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In December 2001 I wrote an article that explored the notions of trust within the design of Internet 
services. It seems that trust, and the associated topic of security is becoming an increasingly 
important topic, so I'd like to revisit that article and explore some of the issues in further detail in this 
column.  

A major current focus for the Internet is one of security. The fascination over the accelerating 
growth curves of the industry, and the compression of technology lifecycle time scales into "Internet 
years", coupled with the constant enthusiastic search for the next "killer app" appears to be over. 
This is probably cause for a collective sigh of relief, as I'm not sure how long the industry, let alone 
the individuals working in the industry, could sustain such intense effort and such rapid pressures for 
change.  

In its place there appears to be a period of consolidation of the services used upon the Internet, and 
this is probably a timely and necessary activity. A such a phase of consolidation it is appropriate to 
look again at the services and facilities that populate the Internet and ask the question as to how 
resilient such services are. Are they robust? Can they be trusted? Are the service edifices we've 
constructed on this Internet base anchored in a solid foundation? The Internet is assuming an ever-
broader role of underpinning all kinds of commercial, governmental and personal activities, and its 
important to all that it operates as reliable and trustable service.  

Lets start with the foundations of the Internet. How robust is the Internet? How resilient is the 
Internet to attempts to disrupt it?  

Interestingly enough the early work in packet switched networks was focused on exploring the 
notion that it could be possible to construct a system that was more reliable than its components.  

The Internet is undoubtedly the unintended outcome of the initial 
research objectives articulated by the Advanced Research Projects 
Agency (ARPA) of the United States Department of Defense (DoD) in 
the late 1960s, but the antecedents of this effort go back a few years 
earlier in the U.S. research community. The so-called think-tank of the 
cold war, the RAND Corporation, was an early vehicle for the concept 
of computer networking. There, Paul Baran, whom many consider to 
be the father of computer networking, presented his ideas on the 
subject in a seminal work published by RAND in 1964, "On Distributed 
Communications"  



"...one day we will require more capacity for data transmission than 
needed for analog voice transmission. ... it would appear prudent to 
broaden our planning consideration to include new concepts for future 
data network directions. Otherwise, we may stumble into being boxed 
in with the uncomfortable restraints of communications links and 
switches originally designed for high quality analog transmission. 
New digital computer techniques using redundancy make cheap 
unreliable links potentially usable. A new switched network 
compatible with these links appears appropriate to meet the 
upcoming demand for digital service. This network is best designed for 
data transmission and for survivability at the outset."  
 
"On Distributed Communications: I - Introduction to Distributed 
Communications Networks,” RM-3420-PR, August 1964 

The entire set of Baran's classic RAND papers on packet-switching from 
the early 1960s are now available online at 
www.rand.org/publications/RM/baran.list.html.  

However it is perhaps only in theory that there is no difference between theory and practice. The 
practical experience of the Internet reveals a disturbingly rich history of disruptive attack. Perhaps 
the most noteable early recorded attack was the "Internet Worm" of the late 1980's which exploited 
a bug in a number of commonly deployed utility programs on Unix hosts.  

This worm had a number of attack modes, including exploiting 
weaknesses in the sendmail daemon as well as the "finger" daemon. 
The finger daemon did not protect itself against buffer overflow. Since 
then documentation of the "gets" library routine includes dire 
warnings that this is a dangerous function and should not be used 

"This is a _dangerous_ function, as it has no way of checking the 
amount of space available in BUF. One of the attacks used by the 
Internet Worm of 1988 used this to overrun a buffer allocated on the 
stack of the finger daemon and overwrite the return address, causing 
the daemon to execute code downloaded into it over the connection."  
 
[gets manual page, FreeBSD v4.7 documentation] 

A copy of the paper on the worm can be found at 
http://world.std.com/~franl/worm.html  

Since then we've seen a steady stream of attacks on the Domain Name Service, attacks on hosts 
using TCP SYN flooding, viruses, distributed denial of service attacks, attacks on the routing system, 
Code Red and its variants, and the recent Slammer attack on SQL servers, to point to but a few. Why 
have we been unable to eliminate such attacks on the network and its attached host systems?  

One line of reasoning is borrowed from work in formal systems some seventy years ago. At that time 
the discovery was made that any formal system that was sufficiently expressive to be 'useful' was 
sufficiently expressive to contain paradoxes. In a very informal sense any sufficiently powerful 



consistent and decideable formal system contains the seeds of its own demise by admitting 
undecideable propositions into the system!  

