

T h e I n t e r n e t P r o t o c o l J o u r n a l

2

The Future for TCP

by Geoff Huston, Telstra

he previous article, “TCP Performance,” examined the opera-
tion of the

Transmission Control Protocol

 (TCP) protocol

[1].

 The
article examined the role of TCP in providing a reliable end-to-

end data transfer function, and described how TCP incorporates numer-
ous control functions that are intended to make efficient use of the
underlying IP network through a host-based congestion control func-
tion. Congestion control is an important component of TCP
implementations, and today TCP congestion control plays an important
role in the overall stability of the Internet.

Today’s Internet spans a very broad base of uses, and ensuring that TCP
provides a highly robust, efficient, and reliable service platform for such
a diversity of use is a continuing task. The Web has introduced a com-
ponent of short duration reliable transfers into the public Internet traffic
profile. These short sessions are often referred to as “TCP mice” be-
cause of the short duration and large number of such TCP sessions.
Complementing these short sessions is the increasing size of large trans-
fers as

File Transfer Protocol

 (FTP) data sets become larger in response
to increasing capacity within the public Internet network

[4]

. In addition,
there is an increasing diversity of media used within the Internet, both in
terms of higher-speed systems and in the use of wireless systems for In-
ternet access. In this article we will extend our examination of TCP by
looking at how TCP is being used and adapted to match this changing
environment.

A Review of TCP Performance

Within any packet-switched network, when demand exceeds available
capacity, the packet switch will use a queue to hold the excess packets.
When this queue fills, the packet switch must drop packets. Any reliable
data protocol that operates across such a network must recognize this
possibility and take corrective action. TCP is no exception to this con-
straint. TCP uses data sequence numbering to identify packets, and
explicit acknowledgements (ACKs) to allow the sender and receiver to be
aware of reliable packet transfer. This form of reliable protocol design is
termed “end-to-end” control, because interior switches do not attempt to
correct packet drops. Instead, this function is performed through the
TCP protocol exchange between sender and receiver. TCP uses cumula-
tive ACKs rather than per-packet ACKs, where an ACK referencing a
particular point within the data stream implicitly acknowledges all data
with a sequence value less than the ACKed sequence.

TCP also uses ACKs to clock the data flow. ACKs arriving back at the
sender arrive at intervals approximately equal to the intervals at which
the data packets arrived at the sender. If TCP uses these ACKs to trigger
sending further data packets into the network, then the packets will be
entered into the network at the same rate as they are arriving at their
destination. This mode of operation is termed “ACK clocking.”

T

T h e I n t e r n e t P r o t o c o l J o u r n a l

3

TCP recovers from packet loss using two mechanisms. The most basic
operation is the use of packet timeouts by the sender. If an ACK for a
packet fails to arrive within the timeout value, the sender will retransmit
the oldest unacknowledged packet. In such a case, TCP assumes that the
loss was caused by a network congestion condition, and the sender will
enter “Slow Start” mode. This condition causes significant delays within
the data transfer, because the sender will be idle during the timeout inter-
val and upon restarting will recommence with a single packet exchange,
gradually recovering the data rate that was active prior to the packet
loss. Many networks exhibit transient congestion conditions, where a
data stream may experience loss of a single packet within a packet train.
To address this, TCP introduced the mechanism of “fast recovery.” This
mechanism is triggered by a sequence of three duplicate ACKS received
by the data sender. These duplicate ACKs are generated by the packets
that trail the lost packet, where the sender ACKs each of these packets
with the ACK sequence value of the lost packet. In this mode the sender
immediately retransmits the lost packet and then halves its sending rate,
continuing to send additional data as permitted by the current TCP send-
ing window. In this mode of operation, “congestion-avoidance” TCP
increases its sending window at a linear rate of one segment per

Round-
Trip Time

 (RTT). This mode of operation is referred to as

Additive In-
crease, Multiplicative Decrease

 (AIMD), where the protocol reacts
sharply to signs of network congestion, and gradually increases its send-
ing rate in order to equilibrate with concurrent TCP sessions.

TCP Design Assumptions

It is difficult to design any transport protocol without making some
number of assumptions about the environment in which the protocol is
to be used, and TCP certainly has some inherent assumptions hidden
within its design. The most important set of assumptions that lie behind
the design of TCP are as follows:
•

A network of wires, not wireless:

 As we continually learn, wireless is
different. Wireless systems typically have higher

bit error rates

(BERs) than wire-based carriage systems. Mobile wireless systems
also include factors of signal fade, base-station handover, and vari-
able levels of load. TCP was designed with wire-based carriage in
mind, and the design of the protocol makes numerous assumptions
that are typical of such of an environment. TCP makes the assump-
tion that packet loss is the result of network congestion, rather than
bit-level corruption. TCP also assumes some level of stability in the
RTT, because TCP uses a method of damping down the changes in
the RTT estimate.

•

A best-path route-selection protocol:

 TCP assumes that there is a sin-
gle best metric path to any destination because TCP assumes that
packet reordering occurs on a relatively minor scale, if at all. This
implies that all packets in a connection must follow the same path
within the network or, if there is any form of load balancing, the order
of packets within each flow is preserved by some network-level
mechanism.

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

4

•

A network with fixed bandwidth circuits, not varying bandwidth:

TCP assumes that available bandwidth is constant, and will not vary
over short time intervals. TCP uses an end-to-end control loop to
control the sending rate, and it takes many RTT intervals to adjust to
varying network conditions. Rapidly changing bandwidth forces
TCP to make very conservative assumptions about available net-
work capacity.

•

A switched network with first-in, first-out (FIFO) buffers:

TCP also
makes some assumptions about the architecture of the switching ele-
ments within the network. In particular, TCP assumes that the
switching elements use simple FIFO queues to resolve contention
within the switches. TCP makes some assumption about the size of
the buffer as well as its queuing behavior, and TCP works most
efficiently when the buffer associated with a network interface is of
the same order of size as the delay bandwidth product of the associ-
ated link.

•

The duration of TCP sessions:

 TCP also makes some assumptions
about the nature of the application. In particular, it assumes that the
TCP session will last for some number of round-trip times, so that
the overhead of the initial protocol handshake is not detrimental to
the efficiency of the application. TCP also takes numerous RTT
intervals to establish the characteristics of the connection in terms of
the true RTT interval of the connection as well as the available
capacity. The introduction of short-duration sessions, such as found
in transaction applications and short Web transfers, is a new factor
that impacts the efficiency of TCP.

•

Large payloads and adequate bandwidth:

 TCP assumes that the
overhead of a minimum of 40 bytes of protocol per TCP packet (20
bytes of IP header and 20 bytes of TCP header) is an acceptable over-
head when compared to the available bandwidth and the average
payload size. When applied to low-bandwidth links, this is no longer
the case, and the protocol overheads may make the resultant com-
munications system too inefficient to be useful.

