

The ISP Column
An occasional column on things Internet

December 2006

Geoff Huston

Internationalizing the Internet

Considering the global reach of the Internet, it sounds like a tautology to consider the issues of
internationalizing the network. Surely it already reaches around the globe to every country, doesn’t it? How
much more “international” can you get? But maybe I’m just being too parochial here when I call it a
tautology. I use a dialect of the English language, and all the characters I need are contained in the Western
Latin character set. Because of this, I have avoided the experience of using a non-English language on the
Internet. For me, the only language I use on the Internet is English, and all the characters I need are
encompassed in the ASCII character set. If I were to attempt to use the Internet via a language that uses a
non-Latin character set and a different script then maybe my experience would be different and most likely,
an acutely frustrating one at that! If I were a native speaker of an entirely different language to English, then
I’d probably give the Internet a low score for ease of use. While its easy to see picture of words in a variety of
fonts and scripts, using them in an intuitive and natural way in the context of the Internet becomes an
altogether more challenging problem.

Mostly what’s needed is good localization, or adapting the local computing environment to suit local
linguistic needs. This may include support for additional character sets, additional language scripts, and even
altering the direction of symbol flow.

A few years back I had a technical book that I wrote (in English) translated into
Japanese. I was somewhat surprised to see that the book used a word flow
direction similar to English (left to right word flow, top to bottom word rows, left
to right pagination), as I had thought that Japanese language printed material
used a top-to-bottom word flow then right-to-left columns and right to left
pagination.

“Traditionally, Japanese is written in a format called tategaki. In this format, the
characters are written in columns going from top to bottom, with columns
ordered from right to left. After reaching the bottom of each column, the reader
continues at the top of the column to the left of the current one. This copies the

Page 2

column order of Chinese. Modern Japanese also uses another writing format,
called yokogaki. This writing format is identical to that of European languages
such as English, with characters arranged in rows which are read from left to right,
with successive rows going downwards.”

 [http://en.wikipedia.org/wiki/Japanese_script]

“Today, the left-to-right direction is dominant in all three languages [Chinese
characters, Japanese kana, and Korean hangul] for horizontal writing: this is due
partly to the influence of English, and partly to the increased use of computerized
typesetting and word processing software, most of which does not directly
support right-to-left layout of East Asian languages.”

 [http://en.wikipedia.org/wiki/Horizontal_and_vertical_writing_in_East_Asian_scripts]

So it would appear that even yokogaki is an outcome of lack of capability of our IT
systems to undertake localization correctly!

One topic, however, does not appear to have a compellingly obvious localization solution in this multi-lingual
environment, and that is the Domain Name System (DNS). The subtle difference here is that the DNS is the
glue that binds all users’ language symbols together, and performing localized adaptations to suit local
language use needs is not enough. What we need is a means to allow all of these language symbols to be
used within the same system, or internationalization.

The DNS is the most prevalent means of initiating a network transaction, whether it’s a torrent session, the
web, email, or any other form of network activity. But the DNS name string is not just an arbitrary string of
characters. What you find in the DNS is most often a sequence of words or their abbreviations, and the words
are generally English words, using characters drawn from a subset of the Latin character set. Perhaps
unsurprisingly, some implementations of the DNS also assume that all DNS names can only be constructed
from this ASCII character set and are incapable of supporting a larger character repertoire. So if you want to
use a larger character set in order to represent various diacritics, such as acute and grave symbols, umlauts
and similar, then the deployed DNS can be resistant to this use and provide incorrect responses to queries
that attempt to use a larger character repertoire than plain old alpha-numerics. And if you want to use
words drawn from languages that do not use the western script for their characters, such as Japanese or Thai,
for example, then the DNS is highly resistant to this form of intended use.

Latin and Roman alphabets

The default Latin alphabet is the Roman alphabet , supplemented with G, J, U, W,
Y, Z, and lower-case variants

Additional letters may be formed:
- as ligatures, as W was from VV, for example Æ (ash) from AE, oethel Œ from OE,
 eszett ß from ſz (long s + z), engma ŋ from NG, ou Ȣ from OU, Ñ from NN, or
 ä from ae;

 - by diacritics, such as Å, Č, Ų;
 - as digraphs, such as Ĳ and LL;

- by modification, as J was from I, G from C, Ø from O, eth Ð from D, yogh Ȝ from
 G, schwa Ə from E, or ezh ʒ from z;
- may even be borrowed from another alphabet entirely, as thorn Þ and wynn Ƿ
 were from Futhark [Runic].

 [http://en.wikipedia.org/wiki/Roman_script]

http://en.wikipedia.org/wiki/Japanese_script
http://en.wikipedia.org/wiki/Horizontal_and_vertical_writing_in_East_Asian_scripts
http://en.wikipedia.org/wiki/Ligature_%28typography%29
http://en.wikipedia.org/wiki/%C3%86
http://en.wikipedia.org/wiki/Oethel
http://en.wikipedia.org/wiki/%C5%92
http://en.wikipedia.org/wiki/Eszett
http://en.wikipedia.org/wiki/%C3%9F
http://en.wikipedia.org/wiki/Long_s
http://en.wikipedia.org/wiki/Engma
http://en.wikipedia.org/wiki/Eng
http://en.wikipedia.org/wiki/Ou
http://en.wikipedia.org/wiki/Ou_%28letter%29
http://en.wikipedia.org/wiki/%C3%91
http://en.wikipedia.org/wiki/%C3%84
http://en.wikipedia.org/wiki/Diacritic
http://en.wikipedia.org/wiki/%C3%85
http://en.wikipedia.org/wiki/%C4%8C
http://en.wikipedia.org/wiki/Ogonek
http://en.wikipedia.org/wiki/Digraph_%28orthography%29
http://en.wikipedia.org/wiki/IJ_%28letter%29
http://en.wikipedia.org/wiki/Ll
http://en.wikipedia.org/wiki/%C3%98
http://en.wikipedia.org/wiki/Eth
http://en.wikipedia.org/wiki/Yogh
http://en.wikipedia.org/wiki/Schwa
http://en.wikipedia.org/wiki/Ezh
http://en.wikipedia.org/wiki/Thorn_%28letter%29
http://en.wikipedia.org/wiki/Wynn
http://en.wikipedia.org/wiki/Futhark
http://en.wikipedia.org/wiki/Roman_script

One of the few global communications networks that has had to cope with
aspects of this multi-lingual problem in the past has been the international postal
network.

 [From: “Tintin in Tibet”, Herge, 1960, http://en.wikipedia.org/wiki/Tintin_in_Tibet]

Their form of resolution is not exactly encouraging news, in that if you want your
letter to be delivered you may well need to use a bilingual address on the
envelope, or, minimally, put in enough information on the envelope in the local
language and local script to get the envelope into the right outgoing mail bag,
and also use the language and script of the destination to provide the specific
intended destination address. And if this is not possible, then try using the English
language and the Latin character set and hope that your letter makes it through
the system!

Although, to their credit, the postal system did manage to solve their version of
the third party transit problem: ”One of the most important results of the UPU
[Universal Postal Union] treaty was that it ceased to be necessary, as it often had
been previously, to affix the stamps of any country through which one's letter or
package would pass in transit; the UPU provides that stamps of member nations
are accepted for the whole international route.”

 [http://en.wikipedia.org/wiki/Universal_Postal_Union]

So lets restate the problem from the perspective of an end user of the Internet. I am a native English speaker,
well the Australian dialect of English at any rate, living in a location where English is the predominant local
language, and I use an unadorned version of the Latin character alphabet for writing. So for me the Internet
presents a natural experience most of the time. But if I wanted to use a different language, and in particular a
language that was not based on the Latin character set, would I have the same ease of use?

The computing industry has done a reasonable job of at least presenting non-Latin-based scripts within
many applications and while at times it appears to represent a less than reasonable compromise, it is
possible to enter non-Latin characters on keyboards. So it is possible to customise my local environment to
use a language other than English in a relatively natural way.

