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In looking back over some 30 years of experience with the Internet, the critical component of the internet protocol suite that has 
been the foundation of its success as the technology of choice for the global communications system is the Internet Protocol (IP) 
itself, working an overlay protocol that can span almost any form of communications media. But I would also like to nominate 
another contender for a critical role within IP, namely the reliable transport protocol that sits on top of IP, the Transmission 
Control Protocol (TCP), and its evolution over time. In supporting this nomination it is interesting to observe that the end-to-end 
rate-adaptive control algorithm that was adopted by TCP represented a truly radical shift from the reliable gateway-to-gateway 
virtual circuit flow control systems used by other protocols of similar vintage. Its also interesting to note that TCP is not designed 
to operate at any particular speed, but it attempts to operate at a speed that uses its fair share of all available network capacity 
along the network path. The fundamental property of the TCP flow control algorithm is that that it attempts to be maximally 
efficient while also attempting to be maximally fair. 
 

Previous articles on this topic, TCP – How it Works (July 2004), and Evolving TCP (August 
2004) have looked at the design assumptions behind TCP and its performance 
characteristics. The essential characteristic of TCP is that it a protocol that attempts to 
establish a dynamic equilibrium with other sessions and opportunistically use all available 
network capacity. It achieves this by constantly altering its flow characteristics, continually 
probing the network to see if higher speeds are supportable, while also being prepared to 
immediately decrease the current sending rate in the face of signals of network congestion. 

 
In a world where network infrastructure capacity and complexity is related to network cost and delivered data is related to 
network revenue, TCP fits in well. TCP’s minimal assumptions about the capability of network components permit networks to be 
constructed using simple transmission capabilities and simple switching systems. “Simple” often is synonymous with cheap and 
scalable, and there is no exception here. TCP also attempts to maximize data delivery through adaptive end-to-end flow rate 
control and careful management of retransmission events. In other words, TCP is an enabler for cheaper networking for both the 
provider and consumer. For the consumer the offer of fast cheap communications has been a big motivation in the uptake for 
demand for Internet-based services, and this, more than any other factor, has been the major enabling factor for the uptake of the 
Internet itself. “Cheap” is often enough in this world, and TCP certainly helps to make data communications efficient and 
therefore cheap. 
 
While TCP is highly effective in many networking environments, that does not mean that it is highly effective in all environments. 
For example: 
 

 In those wireless environments where there is significant wireless noise, TCP may confuse radio-based signal corruption 
and the corresponding packet drop with network congestion, and consequently the TCP session may back off its sending 
rate too early and back off for too long.  

 
 TCP will also back off too early when there is insufficient buffer space in the network's routers. This is a more subtle effect, 

but it is related to the coarseness of the TCP algorithm and the consequent burstiness of TCP packet sequences. These 
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bursts, which will occur at up to twice the bottleneck capacity rate, are smoothed out by network buffers. Buffer 
exhaustion in the interior of the network will cause packet drop, which will cause the generation of a loss signal to the 
active TCP session, which will, in turn, either halve its sending rate or in the worst case reset the session state and restart 
with a single packet exchange. Particularly in wide area networks, where the end-to-end delay bandwidth product 
becomes a significant factor, TCP uses the network's buffers to sustain a steady state throughput which matches the 
available network capacity. Where the interior buffers are under-configured in memory it is not possible to even out the 
TCP bursts to continuously flow through the constrained point at the available data rate.  

 
 TCP also asks of its end hosts to have sufficient local capacity equal to the network capacity on the forward and reverse 

paths. The reason why is that TCP will not discard data until the remote end has reliably acknowledged it, so the sending 
host has to retain a copy of the data for the time it takes to send the data plus the time for the remote end to send the 
matching acknowledgement.  

 
Even taking these limitations into account it’s true to say that TCP works amazingly well in most environments. Nevertheless, one 
area is proving to be a quite fundamental challenge to TCP as we know it, and that’s the domain of wide area, very high speed 
data transfer. 
 

Very High Speed TCP 
 
End host computers, even laptop computers these days, are typically equipped with gigabit Ethernet interfaces, have gigabytes of 
memory and internal data channels that can move gigabits of data per second between memory and the network interface. 
Current IP networks are constructed using multi-gigabit circuits and high capacity switches and routers (assuming that there is still 
a quantitative difference between these two forms of packet switching equipment these days!). If the end hosts and the network 
both can support gigabit transmissions then a TCP session should be able to operate end-to-end at gigabits per second, and 
achieve the same efficiency at gigabit speeds as it does at megabit speeds - right?  
 
Well, no, not exactly! 
 
This is not an obvious conclusion to reach, particularly when the TCP Land Speed Record is now at some 7Gbps across a distance 
that spans 30,000 km of network. What's going on? 
 

The TCP Land Speed Record was originally an informal effort to achieve record-breaking 
TCP transfer speeds across IP networks. There were some noted milestones in the late 1980s 
and early 1990’s particularly with Van Jacobsen’s efforts in achieving sustained 10Mbps and 
45Mbps TCP transfer speeds. 

This activity has been incorporated into the Internet2 program, with the introduction of 
some formal rules about what constitutes a TCP Land Speed effort. In particular, the rules 
now have times, distances, TCP constraints and call for the use of operational networks. 
Updates to the record have been posted at quite frequent intervals in recent years, and as 
of May 2005 the IPv4 single stream record is a TCP session operating at 7.21Gbps for 30 
minutes over 30,000 km of fibre path. 

 
 
Let head back to the basics of TCP to understand some of the issues with very high speed TCP. TCP operates in one of two states, 
that of slow start and congestion avoidance.  
 

 Slow start mode is TCP’s initial mode of operation in any session, as well as its ‘reset’ mode. In this mode, TCP sends two 
packets in response to each ack packet that advances the sender's window. In approximate terms (delayed acks 
notwithstanding) this allows TCP to double its sending rate in each successive lossless round trip time interval. The rate 
increase is exponential, effectively doubling each round trip time (RTT) interval, and the rate increase is bursty, 
effectively sending data into the network at twice the bottleneck capacity during this phase. 