The Austrian mathematician Kurt Gödel (1906 - 1978) is best known for 
his Incompleteness Theorems. In 1931 he published these results in 
"Über formal unentscheidbare Sätze der Principia Mathematica und 
verwandter Systeme" (On Formally Undecideable Propositions of 
Principia Mathematica and Related Systems) He proved fundamental 
results about axiomatic systems, showing in any axiomatic 
mathematical system there are propositions that cannot be logically 
proved or disproved within the axioms of the system. In particular the 
consistency of the axioms cannot be proved. 

This placed a full stop on a hundred years of attempts to put the 
whole of mathematics on an axiomatic basis. One major attempt had 
been by Bertrand Russell and Alfred North Whitehead with Principia 
Mathematica (1910-13), as well as work on the same topic by David 
Hilbert. The guiding principle in this philosophy of logistics was to 
demonstrate the manner by which all of mathematics could be 
derived in a deterministic and decideable manner from a set of basic 
axioms and rules of logic. Further developments focussed on the best 
way to do this, including efforts to guarantee that one would not find 
any contradictions, nor any undecideable propositions. 

Gödel's work demonstrated that any consistent formal system that is 
sufficiently powerful to include formal propositions that describe 
properties of other formal propositions also admit the expression of 
formal propositions that are themselves undecideable. 

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Godel.html  

Perhaps, in the combination of complex computing systems coupled with a rich communications 
capability, we have developed a system where the components are sufficiently complex that they 
are vulnerable to attack by virtue of their complexity alone. While such an observation is tempting, it 
is stretching the analogy well beyond breaking point, and, personally, I do not believe that this view 
is either useful or accurate. The vulnerability of the Internet is not in the complexity of its 
components but in the trust model of the Internet.  

So lets look at the trust model of the Internet and see what we might do to improve it.  

All networks have an inherent trust model. When two parties cannot directly interact with each 
other to confirm their identity, then they are forced to place some element of trust in the 
intervening network. In some cases the trust model relies on the ability of the network provider to 
operate the network correctly. For example when I enter a string of digits into the numeric pad of 
my telephone I'm trusting the network to create a connection to a particular handset. In other cases 
the trust model relies on each user acting appropriately, and the network provider is in no position 
to enforce such user behaviour.  

At a basic level the Internet is a simple datagram delivery network. The network itself does not 
define any service other than packet delivery. Surrounding the network is a collection of end-
systems. It is these systems that define the service model of the Internet, and define how the 



network resources are to be shared across competing demands. Some of these systems are operated 
by the same entity that manages the network, but the overwhelming majority of such systems are 
operated by other users of the network. In the Internet's trust model every user trusts, to some 
extent, the benign intent of every other Internet user. In a closed homogenous small community 
this trust may be well placed. In the broader context of a public utility system with hundreds of 
millions of users, this is stretching the friendship model a little bit beyond its natural limits.  

To illustrate this distributed trust model, lets look at the action of download a web page using a 
browser.  

In this example I've collected the IP packets from a local host as it retrieves the web page 
http://www.isoc.org. The output here is collected from the very useful tcpdump program 
(http://www.tcpdump.org/)  

Once the URL is entered into the browser, the browser's first task is to translate the domain part of 
the URL into an IP address. The browser passes the domain name to the local DNS service routines 
and awaits a response. The local DNS service routine has been configured with the IP address of a 
remote resolver. The IP address of this DNS resolver has been provided automatically as part of the 
initial connection setup using the DHCP protocol, or it's been manually configured into the local 
system. The local host asks its DNS resolver to translate the name to an IP address.  

The local host is a Windows XP operating system, with IPv6 enabled  

The Windows XP TCP driver appears to want to establish a IPv6 connection with the ISOC 
web server, if it can be achieved, and if not, then drop back to establishing an IPv4 
connection  

So, using an IPv4 UDP transport, the client queries the local server for a V6 address for the 
domain name, "www.isoc.org"  

This is a tcpdump trace of the IP packet. The packet trace shows that the packet was sent 
from the source address of 1029 from the system "gih.example.com" and the packet was 
directed to a local DNS name resolver, "named.example.com", using port 53 on that system. 
The payload of the UDP packet is a DNS query, with a request for an AAAA DNS Resource 
Record for the name "www.isoc.org"  

 
 
  gih.example.com.1029 > named.example.com.53:  16+ AAAA? 
www.isoc.org. 
    (30) (ttl 128, id 311, len 58) 