But what about multi-lingual support in the wider world of the Internet?

Again the overall story is not all that bad. Non-Latin character scripts can be used in email, in all kinds of web
documents, including this one, and in a wide variety of network applications. We can tag content with a
language context to allow the content to be displayed in the correct language using the appropriate
character sets and presentation glyphs. However, until recently, one area continued to stick steadfastly to its
ASCII roots, and that was the Domain Name System. In this article I’d like to look at this topic of
internationalization of the DNS, or Internationalized Domain Names, or IDNs.

So what do we mean when we talk of “internationalizing the DNS”?

What is being referred to here is an environment where English, and the Latin character set, is just one of
many languages and scripts in use, and where a communication is initiated in one locale then the language
and presentation is preserved irrespective of the locale where the communication is received.

Page 3

http://en.wikipedia.org/wiki/Tintin_in_Tibet
http://www.upu.int/
http://www.upu.int/
http://en.wikipedia.org/wiki/Postage_stamp
http://en.wikipedia.org/wiki/Universal_Postal_Union

Page 4

Terminology

To start off on this topic there is a small amount of terminology that is helpful to get through:

Language A language uses characters drawn from a collection of scripts
Script A collection of characters that are related in their use by a language
Character A unit of a script
Glyph The presentation of a character within the style of a font
Font A collection of glyphs encompassing a script’s character set that share a consistent

presentation style

Multiple languages can use a common script, and any locale or country may use many languages, reflecting
the diversity of its population and the evolution of local dialects within communities.

It is also useful to bear in mind the distinction between internationalization and localization.
Internationalization is concerned with providing a common substrate that can be used by many, preferably all,
languages and all users, while localization is concerned with the use of a particular language within a
particular locale and within a defined user population. Unsurprisingly the two concepts are often confused,
particularly when true internationalization is often far harder to achieve than localization.

Internationalizing the DNS

The objective is the internationalization of the DNS, such that the DNS becomes capable of supporting the
union of all character sets, while preserving the absence of ambiguity and uncertainty in terms of resolution
of any individual DNS name. What is needed is to take a description of all possible characters in all languages,
and allow their use in the DNS. So the starting point is the “universal character set”, and that appears to be
Unicode.

One of the basic building blocks for internationalization is the use of a character
set which is the effective union of all character sets. Unicode (www.unicode.org) is
intended to be such a universal encoding of characters (and symbols) in the
contexts of all scripts and all languages. The current version of the Unicode
standard, version 5.0, contains 98,884 distinct coded graphic characters.

A sequence of Unicode code points can be represented in multiple ways by using
different character encoding schemes. The most commonly used schemes are
UTF-8 and UTF-16.

UTF-8 is a variable-length encoding using 8 bit words, which means that different
code points require different numbers of bytes. The larger a code point’s index
number, the more bytes required to represent it using UTF-8. For example, the first
127 Unicode code points, which correspond exactly to the values used by the ASCII
character set (which maps only 127 characters), can be represented using only 8
bits in UTF-8, using the same 8 bit values as in ASCII. UTF-8 can require up to 32
bits to encode certain code points. A criticism of UTF-8 is that it ‘penalizes’ certain
scripts by requiring more bytes to represent those scripts’ code points. The IETF
has made the UTF-8 its preferred default character encoding for
internationalization of Internet application protocols.

UTF-16 is a variable length character encoding using 16 bit words. Characters in
the Basic Multiingual Plane are mapped into a single 16 bit word, with other
characters are mapped into a pair of 16 bit words.

UTF-32 is a fixed length encoding that uses 32 bits for every code point. This tends
to make for a highly inefficient coding that is, generally, unnecessarily large, as
most language uses of Unicode draw characters from the Basic Multilingual Plane,
making the average code size 16 bits in UTF-16 as compared to the fixed length 32

http://unicode.org/
http://unicode.org/
http://www.unicode.org/
http://www.unicode.org/versions/Unicode5.0.0/

Page 5

bits in UTF-32. For this reason UTF-32 is far less common in terms of usage than
UTF-8 and UTF-16.

 UTF-8, UTF-16 and UTF-32 all require an “8-bit clean” storage and transmission
medium. Unlike ASCII, which only uses seven bits per byte to encode characters,
these UTF encodings need all eight bits per byte. Since domain names have been
able to be represented with 7-bit ASCII characters, not all applications that process
domain names preserve the status of the eighth bit in each byte; in other words,
they are not 8-bit clean. This issue stimulated significant debate in the IETF’s IDN
Working Group and influenced the direction of the standards development into
the area of application assistance by taking a very conservative view of the
capabilities of the DNS as a restricted ASCII code application.

But languages, being something that we humans twist and torture in various ways every day, are not
always entirely definitive in their use of characters, and Unicode has some weaknesses in terms of identifying
a context of a script and a language for a given character sequence. The common approach to using Unicode
encodings in application software is that of the use of an associated “tag”, allowing content to be tagged
with a script and an encoding scheme. For example, a content tag might read: ”This text has been encoded
using the KOI-8 encoding of the CRYILLIC script.”

Cyrillic

The layout of this alphabet is derived from the early Cyrillic alphabet, itself a
derivative of the Glagolitic alphabet, a ninth century uncial cursive usually
credited to two Byzantine monk brothers from Thessaloniki, Saint Cyril and Saint
Methodius.

Although it is widely accepted that the Glagolitic alphabet was invented by Saints
Cyril and Methodius, the origins of the early Cyrillic alphabet are still a source of
much controversy. Though it is usually attributed to Saint Clement of Ohrid,
disciple of Saint Cyril and Saint Methodius from Bulgarian Macedonia, the
alphabet is more likely to have developed at the Preslav Literary School in
northeastern Bulgaria, where the oldest Cyrillic inscriptions have been found,
dating back to the 940s. The theory is supported by the fact that the Cyrillic
alphabet almost completely replaced the Glagolitic in northeastern Bulgaria as
early as the end of the tenth century, whereas the Ohrid Literary School—where
Saint Clement worked—continued to use the Glagolitic until the twelfth century.
Of course, as the disciples of St. Cyril and Methodius spread throughout the First
Bulgarian Empire, it is likely that these two main scholarly centers were a part of a
single tradition.

Among the reasons for the replacement of the Glagolithic with the Cyrillic
alphabet is the greater simplicity and ease of use of the latter and its closeness
with the Greek alphabet, which had been well known in the First Bulgarian Empire.

 [http://en.wikipedia.org/wiki/Cyrillic_alphabet]

Tagging allows the encoded characters to be decoded in the context of a given script and a given language.
This has been useful for content, such as email content or web page content, but tagging breaks down in the
context of the DNS. There is no natural space in DNS names to contain language and script tags. This implies
that attempting to support internationalization in the DNS has to head towards a “universal” character set
and a “universal” language context. Another way of looking at this is that the DNS must use an implicit tag
of “all characters and all languages”.

http://en.wikipedia.org/wiki/Early_Cyrillic_alphabet
http://en.wikipedia.org/wiki/Glagolitic_alphabet
http://en.wikipedia.org/wiki/Ninth_century
http://en.wikipedia.org/wiki/Uncial
http://en.wikipedia.org/wiki/Cursive
http://en.wikipedia.org/wiki/Byzantine
http://en.wikipedia.org/wiki/Thessaloniki
http://en.wikipedia.org/wiki/Saint_Cyril
http://en.wikipedia.org/wiki/Saint_Methodius
http://en.wikipedia.org/wiki/Saint_Methodius
http://en.wikipedia.org/wiki/Clement_of_Ohrid
http://en.wikipedia.org/wiki/Macedonia_%28region%29
http://en.wikipedia.org/wiki/Preslav_Literary_School
http://en.wikipedia.org/wiki/Bulgaria
http://en.wikipedia.org/wiki/940
http://en.wikipedia.org/wiki/Tenth_century
http://en.wikipedia.org/wiki/Ohrid_Literary_School
http://en.wikipedia.org/wiki/Twelfth_century
http://en.wikipedia.org/wiki/First_Bulgarian_Empire
http://en.wikipedia.org/wiki/First_Bulgarian_Empire
http://en.wikipedia.org/wiki/Cyrillic_alphabet

Page 6

The contexts of use of DNS names have a number of additional artefacts. What about domain name label
separators? You may need to map the ‘.’ label separator, as ‘.’ is an ASCII period character, and in some
languages, such as Thai, there is no natural use of such a label separator. Also, are URLs intended to be end-
user visible? If so then we may have to transform the punctuation components of the URL into the script of
the language. Therefore, we may need to understand how to manage protocol strings, such as “http:” and
separators such as the ‘/’ character. To complete the integrity of the linguistic environment these elements
may also require local presentation transformations.