•

Interaction with other TCP sessions:

 TCP assumes that other TCP
sessions will also be active within the network, and that each TCP
session should operate cooperatively to share available bandwidth in
order to maximize network efficiency. TCP may not interact well
with other forms of flow-control protocols, and this could result in
unpredictable outcomes in terms of sharing of the network resource
between the active flows as well as poor overall network efficiency.

If these assumptions are challenged, the associated cost is that of TCP
efficiency. If the objective is to extend TCP to environments where these
assumptions are no longer valid, while preserving the integrity of the
TCP transfer and maintaining a high level of efficiency, then the TCP
operation itself may have to be altered.

T h e I n t e r n e t P r o t o c o l J o u r n a l

5

There are two basic ways of altering TCP operation: by altering the ac-
tions of the end host by making changes to the TCP protocol, or by
altering the characteristics of the network, making them more “friendly”
to TCP. We will look at the potential for both responses in examining
various scenarios for adapting TCP to suit these changing environments.

Some caution should be noted about making changes to the TCP proto-
col. The major constraint is that any changes that are contemplated to
TCP should be backward compatible with existing TCP behavior. This
constraint requires a modified TCP protocol to attempt to negotiate the
use of a specific protocol extension, and the knowledge that a basic
common mode of protocol operation may be required if the negotiation
fails. The second constraint is that TCP does assume that it is interact-
ing with other TCP sessions within the network, and the outcome of fair
sharing of the network between concurrent sessions depends on some
commonality of the protocol used by these sessions. Major changes to
the protocol behavior can lead to unpredictable outcomes in terms of
sharing of the network resource between “unmodified” and “modified”
TCP sessions, and unpredictable outcomes in terms of efficiency of the
use of the network. For this reason there is some understandable reluc-
tance to undertake modifications of TCP that radically alter TCP startup
behavior or behavior in the face of network congestion.

Short-Duration Sessions—TCP for Transactions

For network applications that generate small transactions, the applica-
tion designer is faced with a dilemma. The application may be able to
use the

User Datagram Protocol

 (UDP), in which case the sender must
send the query and await the response. This operation is highly efficient,
because the total elapsed time for the client is a single RTT. However,
this speed is gained at the cost of reliability. A missing response is am-
biguous, in that it is impossible for the initiator to tell whether the query
was lost or the response was lost. If multiple queries are generated, it is
not necessarily true that they will arrive at the remote server in the same
order as they were generated. Alternatively, the application can use
TCP, which will ensure reliability of the transaction. However, TCP uses
a three-way handshake to complete the opening of the connection, and
uses acknowledged FIN signals for each side to close its end of the con-
nection after it has completed sending data. Under the control of TCP,
the sender will retransmit the query until it receives an acknowledgment
that the query has arrived at the remote server. Similarly, the remote
host will retransmit the response until the server receives an indication
that the response has been successfully delivered. The cost of this reli-
ability is application efficiency, because the minimum time to conduct
the TCP transaction for the client is two RTT intervals.

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

6

TCP for Transactions

 (commonly referred to as T/TCP

[5]

) attempts to
improve the performance of small transactions while preserving the reli-
ability of TCP. T/TCP places the query data and the closing FIN in the
initial SYN packet. This can interpreted as attempting to open a session,
pass data, and close the sender’s side of the session within a single
packet. If the server accepts this format, the server responds with a sin-
gle packet, which contains its SYN response, an ACK of the query data,
the server’s data in response, and the closing FIN. All that is required to
complete the transaction is for the query system to ACK the server’s
data and FIN (Figure 1). If the server does not accept this format, the cli-
ent can back off to a conventional TCP handshake followed by a data
exchange.

For the client, the time to undertake this T/TCP transaction is one RTT
interval, a period equal to the UDP-supported transaction, while still al-
lowing for the two systems to use TCP to negotiate a reliable exchange
of data as a backup.

Figure 1: T/TCP
Operation

T/TCP requires changes to the protocol stack of both the sender and the
receiver in order to operate correctly. The design of the protocol explic-
itly allows the session initiator to back off to use TCP if the receiver
cannot correctly respond to the initial T/TCP packet.

T/TCP is not in common use in the Internet today, because while it im-
proves the efficiency of simple transactions, the limited handshake
makes it more vulnerable from a security perspective, and concerns over
this vulnerability have been a prohibitive factor in its adoption. This is
illustrative of the nature of the trade-offs that occur within protocol de-
sign, where optimizing one characteristic of a protocol may be at the
expense of other aspects of the protocol.

ServerClient TimeTime Network

T/TCP SYN + Response Data +ACK + FIN

ACK

T/TCP SYN + Response Data + FIN

Send Request
Read

Wakeup
Close

Accept

Wakeup
Process Request
Send Response 1/2 RTT

1/2 RTT

T h e I n t e r n e t P r o t o c o l J o u r n a l

7

Long Delay—TCP for Satellite Paths

Satellite-based services pose a set of unique issues to the network de-
signer. Most notably, these issues include delay, bit errors, and
bandwidth.

When using a satellite path, there is an inherent delay in the delivery of a
packet due to signal propagation times related to the altitude of commu-
nications satellites. Geo-stationary orbit spacecraft are located at an
altitude of some 36,000 km, and the propagation time for a signal to
pass from an earth station directly below the satellite to the satellite and
back is 239.6 ms. If the earth station is located at the edge of the satel-
lite view area, this propagation time extends to 279.0 ms. In terms of a
round trip that uses the satellite path in both directions, the RTT of a
satellite hop is between 480 and 560 ms.

The strength of a radio signal falls in proportion to the square of the dis-
tance traveled. For a satellite link, the signal propagation distance is
large, so the signal becomes weak before reaching its destination, result-
ing in a poor signal-to-noise ratio. Typical BERs for a satellite link today
are on the order of 1 error per 10 million bits (1

×

 10

–7

).

Forward error
correction

 (FEC) coding can be added to satellite services to reduce this
error rate, at the cost of some reduction in available bandwidth and an
increase in latency due to the coding delay.

There is also a limited amount of bandwidth available to satellite sys-
tems. Typical carrier frequencies for commercial satellite services are 6/4
GHz (C-band) and 14/12 GHz (Ku band). Satellite transponder band-
width is typically 36 MHz

[6]

.

When used in a data carriage role for IP traffic, satellite channels pose
several challenges for TCP.

The delay-bandwidth product of a transmission path defines the
amount of data TCP should have within the transmission path at any
one time, in order to fully utilize the available channel capacity. The de-
lay used in this equation is the RTT and the bandwidth is the capacity
of the bottleneck link in the network path. Because the delay in satellite
environments is large, a TCP flow may need to keep a large amount of
data within the transmission path. For example, a typical path that in-
cludes a satellite hop may have a RTT of some 700 ms. If the bottleneck
bandwidth is 2 Mbps, then a sender will need to buffer 180 kB of data
to fully utilize the available bandwidth with a single traffic flow. For this
to be effective, the sender and receiver will need to agree on the use of
TCP Window Scaling to extend the available window size beyond the
protocol default limit of 64 kB. A sender using an 8 kB buffer would be
able to achieve a maximum transfer rate of 91 kbps, irrespective of the
available bandwidth on the satellite path.

