipher key can only decipher material
that was enciphered by the corresponding encipher key, or they may be two way in which case
either key can be used to encipher material that only the corresponding partner key can decipher.

What we would like is an asymmetric two way key pair, such that messages enciphered using one
of the keys can only be deciphered using the other key, and knowledge of one key can never lead
to deducing the value of the other key in the pair. If one key value is kept as a closely guarded
personal secret, and the other is made public knowledge, then we have managed to provide a
useful framework for secure messages.

This form of key pair is very useful. If I encipher a message using your public key, then only your
private key can decipher it. Anyone who intercepts the message cannot make any sense of it, as
they do not possess your private key. Similarly, if I encipher a message using my private key,
then only my public key can decipher it. While anyone is then able to decipher the message, the
value here lies in the ability to authenticate the fact that only I could've enciphered the message
as I am the only person who has possession of my private key.

Now, if I use my private key to encipher a message, and then encipher the result using your
public key, then I have constructed a message that only I could've generated and only you can
read. And for you to read it, you need to use your private key to decipher the message, and then

Page 13

use my public key to decipher that message to end up with the original message. In other words
such a system allows for secrecy and authenticity. Importantly, neither of us have had to use a
shared secret. I only need to have knowledge of your public key, together with my secret private
key, to construct the message, and you only need to have knowledge of my public key, together
with your secret private key, to decipher the message. We don’t have to meet to share a secret,
and I can conduct secure conversations with many different folk using my single private key and
their respective public keys.

So now we know how useful such an asymmetric two way key system can be, do such keys
actually exist?

One of the keystones to public key cryptography lies in the area of modular mathematics.
Imagine two functions, f() and g(), that are related such that one is the logical inverse of the
other. Applying function f() and then function g() to a value will result in the same original value.
Equally, the same result happens when applying g() and then f() to the value. i.e. x = f(g(x)) =
g(f(x)). For example, the pair of functions can be f(x) = x + 1 and g(x) = x - 1.

Now lets add a further constraint, namely that knowledge of one function provides no useful clue
as to the other function. Simple additive and multiplicative functions fail with this latter constraint,
as do exponentiation functions. However, an example of such a pair of functions can be
constructed using exponentiation modulo a prime value. The basic mathematical property that is
exploited by public key cryptography is given a prime integer p, and a primitive g, then (ga mod
p)b = (gab) mod p = (gb mod p)a.

Now we appear to be getting close to a desired outcome, with a pair of functions which are the
inverse of each other, but where knowledge of one function does not necessarily allow one to
deduce the inverse function. In this case the function itself can be made public, as can the
parameter for the initial transform, while the parameter for the inverse operation can be kept
secret. Using the above function of exponentiation using modular arithmetic with a prime base,
then the calculation of the inverse parameter value is similar to the calculation of prime factors.
For extremely large integer values this problem will take an exceptionally long time to compute.

Back to the private / public key pairs, as long as you are confident that the public key that you
believe is mine really is mine, and that I have been careful and never divulged my private key to
anyone else, then we can set up a secure communication. I can send you messages that are
encrypted using my private key, that only I could've generated, as only my public key 'unlocks'
the message, and I cannot subsequently repudiate that I was the author of the message. If I
apply a second encryption pass using your public key over the message once I’ve used my
private key, then only your private key can unlock this operation, resulting in a tamper-proof
message that only I could’ve sent and only you can read.

It would appear that the critical assumption behind this operation is that the public key that you
believe is my public key really is my public key, and not that of anyone else. How can you be
more confident about this assumption? This is perhaps the most significant question in any public
key cryptography system. Again if we could meet, and exchange credentials and public keys then
the problem is solved for a while, or at least until either you or I choose to re-key. But what if we
can never meet? How can we trust the authenticity of our alleged public keys?