The Thai alphabet uses forty-four consonants and fifteen basic vowel characters.
These are horizontally placed, left to right, with no intervening space, to form
syllables, words, and sentences. Vowels associated with consonants are non-
sequential: they can be located before, after, above or below their associated
consonant, or in a combination of these positions. The latter in particular causes
problems for computer encoding and text rendering.

[http://www.omniglot.com/writing/thai.htm]

The DNS name string reads left to right, and not right to left or top to bottom as in other script and language
cultures. How much of this you can encode in the DNS and how much must be managed by the application is
part of the issue here. Is the effort to internationalize the DNS with multiple languages restricted to the
“words” of the DNS, leaving the left-to-right ordering and the punctuation of the DNS unaltered? If so, how
much of this is a poor compromise, in that the use of these DNS conventions in such languages not an
entirely natural translation.

The DNS itself is a heavily restricted language of its own. The prudent use of the DNS specifies, in RFC 1035, a
sequence of “words”, where each word conforms to the “letter, digit, hyphen” restriction. The DNS “word”
must begin with a letter (restricted to the Latin character subset of ‘A’ through ‘Z’ and ‘a’ through ‘z’),
followed by a sequence of letters, digits or hyphens, with a trailing letter or digit (no trailing hyphen).
Furthermore, the case of the letter is not important to the DNS, so, within the DNS ‘a’ is equivalent to ‘A’, and
so on, and all characters are encoded in monocase ASCII. The DNS uses a left-to-right ordering of these
words, with the ASCII full stop as the word delimiter. This restriction is often referred to as the “LDH”
convention. LDH is one of those acronyms that seem to proliferate when reading about the DNS. In this case
“LDH” stands for “letter, digit, hyphen”.

The challenge posed with the effort of internationalizing the DNS is one of attempting to create a framework
that allows use of Internet applications, and the use of the DNS in particular, to be set in the user’s own
language in an entirely natural fashion, and yet allow the DNS to operate in a consistent and deterministic
manner. In other words, we all should be able use browsers and email systems using our own language and
scripts within the user interface, yet still be able to communicate naturally with others who may be using a
different language interface.

The most direct way of stating the choice set of IDN design is that IDNs either change the “prudent use” of
the deployed DNS into something quite different by permitting a richer character repertoire in all parts of the
DNS, or IDNs change the applications that want to support a multi-lingual environment such that they have
to perform some form of encoding transfer to map between a language string using Unicode characters and
an “equivalent” string using the restricted DNS LDH character set repertoire. It appears that options other
than these two lead us into fragmented DNS roots, and having already explored that space some years back
not many of us are all that interested to return. So if we want to maintain a cohesive and unified symbol
space for the DNS then either the deployed DNS has to clean up its act and become 8-bit clean, or
applications have to do the work and present to the DNS an encoded form of the Unicode sequences that
conform to the restricted DNS character repertoire.

The IDN Framework

http://www.omniglot.com/writing/thai.htm
http://rfc1035.potaroo.net/

Page 7

For an English language user with the ASCII character set, the DNS name you enter into the browser, or the
domain part of an email address, is almost the same string as the string that is passed to the DNS resolver to
resolve into an address (the difference is the conversion of the characters into monocase). If you want to send
a mail message you might send it to user@example.com, for example, and the domain name part of this
address, example.com, is the string used to query the DNS for an MX Resource Record in order to establish
how to actually deliver the message.

But what if I wanted to use a domain name that was expressed in another language? What if the email

address was user@記念.com? The problem here is that this domain name cannot be ‘naturally’ expressed in
the restricted syntax of the DNS, and while there may be a perfectly reasonable Unicode code sequence for
this domain name, this encoded sequence is not a strict LDH sequence, nor is it case insensitive (for whatever
“case” may mean in an arbitrary non-Latin script). It is here that IDNs take a step away from the traditional
view of the DNS and use a hybrid approach to the task of mapping human strings into network addresses.

The Internationalized Domain Name (IDN) Working Group of the IETF was formed
in 2000 with the goal of developing standards to internationalize domain names.
The working group’s charter was to specify a set of requirements and develop IETF
standards-track protocols to allow a broader range of characters to be used in
domain names. The outcome of this effort was the IDN in Applications (IDNA)
framework, published as RFCs 3454, 3490, 3491, and 3492.

Rather than attempting to expand the character repertoire of the DNS itself, the
IDN working group used the approach of using an ASCII compatible encoding (ACE),
to encode the binary data of Unicode strings that would make up IDNs into an
ASCII character encoding. The concept is very similar to the Base64 encoding used
by the MIME email standards, but whereas Base64 uses 64 characters from ASCII,
including uppercase and lowercase, the ACE approach requires the smaller DNS-
constrained LDH subset of ASCII.

Various ACE algorithms were examined, and different algorithms have different
compression goals (and yields) and encode the data using slightly different
subsets of ASCII. Most proposals specified a prefix to the ACE coding to tag the fact
that this was, in fact, an encoded Unicode string. One of the early ACE algorithms
proposed was RACE (Row-based ASCII Compatible Encoding), and was widely
implemented as a result of its use in VeriSign’s IDN Testbed. To give an example,

the RACE encoding of the domain name 記念.com in the early testbed was bq--

3cfbqx7v.com. The two Chinese characters (記念) encode to 3cfbqx7v, and bq-- is
the prefix indicating that particular label is encoded in RACE.

Since then the IETF adopted punycode as its standard IDN ACE (RFC 3492).
Punycode was chosen for its encoding compression properties. Thus the domain

name of記念.com (which encodes via RACE to bq--3cfbqx7v.com) encodes with
punycode to xn--h7tw15g.com.

IDN in Applications (IDNA)

http://rfc3454.potaroo.net/
http://rfc3490.potaroo.net/
http://rfc3491.potaroo.net/
http://rfc3492.potaroo.net/
http://rfc3492.potaroo.net/

Page 8

While an ASCII-compatible encoding of Unicode characters (an “ACE”) allows an IDN to be represented in a
form that will probably not be corrupted by the deployed DNS infrastructure on the Internet, an ACE alone is
not a full solution. The IDN approach also needs to specify how and where the ACE should be applied.

The overall approach to IDNs is relatively straightforward (as long as you say it quickly enough and don’t
pause to consider it too deeply!). In IDN the application has a critical role to play. It is the responsibility of the
application to take a domain name that is expressed in a particular language using a particular script, and
potentially in a particular character and word order that is related to that language, and produce an ASCII-
compatible encoded version of this DNS name, such that the ASCII-compatible encoding conforms to the DNS
LDH restricted syntax. Equally, when presenting a DNS string to the user, the application should take the
ASCII-compatible encoded DNS name and transform it to a presentation sequence of glyphs that correspond
to the original string in the original script.

Although we’ll see when looking at the homoglyph problem (a homoglyph is where
two different code points share an identical glyph, such as the Greek language
omicron ‘o’ (code point 03BF) and the ASCII lower case ‘o’ (code point 006F)) that
the current general IDN approach in IDN-aware browsers is to deliberately not
display the name as a Unicode code sequence using appropriate glyphs, but to
display the punycode equivalent in ASCII text.

