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DNSSEC – A Review 

After many years, the root of the DNS is evidently going to be signed in the coming weeks using 
DNSSEC with a verifiable root key, or at least that’s the plan if the National Telecommunications 
and Information Administration of the United States Federal Department of Commerce follow 
through with their proposed actions that have been foreshadowed in the Federal Register of the 
United States bureaucracy of Wednesday, 9 June 2010. It will all happen by July 15 2010, if all 
happens in accordance with the plans outlined in that notice, and on that date we should have a 
DNSSEC-signed root of the DNS. Given that this is an event that has taken more than fifteen 
years to come to fruition, I thought it might to useful to have another look at DNSSEC to mark 
this long anticipated milestone. 
 
 

 
 
Figure 1 The View of DNSSEC in 2006 – T-Shirt by Olaf Kolkman 
 

DNSSEC and the DNS 

In looking at the general topic of trust and the Internet, one of the more critical parts of the 
Internet's infrastructure that appears to be a central anchor point of trust is that of the Domain 
Name Service, or DNS. The mapping of “named” service points to the protocol-level address is a 
function that every Internet user relies upon, one way or another. While almost every single user 
transaction deals with names, such as www.potaroo.net, every single network packet has to deal 
with protocol level addresses, such as 203.119.0.116 or 2401:2000:6660::2. 
 
Given that every single Internet user and every Internet service provider ultimately relies on the 
integrity of the DNS, then how is the DNS itself protected against malicious attack? If the DNS is 
the cornerstone upon which the integrity of operation of all other user level Internet applications 
are constructed, then how can we be assured that the DNS itself is working as intended? 
 
The ability to corrupt the operation of the DNS is one of the more effective ways of corrupting the 
integrity of Internet-based applications and services. If a malicious attacker can, in some fashion, 
alter a DNS response without being detected, then a large set of attack vectors are exposed. 
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For example, an altered DNS response may cause some users of your service to believe that your 
online services are associated with the addresses of the attacker's servers. For those unfortunate 
users who attempt to communicate with your servers, their traffic will be redirected by the DNS 
to communicate with the attacker's servers. While at one level this can appear to be simply an 
annoying piece of vandalism, when the same form of attack is directed against financial services 
or critical public emergency services or other forms of valuable or critical service elements, then 
this is an extremely serious form of attack with serious financial or even political implications. 
Web servers, email, VOIP services, and indeed any service where the initial rendezvous is made 
through the DNS is vulnerable to such forms of attack on the DNS, and most services do indeed 
rely on the DNS. 
 
The DNS was designed as a widely distributed database to enable it to scale and to perform 
extremely efficiently under a wide variety of operational conditions. There are, unfortunately, 
many ways in which the Internet's name resolution function is vulnerable to attack, and it 
appears that the DNS has been the subject of many forms of attack over the years. However, the 
purpose of this article is not intended to be a collection of recipes on how to attack the DNS, or 
even a description of the weaknesses of DNS. RFC 3833 contains an excellent summary of the 
vulnerabilities in the DNS [RFC3833].  
 

 
Figure 2 Potential Vulnerabilities in the DNS 
 
The more useful question here is whether it is possible to strengthen the DNS such that such 
efforts to corrupt the DNS are detectable. The DNS is a query-response application, and the 
critical question in terms of strengthening its operation is whether it is possible to authenticate 
the responses provided by the DNS. The question of "securing" the DNS becomes one of 
establishing whether it is possible to add some form of credentials to DNS responses that would 
allow the client to check that the data provided in the response corresponds exactly to the data 
as it was entered into the authoritative zone. The client would like to validate that they have 
received the entirety of the answer, and that no part has been altered in any way. 
 
The way DNSSEC achieves this is through the use of public key cryptography and digital signing 
of DNS data. When data is entered into the DNS via the original zone data, the zone data is 
signed by the zone administrator. When the client performs a DNS query, the signature is 
provided to the client as part of the DNS response, and the client can verify the signature and in 
so doing be assured that the response is an accurate representation of the original zone data. 
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Figure 3 DNSSEC and the operation of the DNS 
 

What is DNSSEC? 

In answering this question, it may first help to look at what DNSSEC is not.  
 
DNSSEC is not a security panacea. It is not a robust defence against all forms of attack against 
DNS servers and clients. DNSSEC is not an exercise in encryption of DNS data. Within the scope 
of DNSSEC, DNS protocol interactions remain in the clear, and DNS transactions can be prone to 
eavesdropping with DNSSEC. DNSSEC does not attempt to construct secured private DNS realms 
that are protected from third party inspection. Encryption of DNS exchanges using mechanisms 
such as TSIG for data protection between DNS servers (see RFC 2845), address a different set of 
functional objectives than that of DNSSEC. DNSSEC does not support secure communications 
channels between clients and resolvers, nor between primary and secondary servers of a domain. 
DNSSEC does not prevent various forms of DNS denial of service attacks, nor does it prevent the 
DNS being used as part of an amplification attack. 
 
The DNSSEC objective is a tightly focused objective of allowing clients to authenticate the 
contents of a DNS response. It is focused on allowing a client to detect various forms of "man-in-
the-middle" attacks where the attacker has modified the original information that is in the 
authoritative zone file. It does not prevent the possibility of such an attempt to manipulate a DNS 
response, but it is intended to allow a client to detect that such an alteration of a DNS response 
has occurred. Again this is not a universal level of protect, but one that is qualified such that the 
detection is possible in those cases where evidence that the DNS zone from which the DNS 
response has been assembled has been DNSSEC-signed is still visible to the client. 
 
DNSSEC is a specification of an extension to the DNS through the definition of additional DNS 
Resource Records (RRs) that can be used by DNS clients to validate the authenticity of a DNS 
response, the data integrity of the DNS response. In addition, where the DNS response indicates 
no such name, or no such resource type exists, DNSSEC allows for this negative information to 
also be authenticated by the client. In other words, if an attacker attempts to create a DNS 
response that substantively differs from the original authentic response in some fashion, and the 
attacker then attempts to pass the response off as an authentic response, then a DNSSEC-aware 
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client should be able to detect the fact that the response has been altered and that the response 
does not correspond to the authoritative DNS information for that zone.   
 
A succinct summary of the problem that DNSSEC is intended to address is that DNSSEC is 
intended to protect DNS clients from believing forged DNS data.  
 
The way this is achieved in DNSSEC is by using public key cryptography (see Appendix I). The 
DNS zone administrator digitally signs every Resource Record set (RRset) in the zone, and 
publishing this collection of digital signatures, along with the zone administrator's public key, in 
the DNS itself. DNSSEC does not make use of Digital certificates or any other form of external 
credentials. The intention with DNSSEC is to publish all the necessary security credentials in the 
DNS itself, and use the DNS for both the storage of  such security credentials and the means of 
distribution of this information. 
 
In checking a DNS response for a given RRset, a DNSSEC-aware client can retrieve the related 
digital signature RRs and then check this signature using the zone administrator's published 
public key against the locally calculated hash value of the RRset. The client can then validate the 
zone administrator's public key using a hierarchical signature path that leads to a point of trust. If 
all these checks succeed than the client has some confidence that the DNS response was 
complete and authentic. 
 
To achieve its objective, DNSSEC defines a number of new DNS RRs, namely the DNSKEY, RRSIG, 
NSEC and DS RRs (see Appendix II). DNSSEC also introduces two new message header bits: 
checking Disabled (CD) and Authenticated Data (AD), and it uses functions provided by Extended 
DNS mechanisms (EDNS). This creates a backwards compatible extension to DNS.   
 