 

http://lsr.internet2.edu/


 
 

 
 

The issue about sending data into the network at two the bottleneck data speed is one that 
is derived form the ‘ack clocking’ property of TCP. Disregarding the complications of the 
delayed ack protocol for a second, a TCP receiver will generate a new ack packet each time a 
packet arrives at the receiver. The sending rate of the acks is, in effect, the same as the 
receiving rate for the data packets. Assuming a one-way data transfer, so that ack packets 
in the reverse direction are minimally sized, and assuming minimal jitter on the reverse 
path from the receiver back to the sender, then the arrival rate of acks at the sender is 
comparable to the arrival rate of data packets at the receiver. In other words, the return ack 
rate is comparable to the bottleneck capacity of the forward network path from sender to 
receiver. Sending two packets per received ack is effectively sending packets into the 
network at twice the bottleneck capacity. At the bottleneck point the switching unit will 
receive twice the amount of data than it can transmit to the output device over a period 
that corresponds to the bandwidth delay product of the bottleneck link. Hence the 
comment that TCP is a bursty protocol, particularly at startup. For this reason TCP tends to 
operate more effectively across network switching elements that are generously endowed 
with memory, or have, for each output port a buffer capacity roughly equal to the delay 
bandwidth product of the link that is attached to that port. 

  
 In the other operating mode, that of congestion avoidance, TCP sends an additional segment of data for each loss-free 

round trip time interval. This is an additive rate increase rather than exponential, increasing the sender's speed at the 
constant rate of one segment per round trip time interval. 

  
TCP will undertake a state transition upon the detection of packet loss. Small scale packet loss (of the order of 1 or 2 packets per 
loss event) will cause TCP to halve its sending rate and enter congestion avoidance mode, irrespective of whether it was in this 
mode already. Repetition of this cycle gives the classic saw tooth pattern of TCP behaviour, and the related derivation of TCP 
performance as a function of packet loss rate. Longer sustained packet loss events will cause TCP to stop using the current session 
parameters and recommence the congestion control session using the restart window size and enter the slow start control mode 
once again. 
 

 
Figure 1 – TCP Behaviour 

 
 
But what happens when two systems are at opposite sides of a continent with a high speed path between them? How long does it 
take for a single TCP session to get up to a data transfer rate of 10Gbps? Can a single session operate at a sustained rate of 10Gbps? 
 
Lets look at a situation such as the network path from Brisbane, on the eastern side of the Australian continent to Perth on the 
western side. The cable path is essentially along the southern coast of the continent, so the round trip delay time (RTT) is 70ms. 
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This implies that there are 14.3 round trip intervals per second. Lets also assume that the packet size being used is 1500 octets, or 
12,000 bits, and the TCP initial window size is a single packet. Lets also assume that the bottleneck capacity of the host-to-host 
path between Brisbane and Perth is 10Gbps. 
 
In a simple slow start model the sending speed doubles every 70ms, so after 17 RTT intervals where the sending rate has doubled 
for each interval, or after some 1.2 seconds have elapsed, the transfer speed has reached 11.2 Gbps (assuming a theoretical host 
with sufficiently fast hardware components, sufficiently fast internal data paths and adequate memory). At this stage lets assume 
that the sending rate will have exceeded the buffer capacity at the bottleneck point in the network path. Packet drop will occur as 
the critical point buffers in the network path have now saturated. At this point the TCP sender’s congestion window will halve, as 
will the TCP sending rate, and TCP will switch to congestion avoidance mode. In congestion avoidance mode the rate increase is 1 
segment per RTT. This is equivalent to sending an additional 12Kbits per RTT, or, given the session parameters as specified above, 
this is equivalent to a rate increase of 171Kbps per second each RTT. So how long will it take TCP to recover and get back to a 
sending rate of 10Gbps?. 
 
If this was a T-1 circuit where the available path bandwidth was 1.544Mbps, and congestion loss occurred at a sending rate of 
2Mbps (higher than the bottleneck transmission capacity due to the effect of queuing buffers within the network), then TCP will 
rate halve to 1 Mbps and then use congestion avoidance to increase the sending rate back to 2Mbps. Within the selected 
parameters of a 70 ms RTT and 1500 byte segment size, this involves using congestion avoidance to inflate the congestion 
window from 6 segments to 12. This will take 0.42 seconds. So as long at the network can operate without packet loss for the 
session over an order of 1 second intervals, then TCP can comfortably operate at maximal speed in a megabit per second network.  
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What about our 10Gbps connection? The first estimate is the amount of useable buffer space in the switching elements. Assuming 
a total of some 256Mbytes of useable queue space on the network path prior to the onset of queue saturation, then the TCP 
session operating in congestion avoidance mode will experience packet loss some 590 RTT intervals after reaching the peak 
transmission speed of 10Gbps, or some further 41 seconds, at which point the TCP sending rate in congestion avoidance mode is 
10.1Gbps. For all practical purposes the TCP congestion avoidance mode causes the sawtooth oscillation of this ideal TCP session 
between 5.0GBps and 10.1Gbps. A single iteration of this saw-tooth cycle will take 2,062 seconds, or 34 minutes and 22 seconds. 
The implication here is that the network has to be absolutely stable in terms of no packet loss along the path for time scales of the 
order of tens of minutes (or some billions of packets), and corresponding transmission bit error rates that are less than 10-14. It also 
implies massive data sets to be transferred, as the amount of data passed in just one TCP congestion avoidance cycle is 1.95 
terrabytes (1.95 x 1012 bytes). Its also the case that the TCP session cannot make full use of the available network bandwidth, as 
the average data transfer rate is 7.55Gbps under these conditions, not 10Gbps. 

TCP Congestion Performance (RTT 70ms, 1500 MSS, 10Gbps, 256Mb queue)

0

2

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0

Time (Hours)

R
at

e 
(G

bp
s)

Slow Start
(1.2s)

Congestion Avoidance Cycle (34 minutes)

 

 



 
 

 
 

Page 5 

Figure 2 – TCP behaviour at High Speed 
 

A note about the simulation used for these figures: 

The simulation used here is a discrete event simulation that has three states: initial slow 
start where the rate is inflated by the slow start multiplier factor each RTT interval, 
multiplicative decrease, where the sending rate is decreased by the multiplicative factor 
within a single RTT interval and congestion avoidance where the sending rate in increased 
by the additive constant for each RTT interval. The path is assumed to be loss free, and 
packet loss only occurs once the path is full and the queue buffer is also full. It is assumed in 
this simulation that a loss event will recover without the need to restart the session. The 
aim here is to show the best possible protocol performance, and compare this performance 
across various congestion control models.  