With IDNs the application now plays a critical role, and the importance of the application being capable of
performing this encoding and decoding function correctly, deterministically and uniformly is critical to the
entire IDN framework.

The basic shift in the DNS semantics that IDNs bring to the DNS is that the actual name itself is no longer in
the DNS – an encoded version of the canonical name form sits in the DNS, and the users’ applications have
the responsibility to perform the canonical name transformation, as well as the mapping between the
Unicode character string and the encoded DNS character string. So we have better all agree on what are the
‘canonical’ forms of name strings in each and every language, we’d also better all agree on this encoding,
and our various applications had all had better run precise equivalents of these canonical name and
encoding algorithms, or the symbolic consistency of the DNS is about to break. And that would be very
messy indeed!

RFC3454 defines a presentation layer in IDN-aware applications that is responsible
for the punycode ACE encoding and decoding. This new layer in the applications’
architecture is be responsible for encoding any internationalized input in domain
names into punycode format before the corresponding domain name is passed to
the DNS for resolution. This presentation layer is also responsible for decoding the
punycode format in IDNs and rendering the appropriate glyphs for the user.

It’s all a case of your own personal perspective whether this is regarded as an
elegant workaround, or whether you see this simply as a case of shifting an
unresolved problem from one IETF Area to another one! The IDNA approach
makes the assumption that it’s easier to upgrade applications to all behave
consistently in interpreting IDNs than it is to change the underlying DNS
infrastructure to be 8-bit clean in a manner that would support direct use of
Unicode code points in the DNS.

A slightly more cynical view is that its pretty apparent that the IETF’s DNS folk
have managed to outsource the hard parts of their problem to the IETF’s
applications folk on the basis that applications are relatively easy to change!

http://rfc3454.potaroo.net/

Page 9

Interestingly enough, in another IETF area, the Internet Protocol folk are trying to
grapple with the intricacies of the identifier/locator semantic overload of IP
addresses, and has adopted the view that its extremely hard to alter application
behaviour. These folk continue to examine ways to introduce more flexibility into
the internet layer without exposing any parts of this change to applications.

The Presentation Layer Transform for IDNs

As a presentation layer transformation, the IDN framework allows names with non-ASCII characters for user
input into a browser's location bar or URLs embedded in web pages, or as domain names in email addresses.
At the DNS protocol level, there is no change in the restriction that only a subset of ASCII characters be used
in the DNS protocol exchanges. If end users input non-ASCII characters as part of a domain name or if a web
page contains a link using a non-ASCII domain name, the application must convert such potential DNS input
into a special encoded format using only the usual ASCII subset characters.

The aim here is to define a reliable and deterministic algorithm that takes a Unicode string in a given
language and produces a DNS string as expressed in the LDH character repertoire. This algorithm should not
provide a unique 1:1 mapping, but should also group “equivalent” Unicode strings, where “equivalence is
defined in the context of the language of use, into the same DNS LDH string. Any reverse mapping from the
DNS LDH string into the Unicode string should deterministically select the single “canonical” string from the
group of possible IDN strings.

Stringprep

The first part of the presentation layer transform is to take the original Unicode string and apply a number of
transformations to it to produce a “regular” or “canonical” form of the IDN string. This is then transformed
using the punycode ACE into a encoded DNS string form. The generic name of this process is termed, in IDN-
language, “stringprep” (RFC3454) , and the particular profile of transformations used in IDNAs is termed
“nameprep” (RFC3492).

This transform of a Unicode string into a canonical format is based on the observation that in a number of
languages there are a variety of ways to display the same text and a variety of ways to enter the same text.
While we humans have become entirely comfortable with this concept of multiple ways to express the same
thing, the DNS is an exact equivalence match operation and it cannot tolerate any imprecision. So how can
the DNS tell that two text strings are intended to be identical even though their Unicode strings are different
when looked at as a sequence of 1’s and 0’s? The IDN approach is to transform the string so that all
equivalent strings are mapped to the same canonical form, or “stringprep” the string. The stringprep
specification is not a complete algorithm, and it requires a “profile” that describes the applicability of the
profile, the character repertoire (at this time of writing RFC3454 it was Unicode 3.2, although the Unicode
Consortium has subsequently released Unicode versions 4.0, 4.1 and 5.0), mapping tables normalization, and
prohibited output characters.

Mapping

In converting from a string to a “normal” form, the first step is to map each character into its equivalent,
using a mapping table. This is conventionally used to map characters to their lower case equivalent value to
ensure that the DNS string comparison is case insensitive. Other characters are removed from the string via
this mapping operation as their presence or absence in the string does not affect the outcome of a string
equivalence operation, such as characters that affect glyph choice and placement, but without semantic
meaning.

Mapping will create monocase (lower case to be specific) outcomes and also all eliminate non-significant
code points, (such as, for example the code point 1806; MONGOLIAN TODO SOFT HYPHEN or code point 200B;
ZERO WIDTH SPACE),

Normalization

A number of languages can use different character sequences for the same outcomes. Characters may
appear the same in presentation format as a glyph sequence, yet have different underlying codepoints. This

http://rfc3454.potaroo.net/
http://rfc3492.potaroo.net/
http://rfc3454.potaroo.net/
http://www.unicode.org/versions/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.1.0/
http://www.unicode.org/versions/Unicode5.0.0/

Page 10

may be associated with variables ways of combining diacritics, or using canonical codepoints, or using
compatibility characters, and, in some language contexts, performing character reordering.

For example, the character Ä can be represented by a single Unicode code point
00C4; LATIN CAPITAL LETTER A WITH DIAERESIS. Another valid representation of
this character is the code point 0041; LATIN CAPITAL LETTER A followed by the
separate code point 0398; COMBINING DIAERESIS.

The intent of normalization is to ensure that every class of character sequences that are equivalent in the
context of a language are translated into a single canonical consistent format. This allows the equivalence
operator to perform at the character level using direct comparison without language-dependent additional
equivalence operations.

On the other hand, Unicode normalization requires fairly large tables and somewhat
complicated character reordering logic. The size and complexity should not be
considered daunting except in the most restricted of environments, and needs to be
weighed against the problems of user surprise from comparing unnormalized strings.
[RFC3454]

In the real world of day-to-day language use languages are not rigid structures, and human use patterns of
languages change. Normalization is no more than a best effort process to attempt to detect equivalences in
a rigid rule-driven manner, and it may not always produce predictable outcomes. This can be a problem
when regarded from the perspective of namespace collisions in the DNS, because it does not increase the
confidence level of the DNS as a deterministic exact match information retrieval system. IDNs introduce
some forms of name approximation into the DNS environment, and the DNS is extremely ill-suited to the
related “fuzzy search” techniques that accompany such approximations.

Filtering Prohibited Characters

The last phase in string preparation is removing of prohibited characters. These include the various Unicode
white space code points, control code points and joiners, private use code points and other code points used
as surrogates or tags. A full enumeration of such characters can be found in Appendix C of RFC3454

Right-to-Left Characters

As an option for a particular stringprep profile, a check can be performed for right-to-left displayed characters,
and if any are found, make sure that the whole string satisfies the requirements for bidirectional strings.
The Unicode standard has an extensive discussion of how to reorder glyphs for display when dealing with
bidirectional text such as Arabic or Hebrew. All Unicode text is stored in logical order as distinct to the display
order.

Nameprep – a Stringprep profile for the DNS

The Nameprep profile specifies Stringprep for internationalized Domain Names, specifying a character
repertoire (in this case the specification references Unicode 3.2), and a profile of mappings, normalization
(form “KC”), prohibited characters and bidirectional character handling. The outcome of this is that two
character sequences can be considered equivalent in the context of Internationalized Domain Names if,
following this string prep profile, the resultant sequences of Unicode code points are identical. These are the
“canonical” forms of names that are used by the DNS.

http://rfc3454.potaroo.net/
http://rfc3454.potaroo.net/

Page 11

The Punycode ASCII-Compatible Encoding

The next step in the application’s responsibility is to take this canonical form of the Unicode name string and
transform it into a LDH equivalent string using an ACE. The algorithm used, punycode, is evidently an
instance of a method termed “bootstring”. The main attribute of this punycode algorithm is that the
encoding is highly efficient, in that Unicode code point sequences do not become extended length ACE
strings.