Implementing DNSSEC implies different actions for different roles. For a DNS zone administrator, 
DNSSEC is essentially the process of signing all RRsets with a private key, publishing these 
signatures for each RRset in the zone file, and also publishing the public key in the zone file. In 
addition the zone administrator has to ensure that the zone’s public key is signed by the parent 
zone administrator and published in the parent's zone. For a parent DNS zone administrator 
DNSSEC also includes the task of validation of the DNSSEC zone's public keys of the zone's 
children, signing over them using the zone's private key, and publishing this material as RRs in 
this DNS zone.  For a DNS client DNSSEC is the ability to perform a number of additional checks 
on a DNS response that can result in greater trust in the authenticity and accuracy of the DNS 
response. And for the DNS itself, DNSSEC essentially represents a number of additional Resource 
Records that hold digital signatures of DNS information, as well as key information. 
 
The technical specifications for DNSSEC are in RFC4033 (Security Requirements), RFC4034 
(DNSSEC Resource Record Types) and RFC4035 (DNS Protocol Modifications). Further 
specifications related to the NSEC RR are in RFC4470 (Epsilon Functions for NSEC responses) and  
RFC5155 (NSEC3 Resource Record). RFC4641 describes DNSSEC operational practices. 
 

How does DNSSEC work? 

When requested by the client in the DNS query, the authoritative DNS server will add additional 
DNSSEC data to the DNS responses. This additional data is, in effect the digital signature of the 
DNS data contained in the response. This is intended to allow the DNS client to authenticate the 
DNS response. The way in which this is done is by the addition of a RRSIG part to the additional 
data of the DNS response. If there is no authoritative DNS data to respond to the query, such as 
when no such domain name exists, then the DNS response will include an NSEC RR response, 
plus its accompanying RRSIG record. In addition to an RRSIG response covering the RRset 
records in the answer section of the DNS response, there is also an RRSIG response covering the 
records in the authority section and one or more RRSIG responses relating to records in the 
additional response section. 
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The first task that the DNSSEC-aware client should perform is to use the RRSIG data to check the 
validity of the DNS response. To do this the client can take the RRset response and use the 
algorithm referenced in the RRSIG record to generate the hash of the data. The second task is to 
take the RRSIG value and encrypt it using the DNSKEY public key. To do this the client must also 
have at hand the DNSKEY record for the zone. This will result in decrypting the hash in the RRSIG 
record. The results of these two operations are now compared. If the DNS response is authentic 
then the hash of the RRset data will match the decrypted RRSIG hash value. 
 
The DNSKEY RR would normally be provided as part of the additional section of a DNSSEC 
response. If the client has not already validated the DNSKEY within some locally defined period, 
then the client should also validate the DNSKEY value.  
 
The DNSKEY may match a local trust anchor, in which the DNSKEY can be accepted without 
further tests. Otherwise the DNSKEY RR will need to be validated.  
 
This validation procedure entails verifying the RRSIG record associated with the DNSKEY RR, 
using the same procedure as described above for other RRs. However domain zone key validation 
also entails the construction of a trust chain back to a trust anchor point. If this domain key is not 
already a trust anchor then the client needs to query the parent zone for the DS record of the 
child zone. This DS query should return both a public key value as the value of the DS RR, an 
RRSIG RR associated with the DS RR, and a DNSKEY RR for the parent zone. The DS RR can be 
validated against the RRSIG RR, using the public key contained in the DNSKEY RR. This public key, 
in turn, must be validated. This iterative process constructs a trust chain that, hopefully, leads 
back to a locally configured trust anchor. At that point the DNS response can be considered to be 
validated. 
 

 
 

 
 
Figure 4 – DNSSEC validation framework 
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DNSSEC: For and Against 

There are some very useful properties of this DNSSEC approach to the use of public key 
cryptography to the DNS. 
 

Record Level Granularity  
Signing is at the granularity of a DNS response, while keys are at the level of granularity 
of a domain zone. While an entire DNS zone has a single key pair, the entire zone file is 
not signed - individual RRsets are signed. When thinking of DNS as a transaction protocol 
this makes a lot of sense, as the major use of DNS is in presenting queries that are 
answered by DNS RRset responses. A signed zone would imply that authentication of a 
single response would entail an entire zone transfer, which is a preposterous overhead for 
a simple DNS transaction!  
 
The RRset signing model also implies that incremental changes to a DNS zone file entail 
generating new signature objects (RRSIG RRs) only for those RRsets that have been 
altered. Again, this minimizes the amount of overhead in key generation in response to a 
single change to the zone file. 

 

Signed "No Data" Responses 
In DNS the "no such domain" and “no such resource record type” responses to queries are 
as important as returned information. Of course it is not possible to add authentication 
information to such non-responses in the form of a detached signature, and DNSSEC 
addresses this problem by generating "gap" NSEC records as a means of authenticating 
these DNS "gaps". This concept of using synthetic information as material to assist in 
authentication of a non-response is an interesting approach which is not commonly seen in 
commonly used secure applications. 

 

Validation exploits the DNS delegation hierarchy.  
Validation of the public keys in a zone exploits the DNS delegation model and uses the 
parent as the means of validating a child zone. It should be noted that it is not the identity 
nor the bona fides of the zone administrator that is at issue here. The implication is that 
conventional X.509 public key certificates are not of direct relevance to this application, as 
the task is not to validate that the public key “belongs” to a particular individual, or a 
particular role, nor is the private key holder being granted a particular authority. The 
objective of the credential structure in DNSSEC is to ascertain that a particular public key 
is associated with a given zone. 

 
The manner of confirming that association is to rely on the hierarchical structure of 
delegation within the DNS, and to use the DNS delegation parent to confirm the public key 
value of the child zone. In an environment of ubiquitous use of DNSSEC, with a signed 
DNS root, DNSSEC clients would need to maintain just one public key value, that of the 
DNS root zone. All other DNSSEC zone keys can be verified by a process of backward 
chaining up to the root zone, following the sequence of DNSKEY and DS records up to the 
root zone key.  

 
 
DNSSEC is not without some additional issues that change the nature of the DNS and have some 
significant implications for it’s performance. 
 

Larger Zone Files 
The zone file increases in size due to the addition of the additional DNSEC records. The 
major contributors here are the NSEC and RRSIG records, and the zone size will increase. 
By what factor depends on what is in the zone file of course, but increases by a factor of 
up to seven in size have been noted in DNSSEC literature. 
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Larger Responses 
The average size of a DNS response message increases, due to the additional signature 
records that are attached to the response. Where the message size exceeds the maximum 
UDP message size it will need to set the truncated response flag, causing the query to fall 
back to the use of TCP, with its attendant higher overheads in terms of client and server 
state, and the number of network messages to manage the TCP connection.  
 
The behaviour of a small UDP query generating a large response has been used as a 
denial-of-service amplifier by using a spoofed source address in the DNS query. DNS with 
DNSSEC makes the DNS an ideal vehicle for this form of denial-of-service attack. 

More Queries 
The number of DNS transactions increases due to the requirement to perform additional 
queries for zone public key records when constructing trust chains. Even though caching 
has some potential to reduce much of this traffic, there is still an additional query load that 
must be considered with DNSSEC.  

Higher Client Overhead 
The client has to spend additional time validating the signed data and validating the public 
key, potentially slowing the resolution process. 

Higher Server Overhead 
The server has to generate new signatures over RRset changes, which places an 
incremental load on the server function. 

Increased Potential for Zone Administration Errors  
DNSSEC is complex to implement, and trivial zone configuration errors or expired keys can 
cause serious problems for a DNSSEC-aware resolver. Key rollover of the KSK presents 
some challenges, particularly when the parent zone is not DNSSEC-signed. 