Today’s equipment is unlikely to be able to duplicate these ideal conditions. Network 
interface controllers seldom perform above a sustained rate of 7Gbps, and internal data 
paths may also be constrained. Within the network the presence of other traffic flows tend 
to create a more chaotic picture of queue behaviour and corresponding packet drop 
behaviour.  

So these simulation results present a very ideal picture of peak protocol performance, and 
reality is invariably worse than these figures portray. 

 
 
Clearly something is unexpected with this picture, as it certainly looks like it’s a hard and lengthy task to fill a long haul high 
capacity cable with data, and TCP is not behaving as we’d expect. While experimenting with the boundaries of TCP is in itself an 
interesting area of research, there are some practical problems here that could well benefit from this type of high speed transport.  
 

The most commonly quoted example, and certainly one of the more impressive ones is the 
Large Hadron Collider at CERN. 

 “The CERN Particle Physics lab in Geneva, Switzerland, successfully transmitted a data 
stream averaging 600Mbytes per second for 10 days to seven countries in Europe and the 
US. It was a crucial test of the computing infrastructure for the large Hadron Collider being 
built at CERN. The LHC will be the most data intensive physics instrument ever built, 
generating 1500 Megabytes every second for a decade or more.” 

New Scientist, 30 April 2005 

TCP and the Land Speed Record 
 
It is certainly possible to have TCP perform for sustained rates at very high speed, as the land speed records for TCP show, but 
something else is happening here, and there are a set of preconditions that need to be met before attempting to set a new record: 
 

 Firstly, its good, indeed essential, to have the network path all to yourself. Any form of packet drop is a major problem 
here, so the best way to ensure this is to keep the network path all to yourself! 

 
 Secondly it’s good, indeed essential to have a fixed latency. If the objective of the exercise is to reach a steady state data 

transmission then any change in latency, particularly as a reduction in latency has the risk of a period of over-sending, 
which in turn has a risk of packet loss. So keep the network as stable as possible. 

 



 
 

 
 

 Thirdly its essential to know in advance both the round trip latency and the available bandwidth.  
 
You can then multiply these two numbers together (RTT and bandwidth), divide by the packet size, round down, and be sure to 
configure the sending TCP session to have precisely this buffer size, and the receiver to have a slightly larger size. And then start 
up the session.  
 
The intention here is that TCP will use slow start to the point where the sender runs out of buffer space, and will continue to sit at 
this speed for as long as the sender, receiver and network path all remain in a very stable state. For the example configuration of a 
10Gbps system with 70ms RTT, then setting a buffer limit of 116,000 packets will cause the TCP session to operate at 9.94Gbps. As 
long as the latency remains absolutely steady (no jitter), and as long as there is no other cross traffic, this sending rate can, in 
theory at any rate, be sustained indefinitely, with a steady stream of data packets being matched by a steady stream of ack 
packets.  
 

TCP - Send Buffer Limited
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Figure 3 TCP operating with Buffer Saturation 

 
Of course, this is an artificially constrained situation. The real issues here with the protocol are in the manner in which it shares a 
network path with other concurrent sessions as well as the protocol’s ability to fill the available network capacity. In other words, 
what would be good to see is a high speed high volume version of TCP that would be able to coexist on a network with all other 
forms of traffic, and, perhaps more ambitiously, that this high speed form of TCP can share the network fairly with other traffic 
sessions while at the same time making maximal use of the network. But TCP takes way too long in its additive increase mode 
(congestion avoidance) to recover one half of its original operating speed when operating at high speed across trans-continental 
sized network paths. If we want very high speed TCP to be effective and efficient then we need to look at changes to TCP for high 
speed operation. 

 

High Speed TCP 
 
There are two basic approaches to high speed TCP: parallelism of existing TCP, or changes to TCP to allow faster acceleration rates 
in a single TCP stream. 
 
Using parallel TCP streams as a means of increasing TCP performance is an approach that has been around for some time. The 
original HTTP specification, for example, allowed the use of parallel TCP sessions to download each component of a web page 
(although HTTP 1.1 reverted to a a sequential download model because the overheads of session startup appeared to exceed the 
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benefits of parallel TCP sessions in this case). Another approach to high speed file transfer through parallelism was that of GRID 
FTP. The basic approach is to split up the communications payload into a number of discrete components, and send each of these 
components simultaneously. Each component of the transfer may be between the same two endpoints (such as Grid FTP), or may 
be spread across multiple endpoints (as with BitTorrent). 
 
But for parallel TCP to operate correctly you need to have already assembled all the data (or at a minimum know where all the 
data components are located). Where the data is being generated on the fly (such as observatories, or particle colliders) in massive 
quantities, there may be no choice but to treat the data set as a serial stream and use a high speed transport protocol to dispatch 
it. In this case the task is to adjust the basic control algorithms for TCP to allow it to operate at high speed, but also to operate 
‘fairly’ on a mixed traffic high speed network. 
 

Parallel TCP 

Using parallelism as a key to higher speed is a common computing technique, and lies behind many supercomputer architectures. 
The same can apply to data transfer, where a data set is divided into a number of smaller chunks, and each component chunk is 
transmitted using its own TCP session. The underlying expectation here is that when using some number, N, of parallel TCP 
sessions, a single packet drop event will most probably cause the fastest of the N sessions to rate halve, as the fastest session will 
have more packets in flight in the network, and is therefore the most likely session to be impacted by a packet drop event. This 
session will then use congestion avoidance rate increase to recover. This implies that the response to a single packet drop is to 
reduce the sending rate by at most 1/(2N). For example, using 5 parallel TCP sessions, the response to a single packet drop event is 
to reduce the total sending rate by 1 / (2 x 5), or 1/10, as compared to the response from a single TCP session, where a single packet 
drop event would reduce the sending rate by 1/2.  
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An simulated version of 5 parallel sessions in a 10Gbps session is shown in Figure 4. 