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

8

Even with advanced FEC techniques, satellite channels exhibit a higher
BER than typical terrestrial networks. TCP interprets packet drop as a
signal of network congestion, and reduces its window size in an attempt
to alleviate the situation. In the absence of certain knowledge about
whether a packet was dropped because of congestion or corruption,
TCP must assume the drop was caused by congestion in order to avoid
congestion collapse

[7, 8]

. Therefore, packets dropped because of corrup-
tion cause TCP to reduce the size of its sending window, even though
these packet drops do not signal congestion in the network. To mitigate
this, some care must be taken with the satellite hop

Maximum Trans-
mission Unit

(MTU) size, to reduce the probability of packet corruption.
This is an area of compromise, in that the consequence is the potential
for a high level of IP packet fragmentation on the satellite feeder router.
In addition, the sender needs to use the TCP fast retransmit and fast re-
covery algorithms

[9]

in order to recover from the packet loss in a rapid,
but stable fashion. In addition, the sender needs to use larger sending
windows to operate the path more efficiently, with a consequent risk of
multiple packet drops per RTT window. For this reason the use of

Selec-
tive Acknowledgements

 (SACKs) is necessary in order to recover from
multiple packet drops in a single RTT interval.

The long delay causes TCP to react slowly to the prevailing conditions
within the network. The slow start of TCP commences with a single
packet exchange, and it takes some number of RTT intervals for the
sender’s rate to reach the same order of size as the delay bandwidth
product of the long delay path. For short-duration TCP transactions,
such as much of the current Web traffic, this is a potential source of
inefficiency. For example, if a transaction requires the transfer of ten
packets, the slow-start algorithm will send a single packet in the first
RTT interval, two in the second interval, four in the third, and the re-
maining three packets in the fourth RTT interval. Irrespective of the
available bandwidth of the path, the transaction will take a minimum of
four RTT intervals. This theoretical model is further exacerbated by de-
layed ACKs [RFC 1122], where a receiver will not immediately ACK a
packet, but will await the expiration of the 500ms ACK timer, or a sec-
ond full-sized packet. During slow start, where a sender sends an initial
packet, and then awaits an ACK, the receiver will delay the ACK until
the expiration of the delayed ACK timer, adding up to 500ms addi-
tional delay in the first data exchange. The second part of the delayed
ACK algorithm is that it will only ACK every second full-sized data
packet, slowing down the window inflation rate of slow start. Also, if
congestion occurs on the forward data path, the TCP sender will not be
aware of the condition until it receives duplicate ACKs from the re-
ceiver. A congestion condition may take many RTT intervals to clear,
and in the case of a satellite path, transient congestions may take tens of
seconds to be resolved.

T h e I n t e r n e t P r o t o c o l J o u r n a l

9

The TCP mechanisms that assist in mitigating some of the more serious
effects of satellite systems include

Path MTU Discovery

[10]

,

Fast Retrans-
mit

 and

Fast Recovery,

 window scaling options, in order to extend the
sender’s buffer beyond 65,535 bytes

[11]

, and the companion mecha-
nisms of

Protection Against Wrapped Sequence Space

 (PAWS) and

Round-Trip Time Measurements

 (RTTM) and SACKs

[12]

. A summary
of TCP options is shown in Figure 2.

Figure 2: TCP Options
for Satellite Paths
(after RFC 2488)

Further refinements to the TCP stack have been considered in relation to
satellite performance

[13]

.

The options considered include the use of T/TCP as a means of reduc-
ing the overhead of the initial TCP three-way handshake. This is
effective for short transactions where the data to be transferred can be
held in a single packet, or in a small number of packets.

The use of delayed acknowledgements also is an issue for long-delay net-
work paths, particularly if the sender is using slow start with an initial
window of a single segment. In this case, the receiver will not immedi-
ately acknowledge the initial packet, but will wait up to one-half second
for the delayed ACK timer to trigger. Altering the initial window size to
two segments allows the receiver to trigger an ACK on reception of the
second packet, bypassing the delayed ACK timer. However, even this
change to TCP does not completely address the performance issue relat-
ing to delayed ACKs on long delay paths for TCP slow start. The
delayed ACK algorithm triggers an ACK on every second full-sized
packet. Because the sender’s congestion window is opened on receipt of
ACKs, this causes the slow-start window to open more slowly than if
the receiver generated an ACK every packet. One variant of TCP con-
gestion control allows the TCP sender to count the number of bytes
acknowledged in an ACK message to control the expansion of the con-
gestion window, making the algorithm less sensitive to delayed ACKs

[9]

.
Although this approach has some merit for long delay paths, this is a
case where the correction is potentially as bad as the original problem.
The byte counting mode of congestion control allows a sender to
sharply increase its sending rate, causing potential instabilities within the
network and impacting concurrent TCP sessions.

Path-MTU Discovery
FEC
TCP

Slow Start
Congestion Avoidance
Fast Retransmit
Fast Recovery
Window Scaling
PAWS
RTTM
SACK

Sender
Link

Sender
Sender
Sender
Sender
Sender and Receiver
Sender and Receiver
Sender and Receiver
Sender and Receiver

Recommended
Recommended

Required
Required
Recommended
Recommended
Recommended
Recommended
Recommended
Recommended

Mechanism LocationUse

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 0

One approach to address this is to place a limit on the size of the win-
dow expansion, where each increment of the congestion window is
limited to the minimum of one or two segment sizes and the size of the
data spanned by the ACK. If the limit is set to a single segment size, the
window expansion will be in general slightly more conservative to the
current TCP ACK-based expansion mechanism. If this upper limit is set
to two segments, the congestion window expansion will account for the
delayed ACKs, expand at a rate equal to one segment for every success-
fully transmitted segment during slow start, and expand the window by
one segment size each RTT during congestion avoidance. Because a TCP
receiver will ACK a large span of data following recovery, this byte
counting is bounded to a single segment per ACK in the slow-start phase
following a transmission timeout. Another approach that has been ex-
plored is for the receiver to disable delayed ACKs until the sender has
completed the slow-start phase. Although such an approach shows
promising results under simulated conditions, the practical difficulty is
that it is difficult for the receiver to remotely determine the current TCP
sending state, and the receiver cannot reliably tell if the sender is in slow
start, congestion avoidance, or in some form of recovery mode. Explicit
signaling of the sender’s state as a TCP flag is an option, but the one-half
RTT delay in the signaling from the sender to the receiver may prove to
be an issue here. This area of congestion control for TCP remains a
topic of study.