The perennial issue in public key cryptography is that of the means of validation of the public key.
If an attacker manages to intercept all your traffic, signs responses using their own private key
and represents their public key as that of the party you thought you were communicating with,
then how are you to tell that the communication has been corrupted? In public key cryptography
the conventional answer is to find other parties who are willing to attest as to the validity of a
public key, and find yet more parties who are willing to attest as to the validity of the first group
of attesters, and so on until you find a link with a party that you feel able to trust. Assuming that
trust is a transitive quantity (always a risky assumption of course), then you can construct a
chain of trust from your trust point to the party whose public key you are attempting to validate.

Page 14

This can be generalized into an approach of using chains of knowledge and role authorities to
create chains of trust. If you and I both trust some third party, and this same third party is willing
to vouch for my public key, then you have some grounds to trust my public key, as long as you
trust this intermediary third party. This chain of trust indirection can be lengthened so that you
trust party A, who trusts party B, and so on, and I trust party Z, who trusts party Y, and so on,
then if these two chains of trust intersect, then we may have grounds to believe the public key
assertions.

There are various ways to construct such chains of trust, using strict hierarchies, using arbitrary
bilateral trust relationships, such as a "web of trust" model, or using a collective trust thresholds.
The resultant structure of trust relationships and associated credential relationships, whatever its
chosen form, is generally collectively referred to as a public key infrastructure, or PKI.

A PKI allows a set of parties, who adhere to a set of common operational practices and policies
that collectively define the PKI, the ability to validate the association of a particular entity with a
given public key value.

Page 15

Appendix II

DNSSEC Resource Records

DNSSEC introduces four additional RRs to carry security information. These resource records are:

DNSKEY:
Every DNSSEC secured DNS zone has an associated private and public key pair, as
generated by the zone's administrator. The private key remains the (closely guarded)
secret of the zone administrator. The associated public key for the zone is published in the
zone file in the form of a DNSKEY resource record.

The DNSKEY data (RDATA) consists of a Flags field, a Protocol value, an Algorithm
Identifier and a Public Key value.

Flags:

If bit 7 is set (value is 256), then the DNSKEY record holds a DNS Zone Key, and
the key can be used to verify RRSIGs that cover RRsets within the zone named as
the DNSKEY RR's owner name. If bit 15 is set (value is 1 or 257), then the DNSKEY
can be used as a Secure Entry Point (SEP). If the zone distinguishes between Zone
Signing Keys (ZSKs) and Key Signing Keys (KSKs) as part of its key management
practices, then the KSKs can be identified through the odd number value in the
Flags field

Protocol:

The only defined value for this field is 3 at present. All other values invalidate the
DNSKEY RR.

Algorithm:

This field identifies the algorithm associated with the Public Key value. The set of
defined values is held in the IANA Registry: http://www.iana.org/assignments/dns-
sec-alg-numbers/dns-sec-alg-numbers.xhtml

Public Key:

The Public Key Field holds the public key material. The format depends on the
algorithm of the key being stored.

An example DNSKEY record for the zone example.com is as follows [from RFC4034]:

 example.com. 86400 IN DNSKEY 256 3 5 (AQPSKmynfzW4kyBv015MUG2DeIQ3
 Cbl+BBZH4b/0PY1kxkmvHjcZc8no
 Kfzj31GajIQKY+5CptLr3buXA10h
 WqTkF7H6RfoRqXQeogmMHfpftf6z
 Mv1LyBUgia7za6ZEzOJBOztyvhjL
 742iU/TpPSEDhm2SNKLijfUppn1U
 aNvv4w==)

In this example, the Time to Live (TTL) value is 1 day (86400 seconds). The Flags
value is 256, indicating that this is a Zone Key. The protocol value is the constant
value 3. The next field is the public key algorithm, and the value 5 indicates
RSA/SHA1. The RR value is the Base64 encoding of the public key value.

RRSIG:
A Resource Record set (RRset) is a collection of RRs in a DNS zone that share a common
name, class and type. In DNSSEC RRsets are digitally signed by the zone administrator.

Page 16

This signature is generated by generating a hash of the RRset, then encrypting the hash
using the zone administrator's private key.

For example, a zone that contains SOA, NS, A, MX, DNSKEY resource records there are,
minimally 5 distinct RRsets, and each RRSET would have its own RRSIG Resource Record.
This implies that the granularity of DNSSEC signing is not that of an entire zone, but is
aligned to a unit of a DNS query response.