  
 

The use of absolute times in the RRSIG records imposes a new regime of some level of 
time synchronization across the DNS as part of the signature validation process. Previously, 
DNS had only a concept of elapsed time, whereas in DNSSEC if a client has a skewed 
concept of time it may believe that expired signatures are still valid. If a zone 
administrator has a skewed time then the signature validity timestamps it generates in its 
RRSIG records would be incorrect.  

 

Zone Enumeration with NSEC RRs 
Perhaps one of the more significant issues lies in the use of the NSEC response. With 
judicious use of the NSEC response it is possible to reconstruct the contents of a domain 
zone file, analogous to the outcome of a DNS list operation. With the significant business 
interests in the DNS today, and the observation that there is more revenue earned in the 
name registration business through registration of "unused" names than earned from 
"used" names, this implicit zone listing capability is regarded by some zone operators as 
an exposure of commercially sensitive information that would normally remain private.  
 
One view of this exposure is to factor in the observation that with NSEC signature 
coverage of a zone the zone data is then secure, but public. The other issue exposed with 
the NSEC response is the behaviour of “split-domain” DNS servers, which will respond with 
authoritative data to some (presumably trusted) parties, while providing a “no such 
domain” form of denial response to all others. The vulnerability here is that if the server 
synthesises a NSEC response to an untrusted party, an attacker could subsequently replay 
this response to a trusted party, generating a form of denial of service attack. These pre-
signed NSEC records expose a considerable amount of information about the zone 
contents, and this, in turn, has been cited as one of the significant impediments to 
DNSSEC deployment. 

 
The current response to this issue is to use a hash function in the ordering of records the 
development of an alternate response to the “no data” condition that would still allow the 
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zone administrator to sign the response, but would not necessarily reveal the enumeration 
of the entire zone as a side effect. This approach, currently work in progress within the 
IETF, proposes a different RR response, namely the NSEC3 record. 

 
Rather than using the name order within a zone file and explicitly enumerating the next 
name in the NSEC record, the NSEC3 approach uses a hash algorithm on the names within 
a zone, and then uses a hashed ordering of these names. The next name references in the 
NSEC3 RR is the next name corresponding to this hashed name order. The objective of 
this approach is to increase the cost of zone enumeration using NSEC3 responses. 

 

DNSSEC Deployment 

 
Deployment of DNSSEC has been quite piecemeal and it has yet to gather any significant 
momentum so far. There are a number of reasons why this is the case. 
 
The first, and perhaps the hardest, is that the Internet of today is now a very large system, and 
every large system tends to resist change. Any change, and particularly a change to a technology 
that is as universally pervasive as the DNS, will take time, and the larger the realm of 
deployment, the longer the period to get to a critical mass of deployment. 
 
There are a few other issues with DNSSEC that hinder deployment. One is that the economics of 
DNS deployment do not work directly in favour of DNSSEC. It would be good if a security 
measure could create outcomes that were simpler, cheaper and more robust, as well as creating 
mechanisms to deflect various forms of hostile attack. DNSSEC cannot readily be described in 
such terms. There are additional tasks placed on the zone administrator, additional load placed on 
DNS servers, additional responsibilities placed on DNS clients, and the potential for additional 
tasks to be undertaken by applications. Even in such a situation, deployment proceeds where the 
cost of the measure is offset by direct benefits achieved through the measure. Here it is not clear 
that there is a cost and benefit equation at work for each player. The DNS zone administrator 
inherits a significantly more complex issue, for the existing issues of securing the DNS servers 
and ensuring that they can resist various forms of attack do not go away with DNSSEC, and on 
top of that DNS places an additional workload of key management and signature generation for 
each change to the zone. The benefits that arise from this additional cost in zone administration 
are not readily apparent to the DNS zone administrator or to the DNS server system 
administrator. The initial benefit would appear to accrue to the client, whose additional work in 
validating the DNSSEC responses would lead to a greater level of confidence in the accuracy in 
the DNS. When cost and benefit are decoupled to such an extent there is often significant 
impediment to widespread deployment as a consequence. 
 
It is also possible that an indirect benefit of DNSSEC is that the DNS is able to be used as a 
relatively efficient means of distribution of authenticable data. There is a well established and 
high value certificate-based reputation industry. One potential use of DNSSEC is to provide an 
alternate distribution and verification framework for short data items, as a potentially lower cost 
alternative to certificate-based frameworks. However the history of the DNS is full of inventive 
proposals to extend the DNS in various ways, and the number of successful and widely adopted 
extensions is far lower than the number of proposals, so the likelihood of DNSSEC assuming a 
broader role in service security and integrity and superseding much of the role currently 
undertaken by certificate-based frameworks is at best a remote possibility. 
 
The other part of the consideration of the economics of DNSSEC deployment is the observation 
that all security measures are ultimately an exercise in risk evaluation, and the cost of 
deployment of the measure has to be evaluated against the practical probability of attack and the 
potential consequent costs of the attack. DNS cache poisoning is not a prevalent form of attack in 
current DNS implementations, and DNS resolvers are relatively adept at resisting various forms of 
cache poisoning. That does not imply that the DNS without DNSSEC is perfect in this respect, 
indeed far from it, but it does make the business case for deployment of DNSSEC one that 
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requires some considerable thought. However it should also be remembered that the costs of a 
successful attack in the DNS are potentially quite considerable. 
 
The other aspect of DNSSEC that appears to be a hindrance rather than an asset is that 
piecemeal deployment of DNSSEC makes DNSSEC resolution harder in some respects rather than 
easier. The issue here is that of the identification of trust anchors in the key chains. DNSSEC does 
not permit indirection of any form, and either the zone’s immediate parent must be in a position 
to countersign the zone’s public key signing key, or the zone must become a trust anchor in its 
own right. Now if everyone adopted DNSSEC the task of the client would be very straight forward: 
load the key signing key of the root zone of the DNS into DNSSEC and everything else will 
validate indirectly via a signing chain against that single trust key. But when there is only 
piecemeal deployment then a client needs to track down all the instances of local trust points 
where there is no "upward" signature link back towards the root zone. This poses some quite 
difficult practical questions: How does a DNS client establish a trusted relationship with all the 
current DNSSEC signed zones which have no immediate DNSSEC delegation parent? How does a 
DNS client become aware of zone key rollovers of these trust points? How can this process be 
managed in some automated fashion outside of the DNS delegation hierarchy? What is the 
potential role of intermediaries in this process? Who can a client tell between a genuine 
intermediary and a malign intermediary? 
 
And, of course, there is the ultimate issue of use of DNSSEC. It has been commonly reported that 
when a browser generates a pop-up screen warning that a browser certificate has expired and 
requesting whether the user wishes to proceed in any case, the common response is for the user 
to simply request the application to proceed! What form of application behaviour would be 
appropriate in the case of a DNSSEC validation failure? In applications that are intended for direct 
interaction with a human end user, then there is always the option of a dialog box and some user 
direction as to how to proceed. But DNS resolution occurs in many contexts, and it is often the 
case that there is no option to enter into a user dialog as to how to proceed. Should an 
application deliberately fail if DNSSEC validation fails? Would widespread use of DNSSEC be 
opening up a new form of denial of service attack by deliberately corrupting a DNSSEC response 
in order to trigger application failure on the end system? 
 