TCP SImulation - Single vs Parallel Streams
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Figure 4 – Parallel TCP Simulation 
 
The essential characteristics of the aggregate flow is that, under lossless conditions the data flow of N parallel sessions increases 
at a rate N times faster than a single session in congestion avoidance mode. Also the response to an isolated loss event is that of 



 
 

 
 

rate halving of a single flow, so that the total flow rate under ideal conditions is between R and R * (2N-1)/2N, or a long term 
average throughput of R * (4N-1)/4N. For N = 100 our theoretical 10Gbps connection could now operate at 9.9Gbps.  
 
Of course the one major difference between theory and practice is that practice is different from theory, and there has been a 
considerable body of work looking at the performance of parallel TCP under various conditions, both in terms of maximizing 
throughput and the most efficient choice of the number of parallel active streams to use. Part of the problem is that while simple 
simulations, such as that used to generate Figure 4, tend to evenly distribute each of the parallel sessions to maximise the 
throughput, there is the more practical potential that the individual sessions self-synchronise. Because the parallel sessions have 
a similar range of window sizes, it is possible that at a given point in time there will be a similar number of packets in the network 
path from each stream. If the packet drop event is a multiple packet drop event, such as a tail-drop queue, then it is entirely 
feasible that a number of parallel streams will experience packet loss simultaneously, and there is the consequent potential for 
the streams to fall into synchronization. 
 
The two extremes, evenly distributed and tightly synchronized multiple streams are indicated in Figure 5. The average throughput 
of parallel synchronized streams is the same as a single stream over extended periods in this simulation, and both are certainly far 
worse than an evenly distributed set of parallel streams.  
 
One way to address this problem is to reunite these parallel streams into a single controlled stream that exhibits the same 
characteristics as evenly spread parallel streams. This approach, MulTCP, is considered in the next section. 
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And it all this analysis of parallel TCP streams sounds a little academic and unrelated to networking today, its useful to note that 
many ISPs these days see BitTorrent traffic as their highest volume application these days. Bit Torrent is a peer-to-peer protocol 
that undertakes transfer of datasets using a highly parallel transfer technique. Under BitTorrent the original data set is split into 
blocks, each of which may be downloaded in parallel. The subtle twist here is that the individual sessions do not have the same 
source points, and the host may take feeds from many different sources simultaneously, as well as offering itself as a feed point 
for the already downloaded blocks. This behaviour exploits the peer-to-peer nature of these networks to a very high extent, 
potentially not only exploiting parallel TCP sessions for speed gains, but also exploiting diverse network paths and diverse data 
sources to avoid single path congestion. Considering its effectiveness in terms of maximizing transfer speeds for high volume data 
sets and its relative success in truly exploiting the potential of peer-to-peer networks, and of course the dramatic uptake of 
BitTorrent and its extensive use, BitTorrent probably merits closer examination, but perhaps that’s for another time and an article 
all on its own. 

TCP SImulation - Synchronized vs Distributed Parallel Streams
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Figure 5 – Comparison of Parallel TCP - Synchronized and Distributed Streams 
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Very High Speed Serial TCP 
 
The other general form of approach is to re-examine the current TCP control algorithm to see if there are parameter or algorithm 
changes that could allow TCP to undertake a better form of rate adaptation to these high capacity long delay network paths. The 
aim here is to achieve a good congestion response algorithm that does not amplify transient congestion conditions into sustained 
disaster areas, while at the same time being able to support high speed data transfers making effective use of all available 
network capacity. Also on this wish list is a desire to behave sensibly in the face of other TCP sessions, so that it can share the 
network with other TCP sessions in a fair manner.  
 

MulTCP 
 
The first of these approaches is MulTCP. This is a single TCP stream that behaves in a manner equivalent to N parallel TCP sessions, 
where the virtual sessions are evenly distributed in order to achieve the optimal outcome in terms of throughput. The essential 
changes to TCP are in congestion avoidance mode and the reaction of packet loss. In congestion avoidance mode MulTCP 
increases its congestion window by N segments per RTT, rather than the default of a single segment. Upon packet loss MulTCP 
reduces its window by W/(2N), rather than the default of W/2. MulTCP uses a slightly different version of slow start, increasing its 
window by 3 segments per received ACK, rather than the default value of 2.  
 
MulTCP represents a simple change to TCP that does not depart radically from TCP’s congestion control algorithm. Of course 
choosing an optimal value for “N” is one where some understanding of the network characteristics would help. Too high a value 
for N and the MulTCP session has a tendency to claim an unfair amount of network capacity, while too small a value for N does 
not necessarily take full advantage of available network capacity. Figure 6 shows MulTCP compared to a simulation of an 
equivalent number of parallel TCP streams and a single TCP stream (N = 5 in this particular simulation). 

MulTCP Simulation (N=5)
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Figure 6 – MulTCP 
 
 
Good as this is, there is the lingering impression that we can do better here. It would be better not to have to configure the number 
of virtual parallel sessions. It would be better to support fair outcomes when competing with other concurrent TCP sessions over a 



 
 

 
 

range of bandwidths, and it would be better to have a wide range of scaling properties. There is no shortage of options here for 
tweaking various aspects of TCP to meet some of these preferences, ranging from adaptations applied to the TCP rate control 
equation to approaches that view the loading onto the network as a power spectrum problem. 
 

HighSpeed TCP 
 
Another approach, described in RFC 3649, “HighSpeed TCP for Large Congestion Windows” looks at this from the perspective of the 
TCP rate equations, developed by Sally Floyd at ICIR. 
 
When TCP operates in congestion avoidance mode at an average speed of W packets per RTT, then the number of packets per RTT 
varies between (2/3)W and (4/3)W. Each cycle takes (2/3)W RTT intervals, and the number of packets per cycle is therefore (2/3)W2 
packets. This implies that the rate can be sustained at W packets per RTT as long as the packet loss rate is 1 packet loss per cycle, 
or a loss rate, �, where � = 1/((2/3)W2). Solving this equation for W gives the average packet rate per RTT of W = sqrt(1.5) / sqrt(�). 
The general rate function for TCP, R, is therefore R = (MSS/RTT) * (sqrt(1.5) / sqrt(�)), where MSS is the TCP packet size. 
 