The response is that while the domain exists, there is no V6 address associated with the 
name  

 
 
  named.example.com.53 > gih.example.com.1029:  16 q: AAAA? 
www.isoc.org. 0/1/0 ns: isoc.org. 
    SOA info.isoc.org. admin.www.isoc.org. 2002121713 10800 3600 
604800 86400 
    (77) (ttl 60, id 54954, len 105) 
 



As the name specified did not include a trailing '.' to indicate a fully qualified domain name, 
the name resolver system uses the local default domain name suffix to see if there is a V6 
address associated with this local name zone (www.isoc.org.example.com)  

 
 
  gih.example.com.1029 > named.example.com.53:  17+ AAAA? 
www.isoc.org.example.com. 
    (42) (ttl 128, id 312, len 70) 

This time the response is different, indicating that there is no such domain name  

 
 
named.example.com.53 > gih.example.com.1029:  17 NXDomain q: 

AAAA? 
www.isoc.org.example.com. 

    0/1/0 ns: example.com. SOA dns0.example.com. 
hostmaster.example.com. 
    2003042204 10800 1800 7200000 3600 
    (94) (ttl 60, id 55078, len 122) 

Now that the V6 queries have failed, its time to try V4, and ask for an address record (or A 
record) from the DNS:  

 
 
  gih.example.com.1029 > named.example.com.53:  18+ A? 
www.isoc.org. 
    (30) (ttl 128, id 313, len 58) 

This time the DNS returns the address record of 206.131.249.182  

 
  named.example.com.53 > gih.example.com.1029:  18 q: A? 
www.isoc.org. 1/3/2 
    www.isoc.org. A 206.131.249.182 ns: isoc.org. NS 
info.isoc.org., isoc.org. NS ns.uu.net., 
    isoc.org. NS ns.isi.edu. ar: ns.isi.edu. A 128.9.128.127, 
info.isoc.org. A 206.131.249.182 
    (144) (ttl 60, id 55099, len 172) 
     

So the answer is that the domain name www.isoc.org maps to the IP address 206.131.249.182. But 
can we trust this answer?  

The DNS is a highly distributed database, where various components of the database are operated 
by a diverse collection of operators. It would be comforting to believe that the DNS provides 
accurate answers to queries all of the time. This is not the case. It would possibly be an acceptable 
compromise to believe that all incorrect answers are the result of temporary faults or inadvertent 
operator errors. Unfortunately even this is not the case all of the time. The DNS is a target of various 
forms of attack, and in some cases such attacks are successful. In such cases the DNS provides 
incorrect answers, directing the user to a site that may then attempt to compromise any ensuing 
transaction.  



It could be that the name resolver has been compromised, and is delivering incorrect answers. It 
could be that the name resolver is using a forwarder, and this forwarder has been compromised. It 
could be that the primary zone for isoc.org has been updated and the secondary servers for this 
zone have not yet refreshed their local copy. It could be that some part of the routing system has 
been compromised and DNS traffic addressed towards the authoritative root DNS servers is being 
redirected towards a different server that is providing incorrect answers, while masquerading as the 
authoritative root server. It may be that the DNS servers are using some form of load distribution 
technique to spread the query load over a number of servers, and the distribution mechanism has 
been compromised. And no doubt there are many more uncomfortable vulnerabilities in the 
operation of the DNS.  

The inevitable conclusion is that DNS is not a secure protocol. There is no means of ensuring that the 
data one gets back is authentic. As noted in a recent threat analysis of the DNS there are a number 
of attack modes for the DNS which are undetectable by the victim.  

This analysis was undertaken by Derek Atkins and Rob Austein in 2001 
within the IETF DNS Extensions Working Group.  
 
The threat modes listed in this study included packet interception, 
where the simple unencrypted two packet exchange protocol of the 
DNS makes the system vulnerable to various forms of man-in-the-
middle attacks, including eavesdropping with false responses injected 
back into the network in advance of the actual responses. It is also 
possible to apply various name games to DNS responses. The DNS 
relies on extensive use of caching of answers to improve its 
performance and reduce load on the DNS servers. One form of attack 
is to feed false data into the cache, which in turn trigger the local 
system to then query the fake DNS servers. The threat is based on 
passing back to the query point a DNS response that includes one or 
more DNS resource records in the Additional section of the DNS 
response. 