The RRSIG RR RDATA consists of a Type Covered field, an Algorithm field, a Labels field,
an Original TTL field, a Signature Expiration field, a Signature Inception field, a Key Tag,
the Signer's Name field, and the Signature field.

Type Covered:

The Type Covered field identifies the type of the RRset that is being signed by this
RRSIG record.

Algorithm:

This field identifies the algorithm used to create the signature. The set of defined
values is held in the IANA Registry: http://www.iana.org/assignments/dns-sec-alg-
numbers/dns-sec-alg-numbers.xhtml

Labels:

This field specified the number of labels in the original RRSIG RR owner name. This
field is used to determine if the answer has been synthesized from a wildcard label.

Original TTL:

The Original TTL field specifies the TTL of the covered RRset as it appears in the
authoritative zone. The Original TTL field is necessary because a caching resolver
decrements the TTL value of a cached RRset, so the TTL in a response is not
necessarily the TTL that is part of the originally signed data. In order to validate a
RRset signature, a validator requires the original TTL.

Signature Expiration,
Signature Inception:

These fields specify a validity period for the signature. The RRSIG record must not
be used before the Signature Inception Date, nor after the Signature Expiration
date.

Key Tag:

The Key Tag field in the RRSIG and DS resource record types provides a
mechanism for selecting a public key, as a combination of owner name, algorithm,
and key tag can efficiently identify a DNSKEY record. Both the RRSIG and DS
resource records have corresponding DNSKEY records. The Key Tag field in the
RRSIG and DS records can be used to help select the corresponding DNSKEY RR
efficiently when more than one candidate DNSKEY RR is available.

Signer's Name:

The Signer's Name field value identifies the owner name of the DNSKEY RR that a
validator should use to validate this signature. This is the name of the zone of the
covered RRset.

Signature:

The Signature field contains the cryptographic signature that covers both the RRset
specified by the RRSIG owner name, RRSIG class, and RRSIG Type Covered field
and the the RRSIG RDATA itself.

An example RRSIG record for the zone example.com is as follows:

 host.example.com. 86400 IN RRSIG A 5 3 86400 20030322173103 (

Page 17

 20030220173103 2642 example.com.
 oJB1W6WNGv+ldvQ3WDG0MQkg5IEhjRip8WTr
 PYGv07h108dUKGMeDPKijVCHX3DDKdfb+v6o
 B9wfuh3DTJXUAfI/M0zmO/zz8bW0Rznl8O3t
 GNazPwQKkRN20XPXV6nwwfoXmJQbsLNrLfkG
 J5D6fwFm8nN+6pBzeDQfsS3Ap3o=)

The first four fields specify the owner name, TTL, Class, and RR type (RRSIG). The
next field is the Type Covered field, and the value of "A" indicates that this is a
signing of the A RRs for "host.example.com". The next field is the signing algorithm,
and the value of 5 indicates that this is signed using RSA/SHA1. The value 3 is the
number of Labels in the original owner name. The value 86400 in the RRSIG RDATA
is the original TTL value for the covered A RRset. Te values 20030322173103 and
20030220173103 are the expiration and inception dates, indicating that the RRset
signature was created on 17:31:03 20/02/2003, and the signature expires at
17:31:03 22/03/2003. The key tag is 2642 and the signer's name is
"example.com." The remainder of the RR value is the encrypted hash of the
combined RRset and the RRSIG data.

NSEC:
The DNSKEY and RRSIG records can be used to check the authenticity of a DNS response,
where there is a DNS response. However an important aspect of the DNS is where the
query refers to a non-existent name, or a non-existent RR. In this case there is no
authoritative data to return. However, a client needs to be able to validate this "non-
existent data" response, and the DNSSEC NSEC RR is intended to allow the client to
confirm the authenticity of this response.

The NSEC RR can be considered as a "gap spanning record" for authentication purposes.
The entire zone file is ordered in a canonical form, and then NSEC RRs are added to cover
the "gap".