Taking this same rate equation approach, what happens for N multiple streams? The ideal answer is that the parallel streams 
operate N times faster at the same loss rate, or, as a rate equation the number of packets per RTT, WN, can be expressed as 
WN = N((sqrt(1.5) / sqrt(�)), and each TCP cycle is compressed to an interval of (2/3) (WN

2/N2). 
 
But perhaps the desired response is not to shift the TCP rate response by a fixed factor of N, as is the intent with MulTCP, but to 
adaptively increase the sending rate through increasing values of N as the loss rate falls. The proposition made by HighSpeed TCP 
is to propose a TCP response function that preserves the fixed relationship between the logarithm of the sending rate and the 
logarithm of the packet loss rate, but alters the slope of the function, such that TCP increases its congestion avoidance increment 
as the packet loss rate falls. This relationship is shown in Figure 7, where the log of the sending rate is compared to the log of the 
packet loss rate. MulTCP preserves the same relationship between the log of the sending rate and the log of the packet loss rate, 
but alters the offset, while changing the value of the exponent of the packet loss rate causes a different slope to the rate equation. 
 

 
Figure 7 – TCP Response Functions 
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One way to look at the HighSpeed TCP proposal is that it operates in the same fashion as a turbo-charger on an engine; the faster 
the engine is running, the higher the turbo-charged boost to the engine’s normal performance. Below a certain threshold value 
the TCP congestion avoidance function is unaltered, but once the packet loss rate falls below a certain threshold value then the 
higher speed congestion avoidance algorithm is invoked. The higher speed rate equation proposed by HighSpeed TCP is based on 
achieving a transfer rate of 10Gbps over a 100ms latency path with a packet loss rate of 1 in 10 million packets . Working backward 
from these parameters gives us a rate equation for W, the number of packets per RTT interval of W = 0.12 / p0.835. This is 
approximately equivalent to a MulTCP session where the number of parallel sessions, N, is raised as the TCP rate increases.  
 
This can be translated into two critical parameters for a modified TCP: the number of segments to be added to the current window 
size for each lossless RTT time interval, and the number of segments to reduce the window size in response to a packet loss event. 
Conventional TCP uses values of 1 and (½)W respectively. The HighSpeed TCP approach increases the congestion window by 1 
segment for TCP transfer rates up to 10Mbps, but then uses an increase of some 6 segments per RTT for 100Mbps, 26 segments at 
1Gbps and 70 segments at 10Gbps. In other words the faster the TCP rate that has already been achieved achieved, then the 
greater the rate acceleration. Highspeed TCP also advocates a smaller multiplicative decrease in response to a single packet drop, 
so that at 10Mbps the multiplier would be ½, at 100Mbps the multiplier is 1/3, 1Gbps it is 1/5 and at 10Gbps it is set to 1/10.  
 
What does this look like? Figure 8 shows a HighSpeed TCP simulation. What is not easy to discern is during congestion avoidance 
HighSpeed TCP opens its sending window in increments of 61 through 64 each RTT interval, making the rate curve slightly upward 
during this window expansion phase. HighSpeed TCP manages to recover from the initial rate halving from slow start in around 30 
seconds, and operates at a 8 second cycle, as compared to a single TCP stream’s 38 minute cycle, or a N stream MulTCP session 
that operates at a 20 second cycle. 
 
 

HighSpeed TCP (70ms, 1500 Segments, 10Gbps)
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Figure 8 = HighSpeed TCP Simulation 
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One other aspect of this work concerns the so-called slow start algorithm, which at these speeds is not really slow at all. The final 
round trip time interval in our scenario has TCP attempting to send an additional 50Mbytes of data in just 70 ms. That’s an 
additional 33,333 packets that are pushed into the network’s queues. Unless the network path was completely idle at this point its 
likely that hundreds, if not thousands of these packets will be dropped in this step, pushing TCP back into a restart cycle. 
HighSpeed TCP has proposed a limited slow start to accompany HighSpeed TCP that limits the inflation of the sending window to 
a fixed upper rate per RTT to avoid this problem of slow start overwhelming the network and causing the TCP session to 
continually restart. Other changes for HighSpeed TCP are to extend the limit of three duplicate ACKs before retransmitting to a 
higher value, and a smoother recovery when a retransmitted packet is itself dropped. 
 
 
 

Scalable TCP 
 
Of course HighSpeed TCP is not the only offering in the high performance TCP stakes. 
 
Scalable TCP, developed by Tom Kelly at Cambridge University, attempts to break the relationship between TCP window 
management and the RTT time interval. It does this by noting that in ‘conventional’ TCP, the response to each ack in congestion 
avoidance mode is to inflate the sender’s congestion window size (cwnd) by (1/cwnd), thereby ensuring that the window in inflated 
by 1 segment each RTT interval. Similarly the window halving on packet loss can be expressed as a reduction in size by (cwnd/2). 
Scalable TCP replaces the additive function of the window size by the constant value a. The multiplicative decrease is expressed as 
a fraction b, which is applied to the current congestion window size.  
 
In Scalable TCP, for each ack the congestion window is inflated by the constant value a, and upon packet loss the window is 
reduced by the fraction b. The relative performance of Scalable TCP as compared to conventional TCP and MulTCP is shown in 
Figure 9.  
 
The essential characteristic of Scalable TCP is the use of a multiplicative increase in the congestion window, rather than a linear 
increase. This effectively creates a higher frequency of oscillation of the TCP session, probing upward at a higher rate and more 
frequently than HighSpeed TCP or MulTCP. The frequency of oscillation of Scalable TCP is independent of the RTT interval, and the 
frequency can be expressed as f = log(1 - b) / log(1 + a). In this respect longer networks paths exhibit similar behaviour to shorter 
paths at the bottleneck point. Scalable TCP also has a linear relationship between the log of the packet loss rate and the log of the 
sending rate, with a greater slope of HighSpeed TCP. 
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Figure 9 – Scalable TCP 
 

BIC and CUBIC 
 
The common issue here is that TCP under-performs in those areas of application where there is a high bandwidth-delay product. 
The common problem observed here is that the additive window inflation algorithm used by TCP can be very inefficient in long 
delay high speed environments. As can be seen in Figure 10, the ACK response for TCP is a congestion window inflation operation 
where the amount of inflation of the window is a function of the current window size and some additional scaling factor. 
 