As Atkins and Austein pointed out: "The common thread in all of these 
attacks is that response messages allow the attacker to introduce 
arbitrary DNS names of the attacker's choosing and provide further 
information that the attacker claims is associated with those names; 
unless the victim has better knowledge of the data associated with 
those names, the victim is going to have a hard time defending 
against this class of attacks. 

This class of attack is particularly insidious given that it's quite easy for 
an attacker to provoke a victim into querying for a particular name of 
the attacker's choosing, for example, by embedding a link to a 1x1-
pixel "web bug" in a piece of Text/HTML mail to the victim." 

A current work-in-progress that describes DNS threats in further detail 
is by Faltstrom and Mealling and can be found at draft-ietf-enum-
rfc2916bis-05.txt.  

Once the DNS returns an IP address, the next step is to open an HTTP session. The first step is to send 
a TCP SYN packet to the IP address to start the connection.  



Send a TCP SYN packet to port 80 of the server  
 
 
  gih.example.com.1044 > www.isoc.org.80: S 72886617:72886617 
    (0) win 64240  (DF) (ttl 128, id 314, len 48) 

The server should accept the connect request by responding with an ACK of our SYN packet, 
plus a SYN packet of its own, which it does.  

 
 
  www.isoc.org.80 > gih.example.com.1044: S 2174176570:2174176570 
    (0) ack 72886618 win 31740  (DF) (ttl 47, id 24462, len 48) 

We complete the handshake by sending an ACK of the server's syn packet. The TCP session is 
now connected  

 
 
  gih.example.com.1044 > www.isoc.org.80: . 72886618:72886618(0) 
ack 2174176571 win 64860 (DF) (ttl 128, id 316, len 40) 

How does the user know that the packet is being delivered to the correct server?  

Here the user is trusting the integrity of the Internet's routing system. The routing system is 
vulnerable to incorrect routing information being injected into the routing system, and as a 
consequence packets may be misdirected. While the majority of such incidents are attributable to 
operator error, there remains the potential that the routing system is vulnerable to deliberate attack.  

Routing can be described as a distributed computation that generally uses some form of a relaying 
messaging protocol, where route information is received, processed and forwarded. Current routing 
protocols typically contain no specific mechanisms to prevent the unauthorized modification of the 
information by a forwarding agent, allowing routing information to be modified, deleted or false 
information to be inserted without the knowledge of the originator of the routing information or 
any of the recipients. There is also the potential for interception, hijacking, and denial of service to 
disrupt the operation of the routing system.  

A current work-in-progress, "Generic Threats to Routing Protocols" by 
Murphy, Beard and Yang enumerates a relatively expansive set of set 
of threats to routing protocols. (draft-ietf-rpsec-routing-threats-00.txt)  

Of course even if the routing system is operating correctly, the end user is also trusting the integrity 
of the various forwarding devices along the path to ensure that the packet is being delivered to the 
correct server in accordance with the local forwarding decision as determined by the routing system. 
Again this trust may be misplaced.  

There is also the assumption that the packets are not being inspected while in flight, with the 
potential for fake responses to be generated before the remote system can respond. Again, it is not 
clear that such trust in the confidentiality of data transactions is well placed all of the time.  

It could be that the packet is being passed through a so-called "transparent proxy cache". In such a 
case the packet exchange will look precisely the same, and the received packets will use the source 



address of the target server, but the forwarding system is directing the clients packets into the cache 
server and the cache server is masquerading as the actual server. Has the cache server been 
compromised? Is the cached copy of the web page an accurate mirror of the current contents of the 
original or has it been altered in some way?  

This initial packet exchange provides no reassurance that the connection being set up is the 
intended connection with the server that is hosting the desired web page.  

When the TCP session is opened, the user's HTTP session then requests the web object from 
the server.  
 
 
  gih.example.com.1044 > www.isoc.org.80: P 72886618:72886974(356) 
    ack 2174176571 win 64860 (DF) (ttl 128, id 317, len 396) 

Hang on - what was in that payload?  

 
 
  GET./.HTTP/1.1 
  Accept:.image/gif,.image/x-
xbitmap,.image/jpeg,.image/pjpeg,.application/vnd.ms-
excel,.application/vnd.ms-
powerpoint,.application/msword,.application/x-shockwave-
flash,.*/* 
  Accept-Language:.en-us 
  Accept-Encoding:.gzip,.deflate 
  User-Agent:.Mozilla/4.0.(compatible;.MSIE.6.0;.Windows.NT.5.1) 
  Host:.www.isoc.org 
  Connection: Keep-Alive 

Chatty isn't it? Identifying the user agent is perhaps being a little too chatty. If the version of the user 
agent has a know exploit then telling every server that you are vulnerable is perhaps extending trust 
too far. It also appears to be letting the server know what applications can be fired up within a 
response. Again not exactly reassuring information to be passing around to strangers if there is a 
means of using web response that can trigger a vulnerability within one of these applications.  