On the other hand, there is the view that exposure of vulnerabilities leads inexorably to 
exploitation, and leaving the DNS without the form of data protection provided by DNSSEC will 
inevitably lead to more prevalent forms of exploitation. From this perspective measures to allow a 
client to validate that a DNS response is authentic and complete is a valuable tool, and 
deployment experience with DNSSEC should stimulate the creation of DNS zone management 
tools that master the inherent complexities of this technology. 
 

Where are we now? 

DNSSEC is a standards-based mechanism that allows a client to validate DNS responses. It can 
expose attempts to pass off false DNS data as authentic using an approach of incrementally 
signed data and an interlocking hierarchy of signing keys to allow data verification. DNSSEC is a 
backwards compatible extension of DNS, and it works entirely within the existing structure of the 
DNS. 
 
However, DNSSEC will work best when we all use it. In such a scenario of universal adoption 
clients will need to be equipped with a simple single local trust key that will "unlock" the entire 
key hierarchy of the DNS. If everyone uses DNSSEC we will not need to rely on the integrity and 
good intentions of a bevy of intermediate crypto key brokers to assemble useful and current 
lookaside lists to compensate for the lack of a complete interlocking structure of DNS zone keys. 
 
And here "everyone" really means "everyone, from the root all the way down".  Within a few days 
from now the root of the DNS will be DNSSEC signed with a verifiable key. A critical part of the 
scenario of universal adoption of DNSSEC, that of the apex of the key hierarchy will have been 
achieved. But when and how will the other parts of the DNS follow? Some DNS registrars are 
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currently offering DNSSEC DS key registration as an extra cost option for name holders. While 
this provides some marginal incentive from the registration side for DNSSEC adoption, its difficult 
to see the path towards universal use of DNSSEC taking off when many of the incremental costs 
are loaded onto the name holder and the zone administrator while the majority of the benefits of 
adoption of DNSSEC lie in the intangible area of risk mitigation on the DNS client side. 
 
So the signing of the root of the DNS does not in and of itself cure the DNS of all known security 
pitfalls. This particular root zone signing lifts the expectation that widespread adoption of DNSSEC 
is a feasible ambition, but its not the complete solution by any means. 
 
It is perhaps more realistic to view the signing of the root of the DNS as one more milestone, 
albeit a very important and significant milestone, in a far longer DNSSEC path, rather than 
thinking that we've reached the ultimate destination of this particular journey. 
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Appendix I 

Public Key Cryptography and PKIs 

 
One of the longstanding approaches to this question of authenticity of data is that of public key 
cryptography. 
 
Communications networks support interaction at a distance. I can't touch you, see you, or hear 
you, nor can you touch, see or hear me, yet we need to exchange information, or messages. 
When I receive a message from you, how can I be absolutely sure that it was you who originally 
sent it? How can I be assured that the message has not been tampered with? How can I be 
assured that you cannot subsequently deny that you sent this message? And if the message was 
intended to be a private communication between just the two of us, then how can we ensure that 
no one else other than myself, the intended recipient, can read this message?  
 
None of these objectives relating to the authenticity and secrecy of communications are 
particularly novel, and the various forms of response to these rather demanding requirements 
over the years form the rich and colourful history of cryptography. 
     
A common means of assuring communications is through the use of shared secrets. If you and I 
can meet in some secure location, and swap a collection of secret "keys", or cryptographic seeds, 
then I can encipher my messages to you using my private enciphering key and then pass the 
result into a second encipher process using your shared secret encipher key. If anyone else 
intercepts the message it is intended to be unintelligible. When you receive my message you first 
decipher it with your private decipher key, and then decipher the result with my shared decipher 
key. 
 
This model of secure communication using shared keys still not very useful in the real world. It is 
not clear that we are ever able to actually meet and exchange keys, nor is it clear that we are 
able to meet every time I want to replace my keys, or you wish to replace your keys.  
 
Some terminology that may help at this juncture: If the key is symmetric the encipher and 
decipher keys are the same. If the key is asymmetric the encipher and decipher keys will differ. 
The asymmetric keys may be one way, in which case the decipher key can only decipher material 
that was enciphered by the corresponding encipher key, or they may be two way in which case 
either key can be used to encipher material that only the corresponding partner key can decipher. 
 
What we would like is an asymmetric two way key pair, such that messages enciphered using one 
of the keys can only be deciphered using the other key, and knowledge of one key can never lead 
to deducing the value of the other key in the pair. If one key value is kept as a closely guarded 
personal secret, and the other is made public knowledge, then we have managed to provide a 
useful framework for secure messages. 
 
This form of key pair is very useful. If I encipher a message using your public key, then only your 
private key can decipher it. Anyone who intercepts the message cannot make any sense of it, as 
they do not possess your private key. Similarly, if I encipher a message using my private key, 
then only my public key can decipher it. While anyone is then able to decipher the message, the 
value here lies in the ability to authenticate the fact that only I could've enciphered the message 
as I am the only person who has possession of my private key.  
 
Now, if I use my private key to encipher a message, and then encipher the result using your 
public key, then I have constructed a message that only I could've generated and only you can 
read. And for you to read it, you need to use your private key to decipher the message, and then 



 

Page 13 
 
 

use my public key to decipher that message to end up with the original message. In other words 
such a system allows for secrecy and authenticity. Importantly, neither of us have had to use a 
shared secret. I only need to have knowledge of your public key, together with my secret private 
key, to construct the message, and you only need to have knowledge of my public key, together 
with your secret private key, to decipher the message. We don’t have to meet to share a secret, 
and I can conduct secure conversations with many different folk using my single private key and 
their respective public keys. 
 
So now we know how useful such an asymmetric two way key system can be, do such keys 
actually exist?  
 
One of the keystones to public key cryptography lies in the area of modular mathematics. 
Imagine two functions, f() and g(), that are related such that one is the logical inverse of the 
other. Applying function f() and then function g() to a value will result in the same original value. 
Equally, the same result happens when applying g() and then f() to the value. i.e. x = f(g(x)) = 
g(f(x)). For example, the pair of functions can be f(x) = x + 1 and g(x) = x - 1.  
 
Now lets add a further constraint, namely that knowledge of one function provides no useful clue 
as to the other function. Simple additive and multiplicative functions fail with this latter constraint, 
as do exponentiation functions. However, an example of such a pair of functions can be 
constructed using exponentiation modulo a prime value. The basic mathematical property that is 
exploited by public key cryptography is given a prime integer p, and a primitive g, then (ga mod 
p)b = (gab) mod p = (gb mod p)a.  
 
Now we appear to be getting close to a desired outcome, with a pair of functions which are the 
inverse of each other, but where knowledge of one function does not necessarily allow one to 
deduce the inverse function. In this case the function itself can be made public, as can the 
parameter for the initial transform, while the parameter for the inverse operation can be kept 
secret. Using the above function of exponentiation using modular arithmetic with a prime base, 
then the calculation of the inverse parameter value is similar to the calculation of prime factors. 
For extremely large integer values this problem will take an exceptionally long time to compute. 
 
Back to the private / public key pairs, as long as you are confident that the public key that you 
believe is mine really is mine, and that I have been careful and never divulged my private key to 
anyone else, then we can set up a secure communication. I can send you messages that are 
encrypted using my private key, that only I could've generated, as only my public key 'unlocks' 
the message, and I cannot subsequently repudiate that I was the author of the message. If I 
apply a second encryption pass using your public key over the message once I’ve used my 
private key, then only your private key can unlock this operation, resulting in a tamper-proof 
message that only I could’ve sent and only you can read.  
 