All of these approaches can mitigate only the worst of the effects of the
long delay paths. TCP, as an adaptive reliable protocol that uses end-to-
end flow control, can undertake only incremental adjustments in its flow
rates in intervals of round-trip times. When the round-trip times extend,
then TCP is slower to speed up from an initial start, slower to recover
from packet loss, and slower to react to network congestion.

Tuning TCP—ACK Manipulation

The previous article of TCP Performance discussed numerous network
responses to congestion using

Random Early Detection

 (RED) for ac-
tive queue control and

Explicit Congestion Notification

 (ECN) as an
alternative to RED packet drop. It is feasible for a network control point
to impose a finer level of control on a TCP flow by using an approach of
direct manipulation of the TCP packets.

The approaches described above to mitigate some of the side effects of
satellite paths all share in the side effect of having some latency associ-
ated with the congestion response. The sender must await the reception
of trailing packets by the receiver, and then await the reception of the
matching ACK packets from the data receiver back to the sender to
learn of the fate of the original data packet. This may take up to one
RTT interval to complete. An alternative approach to congestion man-
agement responses is to manipulate the ACK packets to modify the
sender’s behavior.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 1

The prerequisite to perform this manipulation is that the traffic path be
symmetric, so that the congestion point can identify ACK packets travel-
ing in the opposite direction. If this is the case, a couple of control
alternatives can mitigate the onset of congestion:

•

ACK Pacing:

 Each burst of data packets will generate a correspond-
ing burst of ACK packets. The spacing of these ACK packets
determines the burst rate of the next sending packet sequence. For
long-delay systems, the size of such bursts becomes a limiting factor.
TCP slow start generates packet bursts at twice the bottleneck data
rate, so that the bottleneck feeder router may have to absorb one-half
of every packet burst within its internal queues. If these queues are
not dimensioned to the delay bandwidth product of the next hop,
these queues become the limiting factor, rather than the path band-
width itself. If you can slow down the TCP burst rate, the pressure
on the feeder queue is alleviated. One approach to slow down the
burst rate is to impose a delay on successive ACKs at a network con-
trol point (Figure 3). This measure will reduce the burst rate, but not
impact the overall TCP throughput. ACK pacing is most effective on
long delay paths, and it is intended to spread out the burst load,
reducing the pressure on the bottleneck queue and increasing the
actual data throughput.

Figure 3: ACK Pacing

•

Window Manipulation:

 Each ACK packet carries a receiver window
size. This advertised window determines the maximum burst size
available to the sender. Manipulating this window size downward
allows a control point to control the maximal TCP sending rate. This
manipulation can be done as part of a traffic-shaping control point,
enforcing bandwidth limitations on a flow or set of flows.

Both of these mechanisms make some sweeping assumptions about the
network control point that must be carefully understood. The major as-
sumption is that these mechanisms assume symmetry of data flows at
the network control point, where the data and the associated ACKs
flow through this control point (but in opposite directions, of course).
Both mechanisms also assume that the control point can cache per-flow
state information, so that the current flow RTT and the current trans-
fer rate and receiver window size are available to the service controller.

Sender Receiver

Data Packet Sequence

Spaced ACKs ACK Pacing ACK Sequence

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 2

ACK pacing also implicitly assumes that a single ACK timing response
is active at any time along a network path. A sequence of ACK delay
actions may cause the sender’s timers to trigger, and the sender to close
down the transfer and reenter slow-start mode. These environmental
conditions are more common at the edge of the network, and such
mechanisms are often part of a traffic control system for Web-hosting
platforms or similar network service delivery platforms. As a network
control tool, ACK manipulation makes too many assumptions, and the
per-flow congestion state information represents a significant overhead
for large network systems. In general, such manipulations are more ap-
propriate as an edge traffic filter, rather than as an effective congestion
management response. For this reason, the more indirect approach of
selective data packet discard is more effective as a congestion manage-
ment measure.

Assisting Short-Duration TCP Sessions—Limited Transmit

One of the challenges to the original set of TCP assumptions is that of
short-duration TCP sessions. The Web has introduced a large number of
short-duration sessions, and the issue with these sessions is that they use
small initial windows. If congestion loss occurs within this early period
of TCP slow start, there are not enough packets in the network to gener-
ate the three duplicate ACKs required to initiate fast retransmit and fast
recovery. Instead the TCP sender must await the expiry of the

retrans-
mission timeout

 (RTO), a timer that uses a minimum value of one
second. For short-duration TCP sessions that may last six or seven RTT
intervals of a small number of milliseconds, the incremental penalty of
single packet loss is then extremely severe. A study of this problem indi-
cates that approximately 56 percent of retransmissions are sent
following an RTO timeout

[25]

.

One potential mitigation to this is a mechanism termed “Limited Trans-
mit.” With this mechanism, a duplicate ACK may trigger an immediate
transmission of a segment of new data. Two conditions are applied to
this; the receiver’s advertised window allows the transmission of this
segment, and the amount of outstanding data would remain less than
the congestion window plus the duplicate ACK threshold used to trig-
ger Fast Retransmit. This second condition implies that the sender can
send only two segments beyond the congestion window, and will do so
only in response to the receiver lifting a segment off the network. The
basic principle of this strategy is to continue the signaling between the
sender and receiver in the face of packet loss, increasing the probability
that the sender will recover from packet loss using duplicate ACKs and
fast recovery, and reducing the probability of the one-second (or longer)
RTO timeout as being the recovery trigger. The limited transmit also re-
duces the potential for the recovery actions to burst into the network at
a level that may cause further packet loss.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 3

Low Bandwidth and High Error Rates—TCP for Wireless Systems

One of the more challenging environments for a the Internet Protocol,
and TCP in particular, is that of mobile wireless.

One approach to supporting the wireless environment is that of the so-
called “walled garden.” Here the protocols in use within the wireless en-
vironment are specifically adapted to the wireless world. The transport
protocols can account for the low bandwidth, the longer latency, the
BERs, and the variability within all three of these metrics. In this model,
Internet applications interact with an application gateway to reach the
wireless world, and the application gateway uses a wireless transport
protocol and potentially a modified version of the application data to in-
teract with the mobile wireless device. The most common approach is
extension of the World Wide Web client into the mobile wireless device,
using some form of proxy server at the boundary of the wireless net-
work and the Internet. This is the approach adopted by the

Wireless
Access Protocol Forum

 (WAP)

[14]

.

An alternative approach lies in extending not only the World Wide Web
to a mobile handset, but also allowing mobile devices to access a com-
plete range of Internet-based services as the functional objective. In this
approach, the intent is to allow the mobile wireless device to function as
any other Internet-connected device, and there is a consequent require-
ment for some form of end-to-end direct IP continuity, and an
associated requirement for end-to-end TCP functionality, where the
TCP path straddles both wired and wireless segments. Ensuring the
efficient operation of TCP in this environment is an integral part of the
development of such an environment. Given that TCP must now work
within a broader environment, it is no longer a case of adjusting TCP to
match the requirements of the wireless environment, but one of attempt-
ing to provide seamless interworking between the wired and wireless
worlds (Figure 4).