So, how does the algorithm work?

The punycode algorithm is described in RFC3492. The input code points are divided into a set of “basic” code
points, the require no further encoding as they are already in the LDH character set, and the set of
“extended” code points. The algorithm takes the basic code points and reproduces this sequence in the
encoded string. This is the “literal portion” of the string. A delimiter is then added to the string. This delimiter
is a basic code point that does not occur in the remainder of the string. The extended code points are then
added to the string as a series of integers expressed through an encoding into the basic code set.

These additions of the extended code points are done primarily in the order of their Unicode-values, and
secondarily in the order in which they occur in the string. The code for each insertion represents the number
of possibilities of inserting a special character at the given stage (that is, without regard to characters that
will be inserted afterwards), before the actual insertion, where these possible insertions are again ordered
primarily according to their Unicode-values, and secondarily according to position. The encoding of the code
point and its insertion position is done via a difference, or offset, encoding, so that sequences of clustered
code points, such as would be found in a single language, encode very efficiently. In the case of multiple
occurrences of a character it also helps that positions are counted from the previous position.

For example, the German language string “mädchen”, uses basic codes for all bar
the ‘ä’ character. The punycode algorithm copies all the basic codes, followed by
a ‘-‘. The value and position of the ä insertion now has to follow, The encoded
form for ‘ä’ (char 228) at the position between the first and second characters, This
gives a delta code of 771. This value can be expressed as 22 x 35 + 1. ‘b’
corresponds to the value 1, and ‘u’ to the value 35. The code point and position
information is represented in base 35 notation as (0,22,1), or, in reverse notation,
with the encoding “bua”. So the punycode encoding of “mädchen” is “mdchen-
bua”. The internationalized domain name format prepends the string “xn--“ to the
punycode string, resulting in the encoded domain name form of xn--mdchen-bua

[http://en.wikipedia.org/wiki/IDNA]

IDNS and our assumptions about the DNS

At this stage it should be evident that we have the code points for characters drawn from all languages, and
the means to create canonical forms of various words and express these in an encoded form that can be
resolved via the DNS.

IDNs are in use today of course. Here’s a quick “sampler” of domain names
expressing in a variety of languages:

Arabic: عربي.com, ايكيا.com.

Chinese: 宜家.com, 上海酒店.com,程序员.com.

Greek: λλλ.com.
Hebrew: שלום.com, ישראל.com.

Hindi: खोज.com, भाषा.com.

http://rfc3492.potaroo.net/
http://en.wikipedia.org/wiki/IDNA
http://%D8%B9%D8%B1%D8%A8%D9%8A.com/
http://%D8%B9%D8%B1%D8%A8%D9%8A.com/
http://%D8%A7%D9%8A%D9%83%D9%8A%D8%A7.com/
http://%D8%A7%D9%8A%D9%83%D9%8A%D8%A7.com/
http://%E5%AE%9C%E5%AE%B6.com/
http://%E5%AE%9C%E5%AE%B6.com/
http://%E4%B8%8A%E6%B5%B7%E9%85%92%E5%BA%97.com/
http://%E4%B8%8A%E6%B5%B7%E9%85%92%E5%BA%97.com/
http://%E7%A8%8B%E5%BA%8F%E5%91%98.com/
http://%E7%A8%8B%E5%BA%8F%E5%91%98.com/
http://%CE%BB%CE%BB%CE%BB.com/
http://%D7%A9%D7%9C%D7%95%D7%9D.com/
http://%D7%A9%D7%9C%D7%95%D7%9D.com/
http://4dbrk0ce.com/
http://4dbrk0ce.com/

Page 12

Japanese: バドミントン.com, 瀬戸.net,江戸.jp.

Korean: 한글.kr, 현금영수증.kr.

Russian: доменные-имена.com, ИКЕА.com.
Spanish: viñadelmar.cl, ñandú.cl.
Symbols: ®.com, ©.com.

Traditional Chinese: 台灣大學.tw, 中大.tw.

Persian ايران.سمپاد.وب .ir

Tamil சினிமா.com

Thai เกมส .com, ก.com

[http://en.wikipedia.org/wiki/Internationalized_domain_name]

Problem solved?

Unfortunately not!

massive number of discrete code points out there in Unicode-land, that does not imply that
aracters are displayed in unique ways. Indeed given a relatively finite range of glyphs it
urprise to learn that a number of discrete code points can be display with the same glyph.

While there are a
all these distinct ch
should come as no s

The often-quoted example with IDNs and name confusion is the name paypal. What is the difference
between www.paypal.com and www.paypal.com? There is a subtle difference in the first ‘a’ character, where
the second domain name has replaced the Latin ‘a’ with the Cyrillic ‘a’. Could you spot the difference? Of
course not! These homoglyphs are cases where the underlying domain names are quite distinct, yet their
screen appearance is indistinguishable. In the first case the domain name www.paypal.com is resolved in the
DNS with the query string www.paypal.com, yet the second the query string www.paypal.com is translated
by the application to the DNS query string www.xn--pypal-4ve.com. How can the user tell one case from the
other?

The example given here is by no means a unique case in the IDN realm. The
reports on “Unicode Security Considerations (Unicode Technical Report 36) and
“Unicode Security Mechanisms” (Unicode Technical Report 39) provides many
more examples of post normalization homographs. For example, the Tamil
character ‘வ’ (Unicode code point 0BB5) and the Malayalam character ‘ഖ’

(Unicode code point 0D16) share a common glyph. Within the Tamil script the
letter “Ta” ‘௧’ (code 0BE7) and the digit “one” ‘க’ (code 0B95) are graphically

identical.

There is no clear and unique relationship between characters and glyphs. Cyrillic,
Latin and reG ek share a number of common glyphs, glyphs may change their
shape depending on the character sequence, multiple characters may produce a
single glyph (such as the character pair “fl” being displayed as the single glyph ‘fl’,
and a single character may generate multiple glyphs.

Homoglyphs extend beyond a conventional set of characters and include syntax
elements as well. For example, the Unicode point 0244 FRACTION SLASH is often
displayed using the slash glyph, allowing URLs of the form “http://a.com/e.com”.
Despite its appearance this is not a reference to “a.com” with a locator suffix of
“e.com”, but is a reference to the domain “a.com/e.com”

http://%E0%A4%96%E0%A5%8B%E0%A4%9C.com/
http://%E0%A4%96%E0%A5%8B%E0%A4%9C.com/
http://%E3%83%90%E3%83%89%E3%83%9F%E3%83%B3%E3%83%88%E3%83%B3.com/
http://%E7%80%AC%E6%88%B8.net/
http://www.%ED%95%9C%EA%B8%80.kr/
http://www.%ED%98%84%EA%B8%88%EC%98%81%EC%88%98%EC%A6%9D.kr/
http://%D0%B4%D0%BE%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5-%D0%B8%D0%BC%D0%B5%D0%BD%D0%B0.com/
http://%D0%B4%D0%BE%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5-%D0%B8%D0%BC%D0%B5%D0%BD%D0%B0.com/
http://%D0%B8%D0%BA%D0%B5%D0%B0.com/
http://%D0%B8%D0%BA%D0%B5%D0%B0.com/
http://www.vi%C3%B1adelmar.cl/
http://www.vi%C3%B1adelmar.cl/
http://%C2%AE.com/
http://%C2%AE.com/
http://%E5%8F%B0%E7%81%A3%E5%A4%A7%E5%AD%B8.tw/
http://%E5%8F%B0%E7%81%A3%E5%A4%A7%E5%AD%B8.tw/
http://%E5%8F%B0%E7%81%A3%E5%A4%A7%E5%AD%B8.tw/
http://%E5%8F%B0%E7%81%A3%E5%A4%A7%E5%AD%B8.tw/
http://%D9%88%D8%A8.%D8%B3%D9%85%D9%BE%D8%A7%D8%AF.%D8%A7%DB%8C%D8%B1%D8%A7%D9%86.ir/
http://%D9%88%D8%A8.%D8%B3%D9%85%D9%BE%D8%A7%D8%AF.%D8%A7%DB%8C%D8%B1%D8%A7%D9%86.ir/
http://%D9%88%D8%A8.%D8%B3%D9%85%D9%BE%D8%A7%D8%AF.%D8%A7%DB%8C%D8%B1%D8%A7%D9%86.ir/
http://%D9%88%D8%A8.%D8%B3%D9%85%D9%BE%D8%A7%D8%AF.%D8%A7%DB%8C%D8%B1%D8%A7%D9%86.ir/
http://%E0%AE%9A%E0%AE%BF%E0%AE%A9%E0%AE%BF%E0%AE%AE%E0%AE%BE.com/
http://www.paypal.com/
http://www.paypal.com/
http://www.paypal.com/
http://www.paypal.com/