BIC (Binary Increase Congestion Control) takes a different view, by assuming that TCP is actively searching for a packet sending 
rate which is on the threshold of triggering packet loss, and uses a binary chop search algorithm to achieve this efficiently. When 
BIC performs a window reduction in response to packet drop, it remembers the previous maximum window size, as well as the 
current window setting. With each lossless RTT interval BIC attempts to inflate the congestion window by one half of the 
difference between the current window size and the previous maximum window size. In this way BIC quickly attempts to recover 
from the previous window reduction, and, as BIC approaches the old maximum value, it slows down its window inflation rate, 
halving its rate of window inflation each RTT. This is not quite so drastic as it may sound, as BIC also uses a maximum inflation 
constant to limit the amount of rate change in any single RTT interval. The resultant behaviour is a hybrid of a linear and a non-
linear response, where the initial window inflation after a window reduction is a linear increase, but as the window approaches 
the previous point where packet loss occurred the rate of window increase slows down. BIC uses the complementary approach to 
window inflation once the current window size passes the previous loss point. Initially further window inflation is small, and the 
window inflation value doubles in size for each RTT, up to a limit value, beyond which the window inflation is once more linear. 
 
BIC can be too aggressive in low RTT networks and in slower speed situations, leading to a refinement of BIC, namely CUBIC. CUBIC 
uses a 3rd order polynomial function to govern the window inflation algorithm, rather than the exponential function used by BIC. 
The cubic function is a function of the elapsed time since the previous window reduction, rather than BIC’s implicit use of an RTT 
counter, so that CUBIC can produce fairer outcomes in a situation of multiple flows with different RTTs. CUBIC also limits the 
window adjustment in any single RTT interval to a maximum value, so the initial window adjustments after a reduction is linear. 
Here the new window size, W, is calculated as W = C(t – K)3 + Wmax, where C is a constant scaling factor, t is the elapsed time since 
the last window reduction event, Wmax is the size of the window prior to the most recent reduction and K is a calculated value: K = 
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(Wmax � / C)1/3. This function is more stable when the window size approaches the previous window size Wmax. The use of a time 
interval rather than an RTT counter in the window size adjustment is intended to make CUBIC more sensitive to concurrent TCP 
sessions, particularly in short RTT environments.  
 
Figure 10 shows the relative adjustments for BIC and CUBIC, using a single time base. The essential difference between the two 
algorithms is evident in that the CUBIC algorithm attempts to reduce the amount of change in the window size when near the 
value where packet drop was previously encountered. 
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Figure 10 - Window adjustment for BIC and CUBIC  

 

Westwood 
 
The ‘steady state’ mode of TCP operation is one that is characterized by the ‘sawtooth’ pattern of rate oscillation. The additive 
increase is the means of exploring for viable sending rates while not causing transient congestion events by accelerating the 
sending rate too quickly. The multiplicative decrease is the means by which TCP reacts to a packet loss event which is interpreted 
as being symptomatic of network congestion along the sending path.  
 
BIC and CUBIC concentrate on the rate increase function, attempting to provide for greater stability for TCP sessions as they 
converge to a long term available sending rate. The other perspective is to examine the multiplicative decrease function, and see if 
there is further information that a TCP session can use to modify this rate decrease function. 
 
The approach taken by Westwood, and a subsequent refinement, Westwood+, is to concentrate on TCP’s halving of its congestion 
window in response to packet loss (as signalled by 3 duplicate ACK packets). The conventional TCP algorithm of halving the 
congestion window can be refined by the observation that the stream of return ACK packets actually provides an indication of the 
current bottleneck capacity of the network path, as well as an ongoing refinement of the minimum round trip time of the network 
path. The Westwood algorithm maintains a bandwidth estimate by tracking the TCP acknowledgement value and the inter-arrival 
time between ACK packets in order to estimate the current network path bottleneck bandwidth. This technique is similar to the 
“Packet Pair” approach, and that used in the TCP Vegas. In the case of the Westwood approach the bandwidth estimate is based 
on the receiving ACK rate, and is used to set the congestion window, rather than the TCP send window. The Westwood sender 
keeps track of the minimum RTT interval, as well as a bandwidth estimate based on the return ACK stream. In response to a packet 
loss event, Westwood does not halve the congestion window, but instead sets it to the bandwidth estimate times the minimum 
RTT value. If the current RTT equals the minimum RTT, implying that there is no queue delays over the entire network path , then 
this will set the sending rate to the bandwidth of the network path. If the current RTT is greater than the minimum RTT, this will 
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set the sending rate to a value that is lower than the bandwidth estimate, and allow for additive increase to once again probe for 
the threshold sending rate when packet loss occurs.  
 
The major issue here is the potential variation in inter-ACK timing, and while Westwood uses every available data / ACK pairing to 
refine the current bandwidth estimate, the approach also uses a low pass filter to ensure that bandwidth estimate remains 
relatively stable over time. The practical issue here is that the receiver may be performing some form of ACK distortion, such as a 
delayed ACK response, and the network path contains jitter components in both the forward and reverse direction, so that ACK 
sequences can arrive back at the sender with a high variance of inter-ACK arrival times. Westwood+ further refines this technique 
to account for a false high reading of the bandwidth estimate due to ACK compression, using a minimum measurement interval of 
the greater of the round trip time or 50ms. 
 
The intention here is to ensure that TCP does not over-correct when it reduces its congestion window, so that the issues relating to 
the slow inflation rate of the window are less critical for overall TCP performance. The critical part of this work lies in the filtering 
technique that takes a noisy sequence of measurement samples and applies an anti-aliasing filter followed by a low-pass 
discrete-time filter to the data stream in order to generate a reasonably accurate available bandwidth estimate. This is coupled 
with the minimum RTT measurement to provide a lower bound for the TCP congestion window setting following detecting of 
packet loss and subsequent fast retransmit repair of the data stream. If the packet loss has been caused by network congestion 
the new setting will be lower than the threshold bandwidth (lower by the ratio RTTmin / RTTcurrent), so that the new sending rate 
will also allow the queued backlog of traffic along the path to clear. If the packet loss has been caused by media corruption, the 
RTT value will be closer to the minimum RTT value, in which case the TCP session rate backoff will be smaller in size, allowing for a 
faster recovery of the previous data rate. 
 