In response to a query, if the name does not exist in the zone file, or the RR type does not
exist for the name in question, then the NSEC record is returned as verifiable evidence
that the name, or the RR type does not exist in the authoritative zone.

For example, if the zone contained the labels "alpha" and "beta", then there would be a
NSEC RR for alpha, and the RR value of this NSEC RR would be beta, indicating that there
are no defined labels that lie between "alpha" and "beta". In addition, the NSEC record
defines the set of RR types for this domain name. Continuing the example, the NSEC
record for "alpha", would have as a value field the enumeration of the RR types that are
defined for "alpha".

The reason for this form of spanning data, as distinct from a more generic response of "no
such name", is that the latter form of response can be used in a replay attack, falsely
claiming that a name does not exist, whereas the NSEC record explicitly informs the client
of the "gap". Note also that NSEC RRs are also signed with an associated RRSIG RR.

The NSEC RR RDATA consists of the Next Authoritative Name (in canonical order), and the
set of RR types that are defined for the owner name of this RR.

An example NSEC record for the name alpha.example.com is as follows:

 alfa.example.com. 86400 IN NSEC beta.example.com. (
 A MX RRSIG NSEC TYPE1234)

In this case the name "beta.example.com." is the next authoritative name after
"alfa.example.com." in canonical order. The A, MX, RRSIG, NSEC, and TYPE1234
mnemonics indicate that there are A, MX, RRSIG, NSEC, and TYPE1234 RRsets
defined for the name "alfa.example.com."

Page 18

NSEC records can be used to enumerate the entire contents of a zone file. While DNS data
is public information, there is some concern over the implicit publication of the entire zone
in this manner. We'll come back to this with the NSEC3 RR.

DS:
The issue of validation of the zone public key remains unaddressed with the first three RR
types. An attacker would simply need to supply the DNSKEY and RRSIG data to match the
bogus RRset data in order to make the response look 'authentic'. So we are back to the
same public key validation question - how can a client validate the DNSKEY record?

One approach is for every client to maintain a local set of current public keys for each
signed DNS zone. This approach creates some formidable operational challenges, and is
simply impractical in a scenario of comprehensive adoption of DNSSEC.

The other approach is to effectively assume that DNSSEC is universally adopted, and note
that in a hierarchical delegation structure, as used by the DNS, each zone has some
authoritative knowledge about the delegated child zones.

The approach adopted by DNSSEC is to use a chain of trust within the hierarchical
delegation structure of the DNS itself. Apart from the root zone, every DNS zone has a
single unique parent zone. The Delegation Signer (DS) RR contains the hash of the public
key of the child zone. This record is signed by the parent zone's private key with a
matching RRSIG RR.

To validate a zone's DNSKEY, the associated DS, RRSIG(DS) and DNSKEY of the parent
zone is retrieved. The DS record is validated by using the DNSKEY to encrypt the
RRSIG(DS) record, and then checking that the result matches the DS record. This is the
zone public key, according to the zone's parent. This can be compared to the DNSKEY
record of the zone in question. This validation operation relies on the parent zone key, and
the question is how can this key be validated? The same process can be applied here,
using the DS RR of the parent zone. The process stops when the DNSSEC client
encounters a "trusted" key. The ideal "trust key" is the DNSKEY of the root zone, but this
assumes that all zones between the zone whose DNSKEY is being validated and the root
zone are DNSSEC signed. In other words this interlocking of zone keys only works when
DNSSEC is universally used. In the absence of such a path to the signed root zone, each
DNSSEC client has to configure their trust validation system with known trust points where
there is no parent validation.

An example DS record for the zone dskey.example.com is as follows:

 dskey.example.com. 86400 IN DS 60485 5 1 (2BB183AF5F22588179A53B0A
 98631FAD1A292118)

In this example the value 60485 is the key tag for the corresponding
"dskey.example.com." DNSKEY RR, and value 5 denotes the algorithm used by this
"dskey.example.com." DNSKEY RR. The value 1 is the algorithm used to construct
the digest, and the rest of the RDATA text is the digest of the DNSKEY owner name
concatenated with the DNSKEY RDATA, which is, in turn, the flags, protocol,
algorithm and public key public key of the DNSKEY.