Figure 4: Linking the
Wired and Wireless

Worlds

Wireless Realm
Fixed Network

Realm

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 4

The wireless environment challenges many of the basic assumptions of
TCP noted above. Wireless has significant levels of bit error rates, often
with bursting of very high error rates. Wireless links that use forward er-
ror correcting codes have higher latency. If the link level protocol
includes automatic retransmission of corrupted data, this latency will
have high variability. Wireless links may also use adaptive coding tech-
niques that adjust to the prevailing signal to noise ratio of the link, in
which case the link will have varying bandwidth. If the wireless device is
a hand-held mobile device, it may also be memory constrained. And
finally, such an environment is typically used to support short duration
TCP sessions.

The major factor for mobile wireless is the BER, where frame loss of up
to 1 percent is not uncommon, and errors occur in bursts, rather than as
evenly spaced bit errors in the packet stream. In the case of TCP, such
error conditions force the TCP sender to initially attempt fast retransmit
of the missing segments, and when this does not correct the condition,
the sender will have an ACK timeout occur, causing the sender to col-
lapse its sending window and recommence from the point of packet loss
in slow-start mode. The heart of this problem is that assumption on the
part of TCP that packet loss is a symptom of network congestion rather
than packet corruption. It is possible to use a model of TCP AIMD per-
formance to determine the effects of this loss rate on TCP performance.
If, for example the link has a 1-percent average packet loss rate, a

Maxi-
mum Segment Size

 (MSS) size of 1000 bytes, and a 120ms RTT, then
the AIMD models predict a best-case performance of 666Kbps through-
put, and a more realistic target of 402Kbps throughput

[15]

. (See the
appendix on page 24 for details of these models.) TCP is very sensitive
to packet loss levels, and sustainable performance rapidly drops when
packet drop levels exceed 1 percent.

Link-level solutions to the high BER are available to designers, and FEC
codes and

automatic retransmission systems

 (ARQ) can be used on the
wireless link. FEC introduces a relatively constant coding delay and a
bandwidth overhead into the path, but cannot correct all forms of bit er-
ror corruption. ARQ uses a “stop and resend” control mechanism
similar to TCP itself. The consequent behavior is one of individual pack-
ets experiencing extended latency as the ARQ mechanisms retransmit
link-level fragments to correct the data corruption, because the packet
flow may halt for an entire link RTT interval for the link-level error to
be signaled and the corrupted level 2 data to be retransmitted. The issue
here is that TCP may integrate these extended latencies into its RTT esti-
mate, making TCP assume a far higher latency on the path than is the
case, or, more likely, it may trigger a retransmission at the same time as
the level 2 ARQ is already retransmitting the same data. An alternative
Layer 2 approach to bit-level corruption is to deliver those level 2 frames
that were successfully transmitted, while resending any frames that were
corrupted in transmission.

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 5

The problem for TCP here is that the level 2 drivers are adding packet
reordering to the extended latency, and from TCP perspective the deliv-
ery of the out-of-order packets will generate duplicate ACKs that may
trigger a simultaneous TCP fast retransmit.

Perversely, some approaches have advocated TCP delaying its dupli-
cate ACK response in such situations

[13]

. To quote from RFC 2488,
“The interaction between link-level retransmission and transport-level
retransmission is not well understood.”

[6]

If ARQ is not the best possible answer to addressing packet loss in mo-
bile wireless systems, then what can be done at the TCP level to address
this? TCP can take numerous basic steps to alleviate the worst aspects of
packet corruption on TCP performance. These include the use of Fast
Retransmit and Fast Recovery to allow a single packet loss to be re-
paired moderately quickly. This mechanism triggers only after three
duplicate ACKs, so the associated action is to ensure that the TCP
sender and receiver can advertise buffers of greater than four times the
MSS. SACKs allow a sender to repair multiple segment losses per win-
dow within a single RTT, and where large windows are operated over
long delay paths, SACK is undoubtedly useful.

However, useful as these mechanisms may be, they are probably inade-
quate to allow TCP to function efficiently over all forms of wireless
systems. Particularly in the case of mobile wireless systems, packet cor-
ruption is sufficiently common that, for TCP to work efficiently, some
form of explicit addressing of network packet corruption appears to be
necessary.

One approach is to decouple TCP congestion control mechanisms from
data recovery actions. The intent is to allow new data to be sent during
recovery to sustain TCP ACK clocking. This approach is termed

For-
ward Acknowledgements with Rate Halving

 (FACK)

[13]

, where one
packet is sent for every two ACKs received while TCP is recovering
from lost packets. This algorithm effectively reduces the sending rate by
one-half within one RTT interval, but does not freeze the sender to wait
the draining on one-half of the congestion window’s amount of data
from the network before proceeding to sending further data, nor does it
permit the sender to burst retransmissions into the network. This is par-
ticularly effective for long-delay networks, where the fast recovery
algorithm causes the sender to cease sending for up to one RTT inter-
val, thereby losing the accuracy of the implicit ACK clock for the
session. FACK allows the sender to continue to send packets into the
network during this period, in an effort to allow the sender to maintain
an accurate view of the ACK clock. FACK also provides an ability to set
the number of SACK blocks that specify a missing segment before re-
sending the segment, allowing the sender greater levels of control over
sensitivity to packet reordering. The changes to TCP to support FACK
are a change in the sender’s TCP to use the FACK algorithm for recov-
ery, and, for optimal performance, use of SACK options by the receiver.

The Future for TCP:

continued

T h e I n t e r n e t P r o t o c o l J o u r n a l

1 6

In looking for alternative responses to packet corruption, it is noted that
TCP segments that are corrupted are often detected at the link level, and
are discarded by the link-level drivers. This discard cannot be used to
generate an error message to the packet sender, given that the IP header
of the packet may itself be corrupted, nor can the discard signal be reli-
ably passed to the receiver, for the same reason. However, despite this
unreliability of information, this signaling from the link level to the
transport level is precisely the objective here, because, at the TCP proto-
col level, the sender needs to be aware that the packet loss was not due
to network congestion, and that there is no need to take corrective ac-
tion in terms of TCP congestion behavior.

One approach to provide this signaling from the data link level to the
transport level calls for the link-level device to forward a “corruption ex-
perienced”

Internet Control Message Protocol

 (ICMP) packet when
discarding a corrupted packet[13]. This approach has the ICMP packet
being sent in the forward direction to the receiver, who then has the task
of converting this message and the associated lost packet information
into a signal to the sender that the duplicate ACKs are the result of cor-
ruption, not network congestion. This signal from the receiver to the
sender can be embedded in a TCP header option. The sending TCP ses-
sion will maintain a corruption experienced state for two RTT intervals,
retransmitting the lost packets without halving the congestion window
size.