It would appear that the critical assumption behind this operation is that the public key that you 
believe is my public key really is my public key, and not that of anyone else. How can you be 
more confident about this assumption? This is perhaps the most significant question in any public 
key cryptography system. Again if we could meet, and exchange credentials and public keys then 
the problem is solved for a while, or at least until either you or I choose to re-key. But what if we 
can never meet? How can we trust the authenticity of our alleged public keys? 
 
The perennial issue in public key cryptography is that of the means of validation of the public key. 
If an attacker manages to intercept all your traffic, signs responses using their own private key 
and represents their public key as that of the party you thought you were communicating with, 
then how are you to tell that the communication has been corrupted? In public key cryptography 
the conventional answer is to find other parties who are willing to attest as to the validity of a 
public key, and find yet more parties who are willing to attest as to the validity of the first group 
of attesters, and so on until you find a link with a party that you feel able to trust. Assuming that 
trust is a transitive quantity (always a risky assumption of course), then you can construct a 
chain of trust from your trust point to the party whose public key you are attempting to validate. 
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This can be generalized into an approach of using chains of knowledge and role authorities to 
create chains of trust. If you and I both trust some third party, and this same third party is willing 
to vouch for my public key, then you have some grounds to trust my public key, as long as you 
trust this intermediary third party.  This chain of trust indirection can be lengthened so that you 
trust party A, who trusts party B, and so on, and I trust party Z, who trusts party Y, and so on, 
then if these two chains of trust intersect, then we may have grounds to believe the public key 
assertions.  
 
There are various ways to construct such chains of trust, using strict hierarchies, using arbitrary 
bilateral trust relationships, such as a "web of trust" model, or using a collective trust thresholds. 
The resultant structure of trust relationships and associated credential relationships, whatever its 
chosen form, is generally collectively referred to as a public key infrastructure, or PKI. 
 
A PKI allows a set of parties, who adhere to a set of common operational practices and policies 
that collectively define the PKI, the ability to validate the association of a particular entity with a 
given public key value. 
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Appendix II 

DNSSEC Resource Records 

 
DNSSEC introduces four additional RRs to carry security information. These resource records are: 
 

DNSKEY: 
Every DNSSEC secured DNS zone has an associated private and public key pair, as 
generated by the zone's administrator. The private key remains the (closely guarded) 
secret of the zone administrator. The associated public key for the zone is published in the 
zone file in the form of a DNSKEY resource record. 
 
The DNSKEY data (RDATA) consists of a Flags field, a Protocol value, an Algorithm 
Identifier and a Public Key value.  
 
Flags: 

If bit 7 is set (value is 256), then the DNSKEY record holds a DNS Zone Key, and 
the key can be used to verify RRSIGs that cover RRsets within the zone named as 
the DNSKEY RR's owner name. If bit 15 is set (value is 1 or 257), then the DNSKEY 
can be used as a Secure Entry Point (SEP). If the zone distinguishes between Zone 
Signing Keys (ZSKs) and Key Signing Keys (KSKs) as part of its key management 
practices, then the KSKs can be identified through the odd number value in the 
Flags field 

 
Protocol: 

The only defined value for this field is 3 at present. All other values invalidate the 
DNSKEY RR. 

 
Algorithm: 

This field identifies the algorithm associated with the Public Key value. The set of 
defined values is held in the IANA Registry: http://www.iana.org/assignments/dns-
sec-alg-numbers/dns-sec-alg-numbers.xhtml 

 
Public Key: 

The Public Key Field holds the public key material.  The format depends on the 
algorithm of the key being stored. 

 
An example DNSKEY record for the zone example.com is as follows [from RFC4034]: 
 
    example.com. 86400 IN DNSKEY 256 3 5 ( AQPSKmynfzW4kyBv015MUG2DeIQ3 
                                               Cbl+BBZH4b/0PY1kxkmvHjcZc8no 
                                               Kfzj31GajIQKY+5CptLr3buXA10h 
                                               WqTkF7H6RfoRqXQeogmMHfpftf6z 
                                               Mv1LyBUgia7za6ZEzOJBOztyvhjL 
                                               742iU/TpPSEDhm2SNKLijfUppn1U 
                                               aNvv4w==  ) 

 
In this example, the Time to Live (TTL) value is 1 day (86400 seconds). The Flags 
value is 256, indicating that this is a Zone Key. The protocol value is the constant 
value 3. The next field is the public key algorithm, and the value 5 indicates 
RSA/SHA1. The RR value is the Base64 encoding of the public key value. 

 

RRSIG: 
A Resource Record set (RRset) is a collection of RRs in a DNS zone that share a common 
name, class and type. In DNSSEC RRsets are digitally signed by the zone administrator. 
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This signature is generated by generating a hash of the RRset, then encrypting the hash 
using the zone administrator's private key. 
  
For example, a zone that contains SOA, NS, A, MX, DNSKEY resource records there are, 
minimally 5 distinct RRsets, and each RRSET would have its own RRSIG Resource Record. 
This implies that the granularity of DNSSEC signing is not that of an entire zone, but is 
aligned to a unit of a DNS query response. 
 
The RRSIG RR RDATA consists of a Type Covered field, an Algorithm field, a Labels field, 
an Original    TTL field, a Signature Expiration field, a Signature Inception field, a Key Tag, 
the Signer's Name field, and the Signature field. 
 
Type Covered: 

The Type Covered field identifies the type of the RRset that is being signed by this 
RRSIG record. 

 
Algorithm: 

This field identifies the algorithm used to create the signature. The set of defined 
values is held in the IANA Registry: http://www.iana.org/assignments/dns-sec-alg-
numbers/dns-sec-alg-numbers.xhtml 

 
Labels: 

This field specified the number of labels in the original RRSIG RR owner name. This 
field is used to determine if the answer has been synthesized from a wildcard label.  

 
Original TTL: 

The Original TTL field specifies the TTL of the covered RRset as it appears in the 
authoritative zone. The Original TTL field is necessary because a caching resolver 
decrements the TTL value of a cached RRset, so the TTL in a response is not 
necessarily the TTL that is part of the originally signed data.  In order to validate  a 
RRset signature, a validator requires the original TTL. 

 
Signature Expiration, 
Signature Inception: 

These fields specify a validity period for the signature. The RRSIG record must not 
be used before the Signature Inception Date, nor after the Signature Expiration 
date. 

 
Key Tag: 

The Key Tag field in the RRSIG and DS resource record types provides a 
mechanism for selecting a public key, as a combination of owner name, algorithm, 
and key tag can efficiently identify a DNSKEY record.  Both the RRSIG and DS 
resource records have corresponding DNSKEY records.  The Key Tag field in the 
RRSIG and DS records can be used to help select the corresponding DNSKEY RR 
efficiently when more than one candidate DNSKEY RR is available. 

 
Signer's Name: 

The Signer's Name field value identifies the owner name of the DNSKEY RR that a 
validator should use to validate this signature. This is the name of the zone of the 
covered RRset. 

 
Signature: 

The Signature field contains the cryptographic signature that covers both the RRset 
specified by the RRSIG owner name, RRSIG class, and RRSIG Type Covered field 
and the the RRSIG RDATA itself. 