NSEC3:
The zone enumeration issue is a significant problem for many DNS zones, and the zone
administrators found the zone enumeration capability of NSEC RRs to be unacceptable. By
carefully constructing a sequence of requests for non-existent names, it is possible to
construct a complete set of defined zone names and the associated set of defined RRsets
for each name, all from the DNSSEC NSEC responses.

Page 19

NSEC3 is an alternative to the NSEC RR. NSEC3 defines an ordering of the names in the
zone that uses a hashed space to report intervals of non-existent names. This makes it
extremely difficult to enumerate all the defined names in the space. However, a client can
still walk the zone, though the "walk" is in effect a random search, as each probe has to be
at some new randomly selected place in the zone, and not based on the previous NSEC3
response. For most purposes, the challenge posed by the effort to perform a complete
enumeration of the zone using this random query pattern for NSEC3 records is considered
to offer sufficient protection of the information in the zone.

Page 20

Appendix III

A DNSSEC Worked Example

The following is an example walk-through of the creation of a DNSSEC-signed zone using the
suite of tools provided wit release 9.7.1 of the DNS BIND software from ISC (http://www.isc.org).
I'll use as a guide for this worked example the "DNSSEC HOWTO" tutorial by Olaf Kolkman
(http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf)

The zone we'll sign here is dnssec.potaroo.net.

The first step is to ensure that the zone's servers are capable of supporting DNSSEC. The way to
achieve this will vary according to the DNS Server software being used.

In the case of the BIND server, the essential first step is to compile the software with openssl,
and enabling the use of DNSSEC with the "dnssec-enable yes;" directive as part of the options
specified in named.conf.

$ cat /etc/namedb/named.conf
…
options {
 …
 dnssec-enable yes;
 …
 };

The next step is key creation. Common operational practice today is to use two distinct key
functions: the key-signing keys (KSKs) as the anchor point of the chain of authority to the data
that needs to be validated, and zone-signing keys (ZSKs) that are used to sign the zone data.

In the case of BIND, this can be achieved using the dnssec-keygen command, creating a zone
signing key, then a key signing key.

$ dnssec-keygen –r /dev/random -a RSASHA1 -b 1024 -n ZONE dnssec.potaroo.net
Kdnssec.potaroo.net.+005+16482

$ dnssec-keygen –r /dev/random -f KSK -a RSASHA1 -b 1280 -n ZONE dnssec.potaroo.net
Kdnssec.potaroo.net.+005+64273

The public key parts of these key pairs are added to the zone to be signed.

$ cat dnssec.potaroo.net
;
; example dnssec-signed zone
;
$TTL 1d
$ORIGIN dnssec.potaroo.net.
@ IN SOA dns0.potaroo.netnet. gih.apnic.net. (
 2010062101 ; Serial
 3h ; Refresh
 1h ; Retry
 1w ; Expire
 3h) ; Neg. cache TTL

;
; name servers
;
 NS dns0.potaroo.net.
;
; zone contents
;
bogong A 203.133.248.6
bogong AAAA 2401:2000:6660::6

Page 21

wally A 202.158.221.222
wally AAAA 2001:388:1:4007:20e:cff:fe4b:f987
;
; zone keys
;
$include Kdnssec.potaroo.net.+005+64273.key ; KSK
$include Kdnssec.potaroo.net.+005+16482.key ; ZSK

The zone is then signed, using the dnssec-signzone command.