Page 13

The basic response is tha
The punycode transform intended to be a secret
between the application and the DNS, as this ASCII encoded form is simply meaningless to the user. But if this
encoded form remains invisible to the user, how can the user detect that the two identically presented name
strings are indeed different? Sadly, the only true ‘security’ we have in the DNS is the “look” of the DNS name

bar the URL value of http://www.xn--pypal-4ve.com.
he distinction between the two names is now visible to the user, but the downside is that we are back to

IDNs. Wasn’t the objective to create a DNS solution that was equally natural
nd equally ‘secure’ in the context of every language and every script? If the universal answer, when there is

 systems. They can be tricky, and they invariable use
hat appear to be rules in strange and inconsistent ways. They are resistant to automated processing and

apping from glyph to underlying
ode point is not in and of itself unique. Any effort to undertake such a mapping needs additional context in

IDNS, T

t if you maintain IDN integrity at the application level, then the user just can’t tell.
 of www.paypal.com into www.xn--pypal-4ve.com is

that is presented to the user, and the user typically works on the principle that if the presented DNS string
looks like the real thing, then it must be the real thing!

When this homoglyph issue was first exposed, the response from a number of browsers was to turn off all IDN
support in their browser. The next response was to deliberately expose the punycode version of the URL in
the browser’s address bar, so that in both Explorer and Firefox, directing the browser to
http://www.pаypal.com now displays in the address
T
displaying ASCII names again, and in this case ASCII versions of punycode-encoded names. (If trying to
“read” Base64 was hard, then the displaying, and understanding, of punycode is surely equally as hard, if not
harder!) The encoded names can be completely devoid of any form of useful association or meaning. While
the distinction between ASCII and Cyrillic may be evident by overt differences in their ASCII-encoded names,
what is the case when the homoglyph occurs across two non-Latin languages? The punycode strings are
different, but as to which string is the “intended” one? Did you mean http://xn--21bm4l.com or http://xn--

q2buub.com when you entered the hindi script URL http://खोज.com? We appear to be back to guessing

games in the DNS again, unfortunately, and particularly impossible guessing games at that. Displaying the
URL in browsers in their punycode is an English language ASCII solution that detects homoglyph character
substitution is being performed on what the user through was a ‘plain’ DNS ASCII string, but is of little value,
if any, in non-ASCII contexts.

Now what was the objective of IDN support again? Was it to get around the use and display of ASCII names?
We do not appear to be making a huge amount of progress here if we need to display the ASCII encoded
forms as the only available means of prevention of various forms of passing-off and phishing attacks using
the combination of DNS and
a
some element of doubt about the integrity of the DNS name, is to return to the base ASCII presentation of the
punycode encoded DNS name then we’ve only succeeded in making the DNS more complex for non-English
users, rather than easier and more ‘natural’. Whoops.

If the intention in the IDN effort was to preserve the deterministic property of DNS resolution, such that a
DNS query can be phrased deterministically and not have the query degenerate into a search term or require
the application of fuzzy logic to complete the query, then we aren’t quite there yet. The underlying
observation is that languages are indeed human use
w
the application of rigid rule sets. The canonical name forms that are produced by nameprep-like procedures
are not comprehensive, nor does it appear that such a rigidly defined rule-driven system can produce the
desired outcomes in all possible linguistic situations. And if the intention of the IDN effort was to create a
completely “natural” environment using a language environment other than English and a display
environment that is not reliant on ASCII and ASCII glyphs, while preserving all the other properties of the DNS,
then the outcome does not appear to match our original IDN expectations.

The underlying weakness here is the implicit assumption that in the DNS what you see is what you get, and
that two DNS names that look identical are indeed references to the same name and when resolved in the
DNS produce precisely the same resolution outcome. When you broaden the repertoire of appearances of the
DNS, such that the entire set of glyphs can be used in the DNS, then the m
c
the form of a language and script context. But the DNS does not carry such a context, making the task of
maintaining uniqueness and determinism of DNS name translation essentially impossible if we also want to
maintain the property that it’s the appearance, or presentation format, of DNS names to the user that is the
foundation stone of the integrity of our trust in the DNS.

LDs and the Politics of the DNS

http://www.paypal.com/
http://www.p%D0%B0ypal.com/
http://www.p%D0%B0ypal.com/
http://%E0%A4%96%E0%A5%8B%E0%A4%9C.com/
http://%E0%A4%96%E0%A5%8B%E0%A4%9C.com/

Page 14

ent here; namely the argument that favours the existence of IDNs in all

parts of the DNS, including the top level domains, and the argument which favours a more restricted view of

d in a local language? And in right-to-left scripts, where does this awkward ASCII appendage

 in that DNS name? Surely a Japanese user should

So why is there a very active debate, particularly within ICANN-related forums, about putting IDN codes into
the root of the DNS as alternative top level domains?

I have seen two major lines of argum

IDNs in the root of the DNS that links their use to that of an existing (ASCII-based) DNS label in the top level
domain zone.

As far as I can tell, those who favour the approach of using IDNs in the top level zone as just another DNS
label see this as a natural extension of adding punycode-encoded name entries into lower levels of the DNS.
Why should the root of the DNS be any different, in terms of allowing IDNs? Why should a non-Latin script
user of the Internet have to enter the top level domain code in its ASCII text form, while the remainder of the
tring is enteres

sit when a user attempts to enter it into an application?

Surely, goes the argument, the more natural approach is to allow any DNS name to be wholly expressable in
the language of the user, and this implies that all parts of the DNS should be able to carry native language-

encoded DNS names. After all, コンピュータは予約する.jp looks just plain wrong as a mono-lingual

domain name. What’s that “.jp” appendage doing there

not have to resort to an ASCII English abbreviation to enter in the country code for Japan, when 日本 is
obviously more ‘natural’ in the context of a Japanese use of Japanese script. If we had punycode top level
domains then, goes the line of argument, a user could enter the entire domain name in their language and
have the punycode encoding happen across the entire name string, and then successfully perform a DNS

lookup on the punycode equivalent. This way the user would enter the Japanese character sequence: コン
ピュータは予約する . 日 本 and have the application translate this to the DNS string

xn--88j0bve5g9bxg1ewerdw490b930f.xn--wgv71a. For this to work in its entirety in a uniform and consistent
fashion the name xn--wgv71a needs to be a top level domain name.

One can always take this one step further and take issue with the ASCII string http
and the punctuation symbols :// for precisely the same reason, but I’ve not heard
(yet) calls for multi-lingual equivalents of protocol identifier codes! The multi-
lingual presentation of these elements remain firmly in the provenance of the
application, rather than attempting to alter the protocol identifiers in the relevant
standards.