As we have noticed, corruption may have occurred in the packet header,
and the sender’s address may not be reliable. This approach addresses
this by having the router keep a cache of recent packet destinations, and
when the IP header information is unreliable because of a failed IP
header checksum, the router will forward the ICMP message to all desti-
nations in the cache. The potential weakness in this approach is that if
network congestion occurs at the same time as packet corruption, the
sender will not react to the congestion, and will continue to send into
the congestion for a further two RTT intervals. This approach is not
without some deployment concerns. It calls for modification to the wire-
less routers and to the receiver’s link-level drivers to generate the ICMP
corruption experienced messages, modification to the receiver’s IP stack
in order to take signals from the IP ICMP processor and from the link-
level driver and convert them to TCP corruption loss signals within the
TCP header of the duplicate ACKs, and modifications to the TCP pro-
cessor at the sender to undertake corruption-experienced packet loss
recovery. Even with these caveats in mind, this approach of explicit cor-
ruption signaling is a very promising approach to addressing
performance issues with TCP over wireless.

Of course high levels of bit errors is not the only problem facing TCP
over wireless systems. Mobile wireless systems are typically small hand-
sets or personal digital assistants, and the application transactions are
often modified to reduce the amount of data transferred, given that a
limited amount of data can be displayed on the device.

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 7

In this case, the ratio between payload and IP and TCP headers starts to
become an issue, and some consideration of header compression is nec-
essary. Header compression techniques typically take the form of
stripping out those fields of the header that do not vary on a packet-by-
packet basis, or that vary by amounts that can be derived from other
parts of the header, and then transmitting the delta values of those fields
that are varying[16, 17].

Although such header compression schemes can be highly efficient in
operation, the limitation of such schemes is that the receiver needs to
have successfully received and decompressed the previous packet before
the receiver can decompress the next packet in the TCP stream. In the
face of high levels of bit error corruption, such systems do introduce ad-
ditional latencies into the data transfer, and multiple packet drops are
difficult to detect and signal via SACK in this case.

A more subtle aspect of mobile wireless is that of temporary link out-
ages. For example, a mobile user may enter an area of no signal
coverage for a period of time, and attempt to resume the data stream
when signal is obtained again. In the same way that there is no accepted
way of a link-level driver informing TCP of packet loss due to corrup-
tion, there is no way a link-level driver can inform TCP of a link-level
outage. In the face of such link-level outages, TCP will assume network-
level congestion, and in the absence of duplicate ACKs, TCP retransmis-
sion timers will trigger. TCP will then attempt to restart the session in
slow-start mode, commencing with the first dropped packet. Each at-
tempt to send the packet will result in TCP extending its retransmission
timer using an exponential backoff on each attempt, so that successive
probes are less and less frequent. Because the link level cannot inform
the sender on the resumption of the link, TCP may wait some consider-
able time before responding to link restoration. The intention is for the
link level to be able to inform the TCP for resumption of the connection
following a link outage. One approach is for the link level to retain a
packet from each TCP stream that attempted to use the link. When the
link becomes operational again, the link-level driver immediately trans-
mits these packets on the link. The result is that the receiver will then
generate a response that will then trigger the sender into transmission
within a RTT interval. Only a single packet per active TCP stream is
necessary to trigger this response, so that the link level does not need to
hold an extensive buffer of undeliverable packets during a link outage.
Of course if the routing level repaired the link outage in the meantime,
the delivery of an out-of-order TCP packet would normally be dis-
carded by the sender.

The bottom line here is the question: Is TCP suitable for the mobile
wireless environment? The answer appears to be that TCP can be made
to work as efficiently as any other transport protocol for the mobile
wireless environment.

The Future for TCP: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 8

However, this does imply that some changes in the operation of TCP
need to be undertaken, specifically relating to the signaling of link-level
states into the TCP session and use of advanced congestion control and
corruption signaling within the TCP session. Although it is difficult to
conceive of a change to every deployed TCP stack within the deployed
Internet to achieve this added functionality, there does exist a middle
ground between the “walled garden” approach and open IP. In this
middle ground, the wireless systems would have access to “middle-
ware,” such as Web proxies and mail agents. These proxies would use a
set of TCP options when communicating with mobile wireless clients
that would make the application operate as efficiently as possible, while
still permitting the mobile device transparent access to the Internet for
other transactions.

Unbundling TCP—Stream Control Transmission Protocol
There are occasions where the application finds the control functions of
TCP too limiting. In the case of handling Public Switched Telephone
Network (PSTN) signaling across an Internet network, the application
requirements are somewhat different from those of TCP delivered ser-
vice. PSTN signaling reliable delivery is important, but the individual
transactions within the application are included within each packet, so
the concept of preservation of strict order of delivery is unnecessary. Re-
laxation of this requirement of strict order of packet delivery allows the
transport protocol to function more efficiently, because there is no head-
of-line blocking at the receiver when awaiting retransmission of lost
packets. TCP also assumes the transfer of a stream of data, so that appli-
cations that wish to add some form of record delineation to the data
stream have to add their own structure to the data stream. In addition,
the limited scope of TCP sockets complicates the support of a high-
availability application that may use multihomed hosts, and TCP itself is
vulnerable to many attacks, such as SYN attacks. The intention of the
Stream Control Transmission Protocol (SCTP) is to address these appli-
cation requirements[16].

The first major difference between SCTP and TCP occurs during initial-
ization, where the SCTP endpoints exchange a list of SCTP endpoint
addresses (IP addresses and port numbers) that are to be associated with
the SCTP session. Any pair of these source and destination addresses can
be used within the SCTP session.

The startup of SCTP is also altered into a four-way handshake, where
the initiator sends a tag value to the other end, which then responds
with a copy of this tag and a tag of its own. At this stage the recipient
does not allocate any resources for the connection, making the initializa-
tion sequence more robust in the face of TCP SYN-styled attacks. The
initiator can then respond to this with an echo of the recipient’s tag
(COOKIE-ECHO), and can also attach data to the response, allowing
data to be transferred as early as possible in the handshake process.

T h e I n t e r n e t P r o t o c o l J o u r n a l
1 9

After the recipient ACKs this message, the SCTP session is now estab-
lished. The closing of an SCTP session is also different from TCP. In
TCP, one side can close its sending function via a FIN TCP packet, and
continue to receive packets, operating in a “half-open” state. In SCTP, a
close from one side will cause the other end to drain its send queues and
also shut down.

SCTP also functions in a form of transport-level multiplexing, where nu-
merous logical streams can be supported across a single transport-level
association. Although message order within an individual stream is pre-
served by SCTP, retransmission within one stream does not impact the
operation of any other stream that is supported across the same SCTP
transport association. Each stream has an explicit identification and a
per-stream sequence identification to support this function. SCTP also
provides for nonsequenced message delivery, where a message within a
stream is marked for immediate delivery, irrespective of the relative or-
der of the message within a stream (Figure 5).