 
An example RRSIG record for the zone example.com is as follows: 
 
    host.example.com. 86400 IN RRSIG A 5 3 86400 20030322173103 ( 
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                                  20030220173103 2642 example.com. 
                                  oJB1W6WNGv+ldvQ3WDG0MQkg5IEhjRip8WTr 
                                  PYGv07h108dUKGMeDPKijVCHX3DDKdfb+v6o 
                                  B9wfuh3DTJXUAfI/M0zmO/zz8bW0Rznl8O3t 
                                  GNazPwQKkRN20XPXV6nwwfoXmJQbsLNrLfkG 
                                  J5D6fwFm8nN+6pBzeDQfsS3Ap3o= ) 

 
The first four fields specify the owner name, TTL, Class, and RR type (RRSIG). The 
next field is the Type Covered field, and the value of "A" indicates that this is a 
signing of the A RRs for "host.example.com". The next field is the signing algorithm, 
and the value of 5 indicates that this is signed using RSA/SHA1. The value 3 is the 
number of Labels in the original owner name. The value 86400 in the RRSIG RDATA 
is the original TTL value for the covered A RRset. Te values 20030322173103 and 
20030220173103 are the expiration and inception dates, indicating that the RRset 
signature was created on 17:31:03 20/02/2003, and the signature expires at 
17:31:03 22/03/2003. The key tag is 2642 and the signer's name is 
"example.com." The remainder of the RR value is the encrypted hash of the 
combined RRset and the RRSIG data. 

 

NSEC: 
The DNSKEY and RRSIG records can be used to check the authenticity of a DNS response, 
where there is a DNS response. However an important aspect of the DNS is where the 
query refers to a non-existent name, or a non-existent RR. In this case there is no 
authoritative data to return. However, a client needs to be able to validate this "non-
existent data" response, and the DNSSEC NSEC RR is intended to allow the client to 
confirm the authenticity of this response. 
 
The NSEC RR can be considered as a "gap spanning record" for authentication purposes. 
The entire zone file is ordered in a canonical form, and then NSEC RRs are added to cover 
the "gap".  
 
In response to a query, if the name does not exist in the zone file, or the RR type does not 
exist for the name in question, then the NSEC record is returned as verifiable evidence 
that the name, or the RR type does not exist in the authoritative zone. 
 
For example, if the zone contained the labels "alpha" and "beta", then there would be a 
NSEC RR for alpha, and the RR value of this NSEC RR would be beta, indicating that there 
are no defined labels that lie between "alpha" and "beta". In addition, the NSEC record 
defines the set of RR types for this domain name. Continuing the example, the NSEC 
record for "alpha", would have as a value field the enumeration of the RR types that are 
defined for "alpha". 
 
The reason for this form of spanning data, as distinct from a more generic response of "no 
such name", is that the latter form of response can be used in a replay attack, falsely 
claiming that a name does not exist, whereas the NSEC record explicitly informs the client 
of the "gap". Note also that NSEC RRs are also signed with an associated RRSIG RR. 
 
The NSEC RR RDATA consists of the Next Authoritative Name (in canonical order), and the 
set of RR types that are defined for the owner name of this RR. 
 
An example NSEC record for the name alpha.example.com is as follows: 
 
     alfa.example.com. 86400 IN NSEC beta.example.com. ( 
                                     A MX RRSIG NSEC TYPE1234 ) 

 
In this case the name "beta.example.com." is the next authoritative name after 
"alfa.example.com." in canonical order. The A, MX, RRSIG, NSEC, and TYPE1234 
mnemonics indicate that there are A, MX, RRSIG, NSEC, and TYPE1234 RRsets 
defined for the name "alfa.example.com." 
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NSEC records can be used to enumerate the entire contents of a zone file. While DNS data 
is public information, there is some concern over the implicit publication of the entire zone 
in this manner. We'll come back to this with the NSEC3 RR. 

 

DS: 
The issue of validation of the zone public key remains unaddressed with the first three RR 
types. An attacker would simply need to supply the DNSKEY and RRSIG data to match the 
bogus RRset data in order to make the response look 'authentic'. So we are back to the 
same public key validation question - how can a client validate the DNSKEY record? 
 
One approach is for every client to maintain a local set of current public keys for each 
signed DNS zone. This approach creates some formidable operational challenges, and is 
simply impractical in a scenario of comprehensive adoption of DNSSEC. 
 
The other approach is to effectively assume that DNSSEC is universally adopted, and note 
that in a hierarchical delegation structure, as used by the DNS, each zone has some 
authoritative knowledge about the delegated child zones. 
 
The approach adopted by DNSSEC is to use a chain of trust within the hierarchical 
delegation structure of the DNS itself. Apart from the root zone, every DNS zone has a 
single unique parent zone. The Delegation Signer (DS) RR contains the hash of the public 
key of the child zone. This record is signed by the parent zone's private key with a 
matching RRSIG RR.  
 
To validate a zone's DNSKEY, the associated DS, RRSIG(DS) and DNSKEY of the parent 
zone is retrieved. The DS record is validated by using the DNSKEY to encrypt the 
RRSIG(DS) record, and then checking that the result matches the DS record. This is the 
zone public key, according to the zone's parent. This can be compared to the DNSKEY 
record of the zone in question. This validation operation relies on the parent zone key, and 
the question is how can this key be validated? The same process can be applied here, 
using the DS RR of the parent zone. The process stops when the DNSSEC client 
encounters a "trusted" key. The ideal "trust key" is the DNSKEY of the root zone, but this 
assumes that all zones between the zone whose DNSKEY is being validated and the root 
zone are DNSSEC signed. In other words this interlocking of zone keys only works when 
DNSSEC is universally used. In the absence of such a path to the signed root zone, each 
DNSSEC client has to configure their trust validation system with known trust points where 
there is no parent validation. 
 
An example DS record for the zone dskey.example.com is as follows: 
 
     dskey.example.com. 86400 IN DS 60485 5 1 ( 2BB183AF5F22588179A53B0A 
                                                98631FAD1A292118 ) 

 
In this example the value 60485 is the key tag for the corresponding 
"dskey.example.com." DNSKEY RR, and value 5 denotes the algorithm used by this 
"dskey.example.com." DNSKEY RR. The value 1 is the algorithm used to construct 
the digest, and the rest of the RDATA text is the digest of the DNSKEY owner name 
concatenated with the DNSKEY RDATA, which is, in turn, the flags, protocol, 
algorithm and public key public key  of the DNSKEY. 

 

NSEC3: 
The zone enumeration issue is a significant problem for many DNS zones, and the zone 
administrators found the zone enumeration capability of NSEC RRs to be unacceptable. By 
carefully constructing a sequence of requests for non-existent names, it is possible to 
construct a complete set of defined zone names and the associated set of defined RRsets 
for each name, all from the DNSSEC NSEC responses. 
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NSEC3 is an alternative to the NSEC RR. NSEC3 defines an ordering of the names in the 
zone that uses a hashed space to report intervals of non-existent names.  This makes it 
extremely difficult to enumerate all the defined names in the space.  However, a client can 
still walk the zone, though the "walk" is in effect a random search, as each probe has to be 
at some new randomly selected place in the zone, and not based on the previous NSEC3 
response.  For most purposes, the challenge posed by the effort to perform a complete 
enumeration of the zone using this random query pattern for NSEC3 records is considered 
to offer sufficient protection of the information in the zone.   
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Appendix III 

A DNSSEC Worked Example 

The following is an example walk-through of the creation of a DNSSEC-signed zone using the 
suite of tools provided wit release 9.7.1 of the DNS BIND software from ISC (http://www.isc.org). 
I'll use as a guide for this worked example the "DNSSEC HOWTO" tutorial by Olaf Kolkman 
(http://www.nlnetlabs.nl/dnssec_howto/dnssec_howto.pdf) 
  
The zone we'll sign here is dnssec.potaroo.net. 
 
The first step is to ensure that the zone's servers are capable of supporting DNSSEC. The way to 
achieve this will vary according to the DNS Server software being used.  
 
In the case of the BIND server, the essential first step is to compile the software with openssl, 
and enabling the use of DNSSEC with the "dnssec-enable yes;" directive as part of the options 
specified in named.conf. 
 