The line of argument als
level domains as expressed in the language of the Internet’s users, then language communities will break
away from a single DNS root and meet their linguistic community’s requirements in their own DNS hierarchy.
Citing the recent case of the Chinese language emulated top level domain equivalent of .com (the chinese-
language equivalent is expressed phonetically as .gongsi), the argument expresses the view that admitting

o encompasses the implicit threat that if the root of the DNS does not embrace top

such encoded tags into the DNS root is the lesser of many potential evils, including the consequence of
inactivity, which is cited as being tantamount to condoning the complete fragmentation of the Internet’s
symbol set.

To set the record straight, the Chinese effort at creating Chinese language
equivalents of some of the generic top level domain names did not rely on split
DNS roots and deliberate fragmentation of the DNS. The exercise used an
application-level plugin that appended the ASCII string .cn to the domain names
before passing then to the DNS for resolution, but chose not to display this ASCII
appendage at the user level. This approach did not ‘break’ or ‘fracture’ the DNS in

Page 15

any way, and was more or less a recycling of application plug-in technology that
used internal top level name synthesis that first generally appeared in the closing
stages of the Internet boom in 2000 – 2001. The willingness of many observers to
ascribe this apparent exercise in fracturing the DNS root to a deliberately
provocative national agenda is illustrative of the consistently escalating levels of
tension that the entire DNS topic has managed to engender over the past decade.

Its not easy to disentangle a number of threads of difference of perspective here,
not the least of which is a continuing sense of frustration in many parts of the
world over what they perceive as the continuing undue level of influence of US-
based enterprises and the US government over the Internet, its applications and
even the underlying technical standards. The desire to find alternatives to .com
and their generic top level domain label cohorts may well rest as much in the
desire to create more diversified operators of these top level domain names that
are well-distanced from US commercial and governmental interests as they are
based in a desire to escape from the linguistic imperialism of ASCII names. Of
course such motives also sit beside the observation that in the domain name
registration business the typical registry charge of some $US 6.00 per domain
name year is significantly higher than the operational costs that appear generally
to be well under $US 2.00 per domain name year. Little wonder, therefore, that
there could be the desire to create a language based “monopoly” name retailer
that supplants the generic ASCII generic TLDs in a particularly populous language-
use locale.

Of course having an enti
of the potential issues wi
are in the “equivalent” ID
underlying name concep t. Is xn--88j0bve5g9bxg1ewerdw490b930f appropriately a subdomain
of .jp, or a subdomain of xn--wgv71a? Should the two domains be tightly synchronized with respect to their
zone content and represent the same underlying token set, or should they be independent offerings to the
market place, and allow registrants and the end user base make implicit choices here? In other words, should

character sets? Surely it makes more sense for a native German language speaker to refer
 commercial entities as kommerze, and the abbreviated TLD name as .kom?

rely new top level domain name in an IDN name format does not solve the entirety
th IDNs. How can a user tell what domain names are in the ASCII top level, and what

N encoded top level domains? Are any two name spaces, which refer to the same
t, equivalen

the pair of domain names, namely xn--88j0bve5g9bxg1ewerdw490b930f.xn--wgv71a and
xn--88j0bve5g9bxg1ewerdw490b930f.jp, reference precisely the same DNS zone, or should they be allowed to
compete, and each find their own ‘natural’ level of market support based on decoupled top level domain
names of .jp and .xn--wgv71a?

What does the term equivalence really imply here? Is equivalence something as loose as the relationship
between .com and .biz, namely being different abbreviations of words that reflect similar concepts with
different name space populations that reflect market diversity and a competitive supply industry. Or is
equivalence a much tighter binding in that equivalent names share precisely the same sub-domain name set,
and that a registration in one of these equivalence names is in effect a name registration across the entire
equivalence set?

Even this is not a readily resolveable issue given our various interpretations of equivalence. In theory, the
DNS root zone is populated by ISO 2-letter country codes and a number of “generic” top level domains.
Under what basis, and under what authority, is xn--wgv71a considered an “equivalent” of the ISO 3166 two
letter country code “JP”. Are we falling into the trap once again of making up the rules as we go along here?
Is the distinction between “com” and “biz” only one that is apparent in English? And why should this apply
only to non-latin
to

Page 16

Equivalence in a linguistic sense is a verv tough topic. For a presentation I was
wanting to use the opposite of the phrase “Let 100 flowers bloom; let a hundred

schools of thought contend”, or in Chinese script, “百花齊放，百家爭鳴”. In
English the opposite of this thought is easy to express: “Let one flower bloom; let
one school of thought prevail”. It appears that a tolerably close Chinese script

equivalent is “一花独放，一家主鸣”. But why is this not an exact equivalence?

I consulted my friend Mark Williams for assistance in finding an equivalent Chinese
text that was the opposite of Mao’s 100 flowers saying. When Mark is not
travelling he lives in Beijing, and he is a keen student of the Chinese language. I
thought that I was asking for a simple translation, but as it turned out I really did
not understand the task of the language translator at all well! Chinese is a
venerable language, and including all or part of traditional sayings into one’s
writings or speech is an integral part of Chinese language use. In English-speaking
cultures we often refer to such devices as aphorisms, which has slightly
disparaging overtones, but not so in Chinese. Mao cleverly constructed his phrase
by putting parts of two sayings together, leaving the couplet of four character
constructs in place, but adding through the juxtaposition of two different
thoughts, his own touch.

To undertake the translation in a faithful manner Mark came up with a similar
construct. The first four characters, “Let one flower bloom (only one flower is allowed
to bloom)” comes from a common Chinese saying, in the same style of Mao’s
saying. The second part Mark had to construct in the style of a saying. “One house
(school of thought) alone be heard” is formed again using four characters.

The lesson for me was that translation and equivalence are not just issues with
single words, but it’s the style and context of the text that really create the sense
of a “natural” equivalence across languages. And when searching for language
equivalence across languages that do not share a common linguistic root, the task
is far more challenging. In this case I had asked for a translation of a linguistic
artifice based on a “poetic proverb”. A phrase that not just had meaning but a
cadence and a tone. The equivalent expression, to make sense, also needed to
reproduce the same style. The DNS is of, of course, incapable of expressing such
concepts of linguistic style when considering issues of equivalence and canonical
name forms.

I have a new respect for those who embark on the course of learning Chinese. This
exercise has, for me, been for me a fascinating education in the deeper aspects of
symbols and their use in cultures that thread through millennia.

Lets put aside the som
breathtaking assumption o suppose that we
want tight coupling across equivalence sets of names.

In other words, what we would like is that a name registered in any of the elements of the equivalent domain

el domain name aliases for their ASCII equivalents,
ereby allowing a single name registration to be resolveable using a root name expressed in any of the

ewhat difficult concept of name equivalence for a second, and just make the
 that this entire equivalence problem is a solved problem. Lets als

name set is, in effect, registered in all the equivalent DNS zones. The question is: How should it be
implemented in the DNS? One approach that could support of tight synchronization of equivalence is the use
the DNAME record (RFC 2672) to create these top lev
th
linguistic equivalents of the original tld name. The DNAME entry for all but the “canonical” element of the
equivalence set effectively translates all queries to a query on the canonical name. The positive aspects of
such an approach is uniformity across linguistic equivalents of the tld name form – a single name delegation
in a tld domain becomes a name within all the linguistic equivalents of the tld name without any further
delegation or registration required.

Page 17

. A DNAME-aware resolver will cache the DNAME response for the entire
apped name space, while a CNAME-aware resolver will only cache individual responses, and related

s in the DNS
ot zone.

 the same gTLD. From the perspective of a coherent symbol space where the same symbol,
xpressed in any language script, resolves in the same fashion, then independent registries are not overly

NS is incapable of representing such imprecision with any utility. The DNS is not a search engine, and

pear to derive some pleasure in pointing out that the political origins
f ICANN and its strong linguistic bias to English are influencing it to ignore non-English language use and

Of course DNAME itself is not entirely straightforward, given that if the name resolver indicates (via EDNS0)
that it understands DNAME record, then the name server can return the DNAME record and the resolver will
continue the query with the new name. If the resolver does not understand the DNAME records the server
has to synthesize a CNAME response that will redirect the resolver to make a new query for this name. One
difference lies in the cache properties
m
queries will each be passed onto the server. A more critical difference lies in the face that the server now has
an additional activity that increases the server load. DNAME would be an entirely neutral option, from the
perspective of the server, were it not for this CNAME synthesis. So in looking at DNAMEs in the root, the here
and now is not good: one of the root server implementations, NSD, does not support DNAME, there is not a
large body of experience in the issues relating to CNAME synthesis, and the IETF, in the guise of the DNSEXT
working group, appears to be entertaining thoughts about redefining DNAME records (draft-ietf-dnsext-
rfc2672bis-dname-00.txt). Changing DNS RR types to reflect this name equivalence behaviour without the
CNAME overtones is on the cards, but it would not quite be DNAME as we understand it today!