$ dnssec-signzone -r /dev/random -o dnssec.potaroo.net \
 –k Kdnssec.potaroo.net.+005+64273 \
 dnssec.potaroo.net Kdnssec.potaroo.net.+005+16482.key

Verifying the zone using the following algorithms: RSASHA1.
Zone signing complete:
Algorithm: RSASHA1: KSKs: 1 active, 0 stand-by, 0 revoked
 ZSKs: 1 active, 0 stand-by, 0 revoked
dnssec.potaroo.net.signed

The signed zone is as follows:

$ cat dnssec.potaroo.net.signed
; File written on Mon Jun 21 02:49:13 2010
; dnssec_signzone version 9.7.1
dnssec.potaroo.net. 86400 IN SOA dns0.potaroo.netnet. gih.apnic.net. (
 2010062101 ; serial
 10800 ; refresh (3 hours)
 3600 ; retry (1 hour)
 604800 ; expire (1 week)
 10800 ; minimum (3 hours)
)
 86400 RRSIG SOA 5 3 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 r/xnQf+ZwDEyMVCIfy1yCFNTl+0F5qWjchYm
 dr//w9wOn9H/zrSjDNs8Bqygi2Hk3XXy+AU5
 zWStag4ujMdQJD9qEsYSbXafVlI+K+s/Aypd
 xKUDVh1LJdQSGIURx7smmg1+s+rv4jNLX3ym
 JS0yeDkb3BM0fikwbevTUjrqOB8=)
 86400 NS dns0.potaroo.net.
 86400 RRSIG NS 5 3 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 IvLpRI8ck480vD71w0865NL/xB8zuRPdugHD
 MEV8IpmAN9HHQyjTIt/VPddVeFhYYGCJr9a+
 aRFdw7ySKJnJX96AOgSLRLI4yUmeA1ZeY9Rk
 u47PmqLZSYiz88KFu7tE8f8PM9cdf8PJA7+N
 bDzLjMFXFTVtwn9Vk9rbZmLsEyM=)
 10800 NSEC bogong.dnssec.potaroo.net. NS SOA RRSIG NSEC DNSKEY
 10800 RRSIG NSEC 5 3 10800 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 eNKlEj4mNN0jMQ4vVhPgQFCLXtkQ1jsjiqF6
 DYQkIlA7xCbo0dGKkdz8aHPg2aAZy19UpLpz
 hTJSart+0RMX7nVEBCgBaM0zGYdHi4ZPeKxk
 R192VneP12d04xVKA8kKmZk+yBw8AcfWMneC
 hStzqMOLlc4Rcu30LQO1zGqtHc8=)
 86400 DNSKEY 256 3 5 (
 AwEAAbGuQRpZhiQd61wcv+MmTz4AuBrPWs7f
 o7q2HiW8rwHnBOknPnI1vGkCjLDJoW8zN8jh
 /wiIpuvFtjI2/4Sz2LMPWoQUewojlzaTkYje
 I6GkeMGpvS5Fnjk6YRxfzq8+COFMWXElQLwS
 mwUZYmsoQoOafkUKLRPtbTScbdTobGfX
) ; key id = 16482
 86400 DNSKEY 257 3 5 (
 AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0
 jflAonVEc06PohnYBA8pA+v500EJrMhATLwa
 LZF86qklr+8d6SgG5f0XU8IPugM3GTCuLkkK
 mYjzw5uJANAekUMlFNfezTzKNF6OMQxG11++
 T7rbMEGmn/L3jGmVD9Ro5qpqppPUm8EBwLXS
 2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/q
 y3E=
) ; key id = 64273
 86400 RRSIG DNSKEY 5 3 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 qaQitL19IPGaEOMeDHqRy1Tz3MrLHWzc5oYz