$ cat /etc/namedb/named.conf 
… 
options { 
      … 
      dnssec-enable yes; 
      …  
      }; 

 
The next step is key creation. Common operational practice today is to use two distinct key 
functions: the key-signing keys (KSKs) as the anchor point of the chain of authority to the data 
that needs to be validated, and zone-signing keys (ZSKs) that are used to sign the zone data. 
 
In the case of BIND, this can be achieved using the dnssec-keygen command, creating a zone 
signing key, then a key signing key. 
 

$ dnssec-keygen –r /dev/random -a RSASHA1 -b 1024 -n ZONE dnssec.potaroo.net 
Kdnssec.potaroo.net.+005+16482 
 
$ dnssec-keygen –r /dev/random -f KSK -a RSASHA1 -b 1280 -n ZONE dnssec.potaroo.net 
Kdnssec.potaroo.net.+005+64273  

 
The public key parts of these key pairs are added to the zone to be signed. 
 

$ cat dnssec.potaroo.net 
; 
; example dnssec-signed zone 
; 
$TTL 1d 
$ORIGIN dnssec.potaroo.net. 
@   IN SOA dns0.potaroo.netnet. gih.apnic.net. ( 
 2010062101 ; Serial 
 3h  ; Refresh 
 1h  ; Retry 
 1w  ; Expire 
 3h )  ; Neg. cache TTL 
 
; 
; name servers 
; 
 NS dns0.potaroo.net. 
; 
; zone contents 
; 
bogong  A       203.133.248.6 
bogong  AAAA   2401:2000:6660::6 
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wally   A      202.158.221.222 
wally   AAAA    2001:388:1:4007:20e:cff:fe4b:f987 
; 
;          zone keys 
; 
$include  Kdnssec.potaroo.net.+005+64273.key     ; KSK 
$include  Kdnssec.potaroo.net.+005+16482.key     ; ZSK 

 
 
The zone is then signed, using the dnssec-signzone command. 
 

$ dnssec-signzone -r /dev/random -o dnssec.potaroo.net \  
                  –k Kdnssec.potaroo.net.+005+64273 \ 
                  dnssec.potaroo.net  Kdnssec.potaroo.net.+005+16482.key 
 
Verifying the zone using the following algorithms: RSASHA1. 
Zone signing complete: 
Algorithm: RSASHA1: KSKs: 1 active, 0 stand-by, 0 revoked 
                    ZSKs: 1 active, 0 stand-by, 0 revoked 
dnssec.potaroo.net.signed 
 

 
The signed zone is as follows: 
 

$ cat dnssec.potaroo.net.signed  
; File written on Mon Jun 21 02:49:13 2010 
; dnssec_signzone version 9.7.1 
dnssec.potaroo.net. 86400 IN SOA dns0.potaroo.netnet. gih.apnic.net. ( 
     2010062101 ; serial 
     10800      ; refresh (3 hours) 
     3600       ; retry (1 hour) 
     604800     ; expire (1 week) 
     10800      ; minimum (3 hours) 
     ) 
   86400 RRSIG SOA 5 3 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     r/xnQf+ZwDEyMVCIfy1yCFNTl+0F5qWjchYm 
     dr//w9wOn9H/zrSjDNs8Bqygi2Hk3XXy+AU5 
     zWStag4ujMdQJD9qEsYSbXafVlI+K+s/Aypd 
     xKUDVh1LJdQSGIURx7smmg1+s+rv4jNLX3ym 
     JS0yeDkb3BM0fikwbevTUjrqOB8= ) 
   86400 NS dns0.potaroo.net. 
   86400 RRSIG NS 5 3 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     IvLpRI8ck480vD71w0865NL/xB8zuRPdugHD 
     MEV8IpmAN9HHQyjTIt/VPddVeFhYYGCJr9a+ 
     aRFdw7ySKJnJX96AOgSLRLI4yUmeA1ZeY9Rk 
     u47PmqLZSYiz88KFu7tE8f8PM9cdf8PJA7+N 
     bDzLjMFXFTVtwn9Vk9rbZmLsEyM= ) 
   10800 NSEC bogong.dnssec.potaroo.net. NS SOA RRSIG NSEC DNSKEY 
   10800 RRSIG NSEC 5 3 10800 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     eNKlEj4mNN0jMQ4vVhPgQFCLXtkQ1jsjiqF6 
     DYQkIlA7xCbo0dGKkdz8aHPg2aAZy19UpLpz 
     hTJSart+0RMX7nVEBCgBaM0zGYdHi4ZPeKxk 
     R192VneP12d04xVKA8kKmZk+yBw8AcfWMneC 
     hStzqMOLlc4Rcu30LQO1zGqtHc8= ) 
   86400 DNSKEY 256 3 5 ( 
     AwEAAbGuQRpZhiQd61wcv+MmTz4AuBrPWs7f 
     o7q2HiW8rwHnBOknPnI1vGkCjLDJoW8zN8jh 
     /wiIpuvFtjI2/4Sz2LMPWoQUewojlzaTkYje 
     I6GkeMGpvS5Fnjk6YRxfzq8+COFMWXElQLwS 
     mwUZYmsoQoOafkUKLRPtbTScbdTobGfX 
     ) ; key id = 16482 
   86400 DNSKEY 257 3 5 ( 
     AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0 
     jflAonVEc06PohnYBA8pA+v500EJrMhATLwa 
     LZF86qklr+8d6SgG5f0XU8IPugM3GTCuLkkK 
     mYjzw5uJANAekUMlFNfezTzKNF6OMQxG11++ 
     T7rbMEGmn/L3jGmVD9Ro5qpqppPUm8EBwLXS 
     2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/q 
     y3E= 
     ) ; key id = 64273 
   86400 RRSIG DNSKEY 5 3 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     qaQitL19IPGaEOMeDHqRy1Tz3MrLHWzc5oYz 
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     298AUOOKNfpLU8aemck4pJCPoj3h2TiRVmJg 
     CgJFV/sxaFALsi35sg18agTRGfDbskHGXchz 
     eSJWBrepxnu3GUkKhji/lUB1Vy1ns4fXkQpf 
     HPMja4kFAnhd/lRjR85tcKOlk7I= ) 
   86400 RRSIG DNSKEY 5 3 86400 20100721014913 ( 
     20100621014913 64273 dnssec.potaroo.net. 
     sUynXvlfGfSNcLHiv8e8wvNHbpurhsnd+FcW 
     wOwcW0tFPL5RtxcS/v5WEt21Ny1vkaw8JtSY 
     26dJ72pvpav6EZJGczYzwWzFu8rLDWnB1gI8 
     pzrAPri1gTNbrWJoRl61IaPq/5ip3bGVDUFM 
     CSFTgIU6O2rTuD9CQn5Ox1xffxvB3ATsJHyg 
     +b5tcHdYIGT7My4ELbdc0nn2BYuQAGjx0g== ) 
wally.dnssec.potaroo.net. 86400 IN A 202.158.221.222 
   86400 RRSIG A 5 4 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     FSudndyQLU+Zr54GT6yM2dp1h/dM9OL1PmxC 
     fGyY6F6n7YtUpHR/xItKGkeqy0NJ/8SfgRX0 
     avGgug64vheyS1dwQdiiqlyjue6C63by8Owd 
     xeSirKmYbt5/FftrzXqqBeQdE6lArNheaN4d 
     l0lRT1lEC/SUBjb2w45aYzIo/cA= ) 
   86400 AAAA 2001:388:1:4007:20e:cff:fe4b:f987 
   86400 RRSIG AAAA 5 4 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     KJartXEl6FgeIzeQ6SXeGhibmaeSygMjMC7N 
     HbMEc+MHp8nMAeRvKk4J59xwzSduLHUbUTBV 
     MsoviBAk7p2FoZ/JNlY5DIFFNPxoHJa6X+st 
     Kprhu1SgOnYQxP0CyGiMZpcEC7RWK/MVUnQ0 
     UsbJ0vHTEjGbpHP2gR/M9JLUfwc= ) 
   10800 NSEC dnssec.potaroo.net. A AAAA RRSIG NSEC 
   10800 RRSIG NSEC 5 4 10800 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     QgAF2Bnlvf1g+rhvUi1RJ36lnT/AjL02ikBt 
     Pn8DU2XvJHXjoP2mYdXwN9yM7DegteXe1YXe 
     sTEFcCddSWnbX83ccanmTtr12RRac72GTSPf 
     ataM3dnpw7JHrT6JbvUkXtza82lmMp0lYLWs 
     ZL0X92Rxo6cG+BLrEoJrx8DG4qg= ) 
bogong.dnssec.potaroo.net. 86400 IN A 203.133.248.6 
   86400 RRSIG A 5 4 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     HPExYnOugiydDe3VqlECPilDt9zzQe1/sbh7 
     jfrVVih7FyOvMl63Nb8XL7clrXUy+m2L0XUV 
     2w055Wbb5YhVRXHgKprokQsgo18BnhDzus+Q 
     9zef4tGv4IT410TLUbwrsV5ciJ4THhSBjpkk 
     X3Em9kX7lYK4xUh3bdnb003VosE= ) 
   86400 AAAA 2401:2000:6660::6 
   86400 RRSIG AAAA 5 4 86400 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     C/u5R83btmVi3Rm9PENDyUDWWYn99mFvBcMR 
     DenkLDBv/+JJMBsyw+zj7Ift/GGM8KTrTBjS 
     9DCeA0XVMvZMoYhzM9cAX3eFG01qxDUEi0tK 
     OllPdfxCXs7JvigvZbtLTgNaejHWXvdwDAwO 
     6lvMAhswVnJ+uLloiSW1uH87YI8= ) 
   10800 NSEC wally.dnssec.potaroo.net. A AAAA RRSIG NSEC 
   10800 RRSIG NSEC 5 4 10800 20100721014913 ( 
     20100621014913 16482 dnssec.potaroo.net. 
     KUDpCQ7a27Zuu8LWvK+1rMbZKdzx3AILaEWk 
     ceBFI/iqHZm7BNO1tdIi25uhPzp9kla9wUf1 
     Y7qVQvIJ2MBy5ZJMwgxLXvcWs+emq9kzBVBe 
     5Gh52W34LCo+B2rJ+xSB6qLEVjbNnr4tancb 
     t4CsezFvupSVU6mBQC0NsWiTeIM= ) 