So, its still early days for DNAME as a tool to support sets of equivalent names in the DNS. The limited
experience so far with DNAME indicates that CNAME synthesis places load back on the name servers that
would otherwise not be there, and the combination of this synthetic record and DNSSEC starts to get very
unwieldy. Also, the IETF is reviewing the DNAME spec with an eye to removing the requirement to perform
CNAME synthesis. All of which may explain why there is no immediate desire to place DNAME
ro

Different interpretations are possible. The use of DNAMEs as aliases for existing top level domains in effect
“locks up” IDNs into the hands of the incumbent tld registry operators . Part of the IDN debate, is, as usual, a
debate over the generic TLDs registry operators and the associated perception of well–entrenched
monopoly-based enterprises. Without DNAMEs it is feasible to allow multiple registrars with different IDN
variants of
e
consistent with such a model of registry diversity in a multi-lingual environment.

It appears that another line of argument is along the lines that the DNS top level name space is one that is
very carefully managed, and new entries into this space are not made lightly. There are issues of stability of
operation, of attempting to conserve a coherent namespace, and the ever present consideration that if we
manage to ‘break’ the DNS root zone it may be too late to recover. This line of argument recognizes the very
hazy nature of name equivalence in a multi-lingual environment and is based on the proposition that the
D
Verisign’s thwarted efforts of Sitefinder in the past simply underscore the fact that the DNS does not handle
imprecision well. Again, goes the argument, if this is the case then can we push this problem back to the

application rather than trying to bend the DNS? If an application is capable of translating, say,日本 into
xn--wgv71a, and considering that the top level domain name space is relatively small, it appears that having
the application performing a further translation of this intermediate form punycode string into the ASCII
string jp is not a particularly challenging form of table lookup. In such a model no tld aliases or equivalences
are required in the root zone of the DNS. If we are prepared to pass the execution of the presentation layer of
the DNS to the application layer to perform, then why not also ask this same presentation layer to perform
the step of further mapping the punycode equivalents of the existing top level domains to the actual top
level domains, using some richer language context that the application may be aware of that is not viable
strictly within the confines of the DNS?

So, with respect to the question of whether IDN TLDS should be loaded into the DNS at all, and, if so, whether
they should represent an opportunity for further diversity in name supply or be constrained to be aligned to
existing names, and precisely now name equivalence is to be interpreted in this context, then it appears that
ICANN has managed to wedge itself in a challenging situation, as usual. In not making a decision those with
an interest in having diverse IDN TLDs ap
o
non-English language users of the Internet, and where dramatic statements are called for use terms such as
“cultural imperialism” to illustrate the nature of the linguistic insult! The case has been made repeatedly, in
support of IDN TLDs, that overwhelming majority of Internet users and commercial activity of the Internet is
in languages other than native English, and the imposition of ASCII labels on the DNS is an unnatural
imposition on these overwhelmingly majority of users.

http://draft-ietf-dnsext-rfc2672bis-dname.potaroo.net/
http://draft-ietf-dnsext-rfc2672bis-dname.potaroo.net/

Page 18

ther add to the pressure to fragment the single DNS hierarchy into multiple
istinct roots. It would be a shame if these various efforts, that can be tagged as various forms of localization

essary and valuable component of the
ymbol space of any global communications system, and the Internet is no exception here. However, in

 the case that what works for the user is what works for the Internet as a whole.

Further

Its possible to reference an overwhelming amount of commentary on this topic, so I’ve deliberately kept this
list relatively brief:

• onalizing Top-Level Domain Names: Another Look, John Klensin, ISOC Member Briefing,
tember 2004

http://www.isoc.org/briefings/018/

nd Local Characters for DNS Top Level Domain (TLD) Names”, John Klensin, October 2005
RFC4185

• TLD workshop, held in November 2005

ents/announcement-17nov05.htm

ptember 2006

RFC4690

•

On the other hand, most decisions to permit some form of entry in the DNS are generally seen an irrevocable
step, and building a DNS that is littered with the legacy of various non-enduring name technologies and poor
ad hoc decisions to address a particular issue or problem without any context of a longer term framework
seems also to represent a step along a direction leading to a heavily fragmented Internet where users cannot
communicate with each other.

Talking about IDNs has undoubtedly raised the political tenor of the debate. We are now considering matters
that directly relate to topics that are of national significance, and national governments now have a entirely
reasonable rationale for entering the IDN debate. There are a set of national agendas at play here, and part
of the issue is that the relatively piecemeal use, and poor handling of scripts in the available set of
application plug-ins for IDNs fur
d
triumph over the desire to have a single international network that provides a single and consistent
communications medium to each and every one of us.

What about global interoperability and the Internet? Should we just take the easy answer and simply give up
on the entire concept? Well of course not! But, taking a narrower perspective, are IDNs simply not viable in
the DNS? I’d suggest that not only is this question one that has been overtaken by events years ago, but even
if we want to reconsider if now, then the answer remains that any user using their local language and local
script should have an equally ‘natural’ experience. IDNs are a nec
s
saying that we also should recognize that in saying that we really do need combinations of both localization
and globalization, and that we are voicing some pretty tough objectives. Is it really the case that the IDNA
approach is enough? Are our assumptions that an unaltered DNS with application-encoded name strings
really a rich enough platform to preserve the essential properties of the DNS while allowing true multi-
lingual use of the DNS? On the other hand, taking a pragmatic view of the topic, is what we have with IDNA
enough for us to work on, and the alternative of re-engineering the entire fabric of the DNS just not a viable
option?

I suspect that the framework of IDNA is now the technology for IDNs for the Internet, and we simply have to
move on from here and deliberately take the stance of understanding the space from users' perspectives
when we look at the policy issues of IDNs. The salient questions from such perspectives are: "What's the
'natural' thing to do?" and "What causes a user the least amount of surprise?". Because in this world it's
definitely

 Reading

Internati
Sep

• “National a

Papers submitted to the ICANN IDN
http://www.icann.org/announcem

• “Review and Recommendations for Internationalized Domain Names (IDNs)”, Internet Architecture

Board, Se

ICANN’s IDN Roadmap Announcement - Progress and Future, ICANN,

http://www.isoc.org/briefings/018/

http://www.icann.org/announcements/announcement-1-01nov06.htm

Page 19

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network Information Centre,
nor those of the Internet Society.

EOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University. He has been closely involved with
the development of the Internet for many years, particularly within Australia, where he was responsible for the initia
build of the Internet within the Australian academic and research sector. He is author of a number of Internet-related

ntly the Chief Scientist at APNIC, the Regional Internet Registry serving the Asia Pacific region. He
was a member of the Internet Architecture Board from 1999 until 2005, and served on the Board of the Internet

About the Author

G
l

books, and is curre

Society from 1992 until 2001.

http://www.potaroo.net

	Internationalizing the Internet
	Terminology
	Internationalizing the DNS
	The IDN Framework
	IDN in Applications (IDNA)

	The Presentation Layer Transform for IDNs
	Stringprep
	Mapping
	Normalization
	Filtering Prohibited Characters
	Right-to-Left Characters

	IDNS and our assumptions about the DNS
	IDNS, TLDs and the Politics of the DNS
	Further Reading