While this approach has direct application in environments where the probability of bit level corruption is intermittently high, 
such as often encountered with wireless systems, it also has some application to the long delay high speed TCP environment. The 
rate backoff of TCP Westwood is one that is based on the RTTmin / RTTcurrent ratio, rather than rate halving in conventional TCP, or a 
constant ratio, such as used in MulTCP, allowing the TCP session to oscillate its sending rate closer to the achievable bandwidth 
rather than performing a relatively high impact rate backoff in response to every packet loss event. 

 

H-TCP 
 
The observation made by the proponents of H-TCP is that better TCP outcomes on high speed networks can be achieved by 
modifying TCP behaviour to make the time interval between congestion events smaller. The signal that TCP has taken up its 
available bandwidth is a congestion event, and by increasing the frequency of these events TCP will track this resource metric with 
greater accuracy. To achieve this the H-TCP proponents argue that both the window increase and decrease functions may be 
altered, but in deciding whether to alter these functions, and in what way, they argue that a critical factor lies in the level of 
sensitivity to other concurrent network flows, and the ability to converge to stable resource allocations to various concurrent 
flows.  
 

While such modifications might appear straightforward, it has been shown that 
they often negatively impact the behaviour of networks of TCP flows. High-
speed TCP and BIC-TCP can exhibit extremely slow convergence following 
network disturbances such as the start-up of new flows; Scalable-TCP is a 
multiplicative-increase multiplicative-decrease strategy and as such it is 
known that it may fail to converge to fairness in drop-tail networks. 
Work-in-progress: draft-leith-tcp-htcp-00.txt 

 
H-TCP argues for minimal changes to the window control functions, observing that in terms of fairness a flow with a large 
congestion window should, in absolute terms, reduce the size of their window by a larger amount that smaller-sized flows, as a 
means of readily establishing a dynamic equilibrium between established TCP flows and new flows entering the same network 
path. 
 
H-TCP proposes a timer-based response function to window inflation, where for an initial period, the existing value of 1 segment 
per RTT is maintained, but after this period the inflation function is a function of the time since the last congestion event, using an 
order-2 polynomial function where the window increment each RTT interval, � = (½T2 + 10T + 1), where T is the elapsed time since 
the last packet loss event. This is further modified by the current window reduction factor � where �’ = 2 x (1 - �) x �.  
 
The window reduction multiplicative factor, �, is based on the variance of the RTT interval , and � is set to RTTmin / RTTmax for the 
previous congestion interval, unless the RTT has a variance of more than 20%, in which case the value of ½ is used.  
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H-TCP appears to represent a further step along the evolutionary path for TCP, taking the adaptive window inflation function of 
HighSpeed TCP, using an elapsed timer as a control parameter as was done in Scalable TCP, and using the RTT ratio as the basis 
for the moderation of the window reduction value from Westwood. 

 

FAST 
 
FAST is another approach to high speed TCP. This is probably best viewed in context in terms of the per packet response of the 
various high speed TCP approaches, as indicated in the following table (Figure 10): 
 
 
 

TYPE Control Method Trigger Response 

TCP AIMD(1,0.5) ACK Response W = W + 1/W 

  Loss Response W = W – W *0.5 

    

MulTCP AIMD(N,1/2N) ACK Response W = W + N/W 

  Loss Response W = W – W * 1 / 2N 

    

HighSpeed TCP AIMD(a(w), b(w)) ACK Response W = W + a(W)/W 

  Loss Response W = W – W * b(W) 

    

Scalable TCP MIMD( 1/100, 1/8) ACK Response W = W + 1 / 100 

  Loss Response W = W – W * 1 / 8 

    

FAST RTT Variation RTT W = W * (base RTT / 
RTT) + α 

 
Figure 11 – Control and Response Table 

 
All these approaches share a common structure of window adjustment, where the sender’s window is adjusted according to a 
control function and a flow gain. TCP, MulTCP, HighSpeed TCP, Scalable TCP, BIC, CUBIC, Westwood, and H-TCP all operate 
according to a congestion measure which is based on ACK clocking and a packet loss trigger. What is happening in these models is 
that a bottleneck point on the network path has reached a level of saturation such that the bottleneck queue is full and packet 
loss is occurring. It is noted that the build up of the queue prior to packet loss would’ve caused a deterioration of the RTT.  
 
This leads to the observation made by FAST, that another form of congestion signalling is one that is based on RTT variance, or 
cumulative queuing delay variance. FAST is based on this latter form of congestion signalling.  
 
FAST attempts to stabilise the packet flow at a rate that also stabilises queue delay, by basing its window adjustment, and 
therefore its sending rate, such that the RTT interval is stabilized. The window response function is based on adjusting the window 
size by the proportionate amount that the current RTT varies from the average RTT measurement. If the current RTT is lower than 
the average, then window size is increased, and if the current RTT is higher then window size is decreased. The amount of window 
adjustment is based on the proportionate difference between the two values, leading to the observation that FAST exponentially 
converges to a base RTT flow state. By comparison, conventional TCP has no converged state, but instead oscillates between the 
rate at which packet loss occurs and some lower rate. (Figure 12) 
 
 



 
 

 
 

Window Size

Q
ue

ue
 D

el
ay

Packet loss

de
la

y

TCP Rate Oscillation

FAST

Window Size

Q
ue

ue
 D

el
ay

Packet loss

de
la

y

TCP Rate Oscillation

FAST

 
Figure 12 - TCP response function vs FAST  

 

Fast maintains an exponential weighted average RTT measurement and adjusts its window in proportion to the amount by which 
the current RTT measurement differs from the weighted average RTT measurement. It is harder to provide a graph of a simulation 
of FAST as compared to the other TCP methods, and the more instructive material has been gather from various experiments 
using FAST.  

XCP - end-to-end and network signalling 
 
It is possible to also call in the assistance of the routers on the path and call on them to mark packets with signalling information 
relating to current congestion levels. This approach was first explored with the concept of ECN, or Explicit Congestion Notification, 
and has been generalized into a transport flow control protocol, called “XCP”, where feedback relating to network load is based 
explicit signals provided by routers relating to their relative sustainable load levels. Interestingly this heads back away from the 
original design approach of TCP, where the TCP signalling is set up as effectively a heartbeat signal being exchanged by the end 
systems, and the TCP flow control process is based upon interpretation of the distortions of this heartbeat signal by the network.  
 