 
The signed zone is added to the set of served zones, and the BIND server configuration is 
reloaded. 
 

$ tail -5 named.conf 
 
zone "dnssec.potaroo.net" {  
        type master;  
        file "master/dnssec.potaroo.net.db" ;  
        };  
 
$ kill –HUP `cat /var/run/named/pid` 

 
The KSK is added to the set of local trust keys for a DNSSEC-aware resolver: 
 

$ cat named.conf 
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… 
trusted-keys { 
… 
"dnssec.potaroo.net."        257 3 5 
"AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0jflAonVEc06PohnYBA8pA+v500EJrMhATLwaLZF86qklr+8d
6SgG5f0XU8IPugM3GTCuLkkKmYjzw5uJANAekUMlFNfezTzKNF6OMQxG11++T7rbMEGmn/L3jGmVD9Ro5qpqp
pPUm8EBwLXS2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/qy3E="; 
… 
}; 

 
This resolver can be queried: 
 

$ dig +dnssec +multiline DNSKEY dnssec.potaroo.net 
 
; <<>> DiG 9.7.1 <<>> +dnssec +multiline DNSKEY dnssec.potaroo.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42734 
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1 
 
;; OPT PSEUDOSECTION: 
; EDNS: version: 0, flags: do; udp: 4096 
;; QUESTION SECTION: 
;dnssec.potaroo.net. IN DNSKEY 
 
;; ANSWER SECTION: 
dnssec.potaroo.net. 86400 IN DNSKEY 256 3 5 ( 
    AwEAAbGuQRpZhiQd61wcv+MmTz4AuBrPWs7fo7q2HiW8 
    rwHnBOknPnI1vGkCjLDJoW8zN8jh/wiIpuvFtjI2/4Sz 
    2LMPWoQUewojlzaTkYjeI6GkeMGpvS5Fnjk6YRxfzq8+ 
    COFMWXElQLwSmwUZYmsoQoOafkUKLRPtbTScbdTobGfX 
    ) ; key id = 16482 
dnssec.potaroo.net. 86400 IN DNSKEY 257 3 5 ( 
    AwEAAdmfkEMaaUrwh3+vxkTlvcn+2KJLC/A0jflAonVE 
    c06PohnYBA8pA+v500EJrMhATLwaLZF86qklr+8d6SgG 
    5f0XU8IPugM3GTCuLkkKmYjzw5uJANAekUMlFNfezTzK 
    NF6OMQxG11++T7rbMEGmn/L3jGmVD9Ro5qpqppPUm8EB 
    wLXS2ALIA3MVSRUS5Hbb12x/t19DQlAQLVZC07/qy3E= 
    ) ; key id = 64273 
dnssec.potaroo.net. 86400 IN RRSIG DNSKEY 5 3 86400 20100721014913 ( 
    20100621014913 16482 dnssec.potaroo.net. 
    qaQitL19IPGaEOMeDHqRy1Tz3MrLHWzc5oYz298AUOOK 
    NfpLU8aemck4pJCPoj3h2TiRVmJgCgJFV/sxaFALsi35 
    sg18agTRGfDbskHGXchzeSJWBrepxnu3GUkKhji/lUB1 
    Vy1ns4fXkQpfHPMja4kFAnhd/lRjR85tcKOlk7I= ) 
dnssec.potaroo.net. 86400 IN RRSIG DNSKEY 5 3 86400 20100721014913 ( 
    20100621014913 64273 dnssec.potaroo.net. 
    sUynXvlfGfSNcLHiv8e8wvNHbpurhsnd+FcWwOwcW0tF 
    PL5RtxcS/v5WEt21Ny1vkaw8JtSY26dJ72pvpav6EZJG 
    czYzwWzFu8rLDWnB1gI8pzrAPri1gTNbrWJoRl61IaPq 
    /5ip3bGVDUFMCSFTgIU6O2rTuD9CQn5Ox1xffxvB3ATs 
    JHyg+b5tcHdYIGT7My4ELbdc0nn2BYuQAGjx0g== ) 
 
;; Query time: 205 msec 
;; SERVER: 127.0.0.1#53(127.0.0.1) 
;; WHEN: Mon Jun 21 07:30:11 2010 
;; MSG SIZE  rcvd: 763 

 
The "ad" flag in the response indicates that the response was authenticated using DNSSEC. The 
local resolver's log also shows this local validation result: 
 

$ more named-dnssec.log  
 
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net 
DNSKEY: starting 
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net 
DNSKEY: attempting positive response validation 
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net 
DNSKEY: verify rdataset (keyid=64273): success 
21-Jun-2010 07:30:11.207 dnssec: debug 3: validating @0x8028f6b00: dnssec.potaroo.net 
DNSKEY: signed by trusted key; marking as secure 
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