Of course it could include even more information. When a link is being followed then the request 
also includes a Referer field, referencing the URL of the page containing the link. The Referer header 
allows reading patterns to be studied and reverse links drawn. Although it can be very useful, its 
power can be abused if user details are not separated from the information contained in the Referer. 
Even when the personal information has been removed, the Referer header might indicate a private 
document's URI whose publication would be inappropriate.  

To quote from: the security Considerations section of the HTTP 1.1 
protocol specification ( http://www.w3.org/Protocols/rfc2616/rfc2616-
sec15.html#sec15) 

HTTP clients are often privy to large amounts of personal information 
(e.g. the user's name, location, mail address, passwords, encryption 
keys, etc.), and SHOULD be very careful to prevent unintentional 
leakage of this information via the HTTP protocol to other sources. We 



very strongly recommend that a convenient interface be provided for 
the user to control dissemination of such information, and that 
designers and implementors be particularly careful in this area. 
History shows that errors in this area often create serious security 
and/or privacy problems and generate highly adverse publicity for the 
implementor's company.  

The server acknowledges the input and then commences download of the web page data  

 
 
  www.isoc.org.80 > gih.example.com.1044: . 
2174176571:2174176571(0) ack 72886974 win 31740 (DF) (ttl 47, id 
24463, len 40) 

Here's the first two cycles of delivery of the data.  

 www.isoc.org.80 > gih.example.com.1044: P 
2174176571:2174177951(1380) ack 72886974 win 31740 (DF) (ttl 47, 
id 24464, len 1420) 
 gih.example.com.1044 > www.isoc.org.80: . 72886974:72886974(0) 
ack 2174177951 win 64860 (DF) (ttl 128, id 320, len 40) 
 www.isoc.org.80 > gih.example.com.1044: P 
2174177951:2174179331(1380) ack 72886974 win 31740 (DF) (ttl 47, 
id 24465, len 1420) 
 www.isoc.org.80 > gih.example.com.1044: P 
2174179331:2174180711(1380) ack 72886974 win 31740 (DF) (ttl 47, 
id 24467, len 1420) 
 gih.example.com.1044 > www.isoc.org.80: . 72886974:72886974(0) 
ack 2174180711 win 64860 (DF) (ttl 128, id 323, len 40) 

Is the object delivered by the server that original object that was placed there by the content 
originator? Servers are vulnerable to attack, and defacing a web site by substituting altered content 
in the place of the original is not uncommon. While some forms of content substitution are readily 
apparent to the user, other forms of substitution may be far more subtle in their intent, attempting 
to convince the user that the content is genuine and that the web transaction is trustworthy. Other 
forms of attack to the web transaction are more difficult to trace. If the user's request is passed 
through a web cache, then an attack on the cache can result in the delivery of substituted content 
to the user while the content originator's site has maintained its integrity.  

So when you enter a URL and get back a page there's a lot of trust is happening. Probably too much 
trust.  

If thats the case, then how can we improve the situation?  

The basic toolset is all about authentication and validation, together with the ability to be able to 
conduct a private data exchange even across a public medium. Paradoxically, many of the basic 
tools are already available. But being available and being used are different concepts, and  

There are effective cryptographic algorithms tools in widespread use. Whether its the Data 
Encryption Standard (DES), Triple DES, the International Data Encryption Algorithm (IDEA), The 
ADvanced Encryption Standard (AES), Blowfish, Twofish or any other block cipher, it is possible to 



encrypt a data exchange between two parties to a level where there is reasonable confidence that 
the data will remain private.  

Of course, as with many other secure systems, its not the encryption algorithm that is the 
vulnerable point, but the initial key exchange that sets up the communication using a shared secret, 
namely the encryption key. If this key exchange is compromised, then so is the integrity of the 
communication.  