Figure 5: The SCTP
Transport Service

Model

SCTP explicitly uncouples transport-level reliability and congestion con-
trol from per-stream sequenced delivery through the use of a separate
transport-level interaction. The transport-level data and ACKs and the
corresponding transport-level congestion window controls operate us-
ing a transport-level sequence space. This sequence space counts
transport-level messages, not byte offsets within the message, so that no
explicit window scaling option is necessary for SCTP. The congestion
control functions reference those of TCP with fast retransmit and fast re-
covery, with an explicit specification of the SACK protocol and
specification of the maintenance of the transmission timers and conges-
tion control. SCTP also requires the use of MTU path discovery, so that
larger transactions will use SCTP-level segmentation, avoiding the IP re-
transmission problem with lost fragments of a fragmented IP packet.
SCTP does use a modified retransmission mechanism to that of TCP.
Like TCP, SCTP associates a retransmission timer with each message,
and if the timer expires the message is retransmitted and SCTP collapses
the congestion window to a single message size. The SCTP receiver will
generate SACK reports for a minimum of every second received packet.

IP Protocol IP Protocol

Stream
Client

Stream
Client

 Stream
Client

Stream
Client

Stream
Client

Stream
Client

SCTP Protocol SCTP Protocol

Non-Sequenced Data Flow

Sequenced Data Flow

Datagram Delivery

Reliable,
Congestion Controlled

Transport

Sequenced Data Flow

The Future for TCP: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 0

If a message is within a SACK gap, then after three further such SACK
messages, the sender will immediately send the missing messages, and
half its congestion window, analogous to the fast retransmit and fast re-
covery of TCP.

The use of multiple endpoint addresses assumes that each of the end-
point addresses is associated with the same end host, but with a
potentially different network path between the two endpoints. SCTP re-
freshes path availability to each of the endpoint addresses with a
periodic keepalive, so that in the event of primary path failure, SCTP
can continue by using one of the secondary endpoint addresses.

One could describe SCTP as being overly inclusive in terms of its archi-
tecture, and there is certainly a lot of capability in the protocol that is
not contained within TCP. The essential feature of the protocol is to use
a single transport congestion state between two systems to allow a vari-
ety of applications to attach as stream clients. In itself, this is analogous
to TCP multiplexing. It also implicitly assumes that every stream is pro-
vided the same service level by the network, an assumption shared by
almost all transport multiplexing systems. The essential alteration with
SCTP is the use of many transport modes: reliable sequenced message
streams, reliable sequenced streams with interrupt message capability,
and reliable nonsequenced streams. It remains to be seen whether the
utility provided by this protocol will become widely deployed within the
Internet environment, or whether it will act as a catalyst for further evo-
lution of transport service protocols.

Sharing TCP information—Endpoint Congestion Management
The notion of sharing a single TCP congestion state across multiple reli-
able streams is one that may also be applied to a mix of reliable and
nonreliable data streams that operate concurrently between a pair of
endpoints. It is this form of the multiplexing service model that is ex-
plored by the congestion manager model. The Congestion Manager is
an end-system module that allows a collection of concurrent streams
from the host to a single destination to share a common congestion con-
trol function, and permits various forms of reliable and nonreliable
streams to use the network in a way that cooperates with concurrent
congestion controlled flows[19].

One of the major motivations for the congestion manager is the obser-
vation that the most critical part of network performance management
is that of managing the interaction between congestion-controlled TCP
streams and nonresponsive UDP data streams. In the extreme cases of
this interaction, either traffic class can effectively deny service to the
other by placing sufficient pressure on the network queuing resources
that starve the other traffic class of any usable throughput. The observa-
tion made in the motivation for the congestion manager is that
applications such as the Web typically open up a set of parallel connec-
tions to provide service, sending a mix of reliable flow-controlled data

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 1

along one connection and unreliable real-time streaming content along
another. If the set of flows used a common congestion-control function
at the sending host, the collection of flows would utilize the network re-
sources in a manner analogous to a single TCP connection.

The manner of providing this common congestion control function is an
advisory function to applications, as shown in Figure 6. One mechanism is
that of a callback, where an application inserts a request to send a single
message segment with the congestion manager. The Congestion Manager
responds with invoking a callback to the requestor when the application
may pass the data segment to the protocol driver. The other supported
mechanism is that of synchronous transmission, where the Congestion
Manager has a callback function that updates the application with a maxi-
mal available bit rate, the smoothed round-trip time estimate, and the
smoothed linear deviation in the round-trip time estimate. In this mode the
application can request further notification only when the network state
changes by some threshold amount.

Figure 6:
The CM Model,

(after “The Congestion
Manager”[19])

For the Congestion Manager to maintain a current picture of the con-
gestion state of the path to the destination, each active stream needs to
update the congestion manager as to the response from the remote host.
It does this by informing the congestion manager of the number of bytes
received, the number of bytes lost, and the RTT measurement, as mea-
sured at the application level. The application is also expected to provide
an indication of the nature of the loss, as a timeout expiry, a transient
network condition, or based on the reception of an ECN signal.

There has been little practical experience as yet with this model of
shared congestion control within the Internet environment. There also
remains a number of issues about how network performance informa-
tion is passed back from the receiver to the sender in the absence of an
active concurrent TCP session. The concurrent operation of a TCP ses-
sion with a UDP streaming session to the same destination allows
Congestion Manager to use the TCP congestion state to determine the
sending capability of the streaming flow.

Congestion
Controller

Scheduler

HTTP FTP RTP1 RTP2

TCP1 TCP2 UDP

IP

A
P
I

The Future for TCP: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 2

If the TCP session is idle, or if there is no TCP session, then the UDP
streaming application will require some form of receiver feedback. The
feedback will need to report on the span of data covered by the report,
and the data loss rates and jitter levels, allowing the sender to assess the
current quality and capacity of the network path.

This approach, and that of SCTP, are both illustrative of the approach
of unbundling the elements of TCP and allowing applications to use
combinations of these elements in ways that differ from the conven-
tional monolithic transport-level protocol stack, with the intention of
allowing the TCP congestion control behavior to be applied to a wider
family of applications.

Better than TCP?
Recently, numerous “better-than-TCP” protocol stacks have appeared
on the market, most commonly in conjunction with Web server sys-
tems, where the performance claim is that these protocol stacks can
interoperate with standard TCP clients, but offer superior download
performance to a standard TCP protocol implementation.

This level of performance is achieved by modifying the standard TCP
flow control systems in a number of ways. The modified implementa-
tion may use a lower initial RTT estimate to provide a more aggressive
startup rate, and a more finely grained RTT timer system to allow the
sender to react more quickly to network state changes. Other modificat-
ions may include using a larger initial congestion window size or may
use an even faster version of slow start, where the sending rate is tri-
pled, or more, every round-trip time interval. The same technique of
incremental modification can be applied to the congestion avoidance
state, where the linear rate increase of one segment size per round-trip
time interval can be increased to some multiple of the segment size, or
use a time base other than the round-trip time for linear expansion of
the congestion window. The backoff algorithm can also be altered such
that the congestion window is reduced by less than half during conges-
tion backoff. Resetting the TCP session to slow-start mode following the
ACK timeout can also be avoided in such modified protocol
implementations.