Page 22

 298AUOOKNfpLU8aemck4pJCPoj3h2TiRVmJg
 CgJFV/sxaFALsi35sg18agTRGfDbskHGXchz
 eSJWBrepxnu3GUkKhji/lUB1Vy1ns4fXkQpf
 HPMja4kFAnhd/lRjR85tcKOlk7I=)
 86400 RRSIG DNSKEY 5 3 86400 20100721014913 (
 20100621014913 64273 dnssec.potaroo.net.
 sUynXvlfGfSNcLHiv8e8wvNHbpurhsnd+FcW
 wOwcW0tFPL5RtxcS/v5WEt21Ny1vkaw8JtSY
 26dJ72pvpav6EZJGczYzwWzFu8rLDWnB1gI8
 pzrAPri1gTNbrWJoRl61IaPq/5ip3bGVDUFM
 CSFTgIU6O2rTuD9CQn5Ox1xffxvB3ATsJHyg
 +b5tcHdYIGT7My4ELbdc0nn2BYuQAGjx0g==)
wally.dnssec.potaroo.net. 86400 IN A 202.158.221.222
 86400 RRSIG A 5 4 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 FSudndyQLU+Zr54GT6yM2dp1h/dM9OL1PmxC
 fGyY6F6n7YtUpHR/xItKGkeqy0NJ/8SfgRX0
 avGgug64vheyS1dwQdiiqlyjue6C63by8Owd
 xeSirKmYbt5/FftrzXqqBeQdE6lArNheaN4d
 l0lRT1lEC/SUBjb2w45aYzIo/cA=)
 86400 AAAA 2001:388:1:4007:20e:cff:fe4b:f987
 86400 RRSIG AAAA 5 4 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 KJartXEl6FgeIzeQ6SXeGhibmaeSygMjMC7N
 HbMEc+MHp8nMAeRvKk4J59xwzSduLHUbUTBV
 MsoviBAk7p2FoZ/JNlY5DIFFNPxoHJa6X+st
 Kprhu1SgOnYQxP0CyGiMZpcEC7RWK/MVUnQ0
 UsbJ0vHTEjGbpHP2gR/M9JLUfwc=)
 10800 NSEC dnssec.potaroo.net. A AAAA RRSIG NSEC
 10800 RRSIG NSEC 5 4 10800 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 QgAF2Bnlvf1g+rhvUi1RJ36lnT/AjL02ikBt
 Pn8DU2XvJHXjoP2mYdXwN9yM7DegteXe1YXe
 sTEFcCddSWnbX83ccanmTtr12RRac72GTSPf
 ataM3dnpw7JHrT6JbvUkXtza82lmMp0lYLWs
 ZL0X92Rxo6cG+BLrEoJrx8DG4qg=)
bogong.dnssec.potaroo.net. 86400 IN A 203.133.248.6
 86400 RRSIG A 5 4 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 HPExYnOugiydDe3VqlECPilDt9zzQe1/sbh7
 jfrVVih7FyOvMl63Nb8XL7clrXUy+m2L0XUV
 2w055Wbb5YhVRXHgKprokQsgo18BnhDzus+Q
 9zef4tGv4IT410TLUbwrsV5ciJ4THhSBjpkk
 X3Em9kX7lYK4xUh3bdnb003VosE=)
 86400 AAAA 2401:2000:6660::6
 86400 RRSIG AAAA 5 4 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 C/u5R83btmVi3Rm9PENDyUDWWYn99mFvBcMR
 DenkLDBv/+JJMBsyw+zj7Ift/GGM8KTrTBjS
 9DCeA0XVMvZMoYhzM9cAX3eFG01qxDUEi0tK
 OllPdfxCXs7JvigvZbtLTgNaejHWXvdwDAwO
 6lvMAhswVnJ+uLloiSW1uH87YI8=)
 10800 NSEC wally.dnssec.potaroo.net. A AAAA RRSIG NSEC
 10800 RRSIG NSEC 5 4 10800 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 KUDpCQ7a27Zuu8LWvK+1rMbZKdzx3AILaEWk
 ceBFI/iqHZm7BNO1tdIi25uhPzp9kla9wUf1
 Y7qVQvIJ2MBy5ZJMwgxLXvcWs+emq9kzBVBe
 5Gh52W34LCo+B2rJ+xSB6qLEVjbNnr4tancb
 t4CsezFvupSVU6mBQC0NsWiTeIM=)

The signed zone is added to the set of served zones, and the BIND server configuration is
reloaded.