The common solution to this is the concept of private and public key pairs. While the mathematics 
behind this is well beyond the scope of this article, the essential characteristics of a public / private 
key pair is that anything encoded using the private key can only be decoded using the 
corresponding public key, and anything encoded using the public key and only be decoded using the 
private key. And, most importantly, knowledge of the public key will not allow you to compute the 
value of the private key. Now we have the elements of a more robust environment. If you know my 
public key you can encode some data using this public key and pass it to me. Only my private key 
can decode it, and, as long as I keep this private key a secret then only I can read your original data. 
And if you then encode this data using your private key, then I will need to decode the data first with 
your public key and then with my private key. At this point we have a mechanism to undertake a 
relatively secure form of key exchange, where each party can identify the other, and exchange 
messages that only the other party can read. But it hinges on being able to associate a public key 
with the remote party in a trustable manner. And here's where a trustable public key infrastructure 
comes into play.  

Widespread use of a trustable public key infrastructure would assist in allowing users to validate 
that the content has been generated by the author. In a model of complementary public and private 
key pairs a web object can be signed using the object originator's private key. If the object's signature 
can be validated against the originator's public key then there is a strong indication that the content 
is genuine and has not been altered in any way.  

Email can also benefit from widespread use of the same public key cryptography, where a message 
can be signed with the author's private key and the signed message can then be encrypted using a 
key that is encoded using the intended recipient's public key. Assuming that the keys have not been 
compromised, such a message can only be read by the intended recipient, and could only have been 
sent by the owner of the digital signature.  

So can we trust this answer? No not really.  

Imagine for a second if a public key infrastructure was in widespread use and we only accepted 
email that was digitally signed using keys that we trust. Imagine also that web objects were also 
signed in a similar fashion. In such a world how would a spammer hide their true identity? If 
spammers cannot hide behind anonymity, then would spam be as prevalent in such a network? 
Would various ecommerce applications enjoy greater acceptance if users were confidant that there 
was both privacy and authenticity associated with such transactions? What would be the point of 
subverting a web site or its content if the action were immediately visible as an unauthorized 
alteration? Not only would such a network mitigate some of the problems we see today, but its 
likely that we would find new services appearing that rely on a useful end-to-end trust model where 
each end can validate the identity of the other party and also validate the authenticity and privacy 
of the exchanged data.  

We can go beyond the application level in this, an d look at how we can improve upon the trust 
model in the network itself and its associated service layer. DNSSEC allows a DNS server to ensure 
that only known remote agents can provide updates to the server, and that the updates are not 
altered by a third party on the fly. If DNSSEC were an integral part of the operation of the DNS it 



would be a far more difficult proposition to attempt to insert incorrect data into the DNS. At the 
network level, providers commonly operate Internet networks with efficiency and unit cost in mind. 
In-band operation of routing protocols readily fit within such an operational model. The SNMP-
based model of network management is also commonly operated as an in-band tool. The result is 
that the operational management of the network, the monitoring of the network and the payload 
carried by the network all share the same transport system. There is the risk that a payload packet 
can masquerade as a routing control packet, or an SNMP write transaction, and if the network does 
not detect this as an exception, the network can be disrupted, or even conceivably taken over by a 
third party. The trust model here is obviously not that the network operator trusts users not to 
generate such attacks. The appropriate model is that the network operator distrusts users, and takes 
appropriate precautions to ensure that a network element will only accept control and monitoring 
packets that truly originate from the network operator's internal control points.  

It would be useful to have each registry-allocated address block be associated with a public key. This 
would allow all new routing requests to be signed by the private key associated with the original 
address allocation, which in turn would assist the ISP in determining the authenticity of the request 
before entering the address prefix into the Internet's routing system.  

Its not that we can eliminate the need for some degree of trust from the Internet, nor that all 
potential security risks can be comprehensively addressed. But in using a set of basic security tools 
with our existing network applications we can make some significant improvements upon the 
current rather open trust model of the Internet. In so doing we make significant improvements in the 
level of trust users can reasonably place on the integrity of the Internet as a useful communications 
medium. And surely that's a good thing.  

  

Further Reading 

"Network Security PRIVATE Communication in a Public World" 

 
 
 
 
 
 
 
 
 
 
 
 
  

Disclaimer 

The author is a member of the Internet Architecture Board (IAB). The opinions expressed in this 
article are entirely those of the author, and are not necessarily shared by the IAB as a whole.  



The above views do not represent the views of the Internet Society, nor do they represent the views 
of the author’s employer, the Telstra Corporation. They were possibly the opinions of the author at 
the time of writing this article, but things always change, including the author's opinions! 
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