XCP appears to be leading into a design approach where the network switching elements play an active role in end-to-end flow 
control, by effectively signalling to the end systems the current available capacity along the network path. This allows the end 
systems to respond rapidly to available capacity by increasing the packet rate to the point where the routers along the path 
signal that no further capacity is available, or to back off the sending rate when the routers along the path signal transient 
congestion conditions.  
 
Whether such an approach of using explicit router-to-end host signals leads to more efficient very high speed transport protocols 
remains to be determined, however. 
 

Where next? 
 
The basic question here is whether we’ve reached some form of fundamental limitation of TCP’s window based congestion control 
protocol, or whether it’s a case that the windows-based control system remains robust at these speeds and distances, but that the 
manner of control signalling will evolve to adapt to an ever widening range of speed extremes in this environment.  
 
Rate-based pacing, as used in FAST can certainly help with the problem of the problem of guessing what are ‘safe’ window 
inflation and reduction increments, and it is an open question as to whether its even necessary to use a window inflation and 
deflation algorithm or whether it would be more effective to head in other directions, such as rate control, RTT stability control or 
adding additional network-generated information into the high speed control loop. Explicit router-based signalling, such as 
described in XCP allow for quite precise controls over the TCP session, although what is lost there is the adaptive ability to deploy 
the control system over any existing IP network. 
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However, across all these approaches, the basic TCP objectives remain the same: what we want is a transport protocol that can 
use the available network capacity as efficiently as possible, and as quickly as possible, minimizing the number of retransmissions 
and maximizing the effective data throughput. What we also want is a protocol that can adapt to other users of the network, and 
attempt to fairly balance its use with competing claims for network resources. 
 
The various approaches that have been studied to date all represent engineering compromises in one form or another. In 
attempting to optimise the instantaneous transfer rate the congestion control algorithm may not be responsive to other 
concurrent transport sessions along the same path. Or in attempting to optimise fairness with other concurrent session the 
control algorithm may be unresponsive to available network path capacity. The control algorithm may be very unresponsive to 
dynamic changes in the RTT that may occur during the session due to routing changes in the  network path. Which particular 
metrics of TCP performance are critical in a heterogeneous networking environment is a topic where we have yet to see a clear 
consensus emerging from the various research efforts.  
 
However, there are a few things we have learned about TCP that form part of this consideration of where to take TCP in this very 
high speed world: 
 

 The first lesson is that TCP has been so effective in terms of overall network efficiency and mutual fairness because 
everyone uses much the same form of TCP, with very similar response characteristics. If we all elected to use radically 
different control functions in each of our TCP implementations then it appears likely that we’d have a poorly performing 
chaotic network subject to extended conditions of complete overload and inefficient network use.  

 
 The second lesson is that a transport protocol does not need to solve media level or application issues. The most general 

form of transport protocol should not rely on characteristics of specific media, but should use specific responses from the 
lower layers of the protocol stack in order to function correctly as a transport system. 

 
 The third lesson from TCP is that a transport protocol can become remarkably persistent and be used in contexts that 

were simply not considered in the original protocol design, so any design should be careful to allow generous margins of 
use conditions. 

 
 The final lesson is one of fair robustness under competition. Does the protocol negotiate a fair share of the underlying 

network resource in the face of competing resource claims from concurrent transport flows? 
 
Of all these lessons, the first appears to be the most valuable and probably the hardest to put into practice. The Internet works as 
well as it does today largely because we all use the much same transport control protocol. If we want to consider some changes 
to this control protocol to support higher speed flows over extended latency, then it would be perhaps reasonable to see if there is 
a single control structure and a single protocol that we can all use.  
 
So deciding on a single approach for high speed flows in the high speed internet is perhaps the most critical part of this entire 
agenda of activity. Its one thing to have a collection of differently controlled packet flows each operating at megabits per second 
flow rates on a multi-gigabit network, but its quite a frightening prospect to have all kinds of different forms of flows each 
operating at gigabits per second on the same multi-gigabit network. If we can’t make some progress in reaching a common view 
of a single high speed TCP control algorithm then it may indeed be the case that none of these approaches will operate efficiently 
in a highly diverse high speed network environment.  So, most importantly, as we do enter into the next generation of very high 
speed transport protocols it appears that we all need to go together when we go! 
 
 
 
 
 
 
 
 
 



 
 

 
 

 
 

 
And we will all go together when we go. 
What a comforting fact that is to know. 
Universal bereavement, 
An inspiring achievement, 
Yes, we will all go together when we go. 
                          Tom Lehrer, “We will all Go Together  When We go”,   
                           from “An Evening Wasted with Tom Lehrer, 1959 
 
Tom Lehrer is often recognised as one of funniest and sharpest satirists of the 20th century. 
One of his most commonly quoted lines  is: 
          “Once the rockets are up, who cares where they come down? 
           That’s not my department,” says Wernher von Braun  
 
In 1999, Martin Gilbert, renown chronicler of the 20th century, named Lehrer as one of the 
10 great figures of the previous 100 years. "Lehrer was able to express and to expose, in 
humorous verse and lilting music, some of the most powerful dangers of the second half of 
the century ... Many of the causes of which Lehrer sang became, three decades later, part of 
the main creative impulse of mankind." 
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Further Reading  
 
The is a wealth of reading on this topic, and here any decent search engine can assist you. However if you are interested in this 
topic and want a starting reference that describes this topic in a very careful and structured manner, then I can recommend the 
following two sources as a good way to start looking into this topic and gain an overview of the current state of the art in this area: 
 
RFC3649 “HighSpeed TCP for Large Congestion Windows” S. Floyd, December 2003 

 Sally’s treatment of this topic is precise, encompassing and wonderfully presented. If only all RFC’s were of this quality! 
 
Proceedings of the Workshops on Protocols for Fast Long-Distance Networks 
 These have been held in  

2003: http://datatag.web.cern.ch/datatag/pfldnet2003/
2004: http://www-didc.lbl.gov/PFLDnet2004/program.htm
2005: http://www.ens-lyon.fr/LIP/RESO/pfldnet2005/
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