$ tail -5 named.conf

zone "dnssec.potaroo.net" {
 type master;
 file "master/dnssec.potaroo.net.db" ;
 };

$ kill –HUP `cat /var/run/named/pid`

The KSK is added to the set of local trust keys for a DNSSEC-aware resolver:

$ cat named.conf

Page 23

…
trusted-keys {
…
"dnssec.potaroo.net." 257 3 5
"AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0jflAonVEc06PohnYBA8pA+v500EJrMhATLwaLZF86qklr+8d
6SgG5f0XU8IPugM3GTCuLkkKmYjzw5uJANAekUMlFNfezTzKNF6OMQxG11++T7rbMEGmn/L3jGmVD9Ro5qpqp
pPUm8EBwLXS2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/qy3E=";
…
};

This resolver can be queried:

$ dig +dnssec +multiline DNSKEY dnssec.potaroo.net

; <<>> DiG 9.7.1 <<>> +dnssec +multiline DNSKEY dnssec.potaroo.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42734
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;dnssec.potaroo.net. IN DNSKEY

;; ANSWER SECTION:
dnssec.potaroo.net. 86400 IN DNSKEY 256 3 5 (
 AwEAAbGuQRpZhiQd61wcv+MmTz4AuBrPWs7fo7q2HiW8
 rwHnBOknPnI1vGkCjLDJoW8zN8jh/wiIpuvFtjI2/4Sz
 2LMPWoQUewojlzaTkYjeI6GkeMGpvS5Fnjk6YRxfzq8+
 COFMWXElQLwSmwUZYmsoQoOafkUKLRPtbTScbdTobGfX
) ; key id = 16482
dnssec.potaroo.net. 86400 IN DNSKEY 257 3 5 (
 AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0jflAonVE
 c06PohnYBA8pA+v500EJrMhATLwaLZF86qklr+8d6SgG
 5f0XU8IPugM3GTCuLkkKmYjzw5uJANAekUMlFNfezTzK
 NF6OMQxG11++T7rbMEGmn/L3jGmVD9Ro5qpqppPUm8EB
 wLXS2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/qy3E=
) ; key id = 64273
dnssec.potaroo.net. 86400 IN RRSIG DNSKEY 5 3 86400 20100721014913 (
 20100621014913 16482 dnssec.potaroo.net.
 qaQitL19IPGaEOMeDHqRy1Tz3MrLHWzc5oYz298AUOOK
 NfpLU8aemck4pJCPoj3h2TiRVmJgCgJFV/sxaFALsi35
 sg18agTRGfDbskHGXchzeSJWBrepxnu3GUkKhji/lUB1
 Vy1ns4fXkQpfHPMja4kFAnhd/lRjR85tcKOlk7I=)
dnssec.potaroo.net. 86400 IN RRSIG DNSKEY 5 3 86400 20100721014913 (
 20100621014913 64273 dnssec.potaroo.net.
 sUynXvlfGfSNcLHiv8e8wvNHbpurhsnd+FcWwOwcW0tF
 PL5RtxcS/v5WEt21Ny1vkaw8JtSY26dJ72pvpav6EZJG
 czYzwWzFu8rLDWnB1gI8pzrAPri1gTNbrWJoRl61IaPq
 /5ip3bGVDUFMCSFTgIU6O2rTuD9CQn5Ox1xffxvB3ATs
 JHyg+b5tcHdYIGT7My4ELbdc0nn2BYuQAGjx0g==)

;; Query time: 205 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Mon Jun 21 07:30:11 2010
;; MSG SIZE rcvd: 763

The "ad" flag in the response indicates that the response was authenticated using DNSSEC. The
local resolver's log also shows this local validation result:

$ more named-dnssec.log

21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net
DNSKEY: starting
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net
DNSKEY: attempting positive response validation
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net
DNSKEY: verify rdataset (keyid=64273): success
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net
DNSKEY: signed by trusted key; marking as secure

Page 24

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network Information
Centre, nor those of the Internet Society.

Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the Asia
Pacific region. He has been closely involved with the development of the Internet for many years, particularly
within Australia, where he was responsible for the initial build of the Internet within the Australian academic and
research sector. He is author of a number of Internet-related books, and was a member of the Internet
Architecture Board from 1999 until 2005, and served on the Board of Trustees of the Internet Society from 1992
until 2001.

www.potaroo.net