These techniques are all intended to force the sender to behave more ag-
gressively in its transmission of packets into the network, thereby
increasing the pressure on the network buffers. The network is not the
only subject of this increased sending pressure; such modified protocol
systems tend to impose a significant performance penalty on other con-
current TCP sessions that share the path with these modified protocol
hosts. The aggressive behavior of the modified TCP systems in filling the
network queues tends to cause the other concurrent standard TCP ses-
sions to reduce their sending rate. This in turn opens additional space in
the network for the modified TCP session to increase its transmission
rate.

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 3

In an environment where the overall network resource-sharing algo-
rithm is the outcome of dynamic equilibration between cooperative
sending systems, such aggressive flow control modification can be con-
sidered to be extremely antisocial behavior at the network level.
Paradoxically, such systems can also be less efficient than a standard
TCP implementation. TCP server systems modified in this way tend to
operate with higher levels of packet loss because their efforts to saturate
the network with their own data packets make them less sensitive to the
signals of network congestion.

Consequently, when delivering large volumes of traffic, or where there
are moderately low levels of competitive pressure for network re-
sources, the modified TCP stack may often perform less efficiently than
a standard TCP implementation. Accordingly, these modified better-
than-TCP implementations remain in the experimental domain. Within
the production environment, their potential to impose undue perfor-
mance penalties on concurrent TCP sessions and their potential to
reduce overall network efficiency are reasonable indicators that such
modified stacks should be used in private network environments, and
with considerable care and discretion, if at all. Their utility in the public
Internet is highly dubious.

TCP Evolution
The evolution of TCP is a careful balance between innovation and con-
sidered constraint. The evolution of TCP must avoid making radical
changes that may stress the deployed network into congestion collapse,
and also must avoid a congestion control “arms race” among compet-
ing protocols[20]. The Internet architecture to date has been able to
achieve new benchmarks of network efficiency, and translate this car-
riage efficiency into ground-breaking benchmark prices for IP-based
carriage services. Much of the credit for this must go to the operation of
TCP, which manages to work at that point of delicate balance between
self-optimization and cooperative behavior.

Widespread deployment of transport protocols that take a more aggres-
sive position on self-optimization will ultimately lead to situations of
congestion collapse, while widespread deployment of more conservative
transport protocols may well lead to lower jitter and lower packet re-
transmission rates, but at a cost of considerably lower network
efficiency.

The challenges faced with the evolution of TCP is to maintain a coher-
ent control architecture that has consistent behavior within the network,
consistent interaction with instances of data flows that use the same con-
trol architecture, and yet be adequately flexible to adapt to differing
network characteristics and differing application profiles. It is highly
likely that we will see continued innovation within Internet transport
protocols, but the bounds of such effort are already well recognized.

The Future for TCP: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 4

We can now state relatively clearly what levels of innovation are tolera-
ble within an Internet network model that achieves its efficiency not
through enforcement of rigidly enforced rules of sharing of the network
resource, but through a process of trust between competing user de-
mands, where each demand is attempting to equilibrate its requirements
against a finite network capacity. This is the essence of the TCP
protocol.

Appendix: TCP Performance Models
This appendix is an extract from “Advice for Internet Subnet Design-
ers,” work in progress[15].

The performance of the TCP AIMD Congestion Avoidance algorithm
has been extensively analyzed. The current best formula for the perfor-
mance of the specific algorithms used by Reno TCP is given by Padhye
et. al.[21], this formula is:

MSS is the segment size being used by the connection.
RTT is the end-to-end round-trip time of the TCP connection.
RTO is the packet timeout (based on RTT).
ρ is the packet loss rate for the path (that is, 0.01 if there is
 1-percent packet loss)

This is currently considered to be the best approximate formula for
Reno TCP performance. A further simplification to this formula is gen-
erally made by assuming that RTO is approximately 5 × RTT.

TCP is constantly being improved. A simpler formula, which gives an
upper bound on the performance of any AIMD algorithm that is likely
to be implemented in TCP in the future, was derived by Ott, et.al.[22, 23].

Assumptions of these formulae:

• Both of these formulae assume that the TCP Receiver Window is not
limiting the performance of the connection in any way. Because the
receiver window is entirely determined by end hosts, we assume that
hosts will maximize the announced receiver window in order to
maximize their network performance.

• Both of these formulae allow for bandwidth to become infinite if
there is no loss. This is because an Internet path will drop packets at
bottleneck queues if the load is too high. Thus, a completely lossless
TCP/IP network can never occur (unless the network is being
underutilized).

• The RTT used is the average RTT including queuing delays.

BW
MSS

RT T 1.33(ρ)××) RT O ρ× 1 32 ρ2×+[]× min× 1 3 0.75 ρ××,()()+(
---=

BW 0.93
MSS 1

RTT ρ
-------------------×=

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 5

• The formulae are calculations for a single TCP connection. If a path
carries many TCP connections, each will follow the formulae above
independently.

• The formulae assume long-running TCP connections. For connec-
tions that are extremely short (<10 packets) and don’t lose any
packets, performance is driven by the TCP slow-start algorithm. For
connections of medium length, where on average only a few seg-
ments are lost, single-connection performance will actually be slightly
better than given by the formulae above.

• The difference between the simple and complex formulae above is
that the complex formula includes the effects of TCP retransmission
timeouts. For very low levels of packet loss (significantly less than 1
percent), timeouts are unlikely to occur, and the formulae lead to
very similar results. At higher packet losses (1 percent and above),
the complex formula gives a more accurate estimate of performance
(which will always be significantly lower than the result from the
simple formula).

Note that these formulae break down as ρ approaches 100 percent.

Addendum: An Update on Explicit Congestion Notification
The previous article on TCP performance noted that there was no ex-
plicit standardization of the IPv4 header field to carry the Explicit
Congestion Notification (ECN) signals. As an update to the status of
ECN, RFC 2481, the document that describes ECN, categorizes this
proposal as an “Experimental” RFC document[27]. The Internet Stan-
dards process[28] describes this category as follows: “The ‘Experimental’
designation typically denotes a specification that is part of some re-
search or development effort. Such a specification is published for the
general information of the Internet technical community ...” ECN is the
only experimental proposal to use these two bits of the IP header, and
the use of the category “Experimental” reflects the current status of the
proposal, in that the Internet Engineering Steering Group has, at the
time of publication, yet to make a final decision to allocate these two
bits of the IP header to ECN.

Some encouragement to use ECN is certainly timely. As RFC 2481
notes: “Given the current effort to implement RED, we believe this is the
right time for router vendors to examine how to implement congestion
avoidance mechanisms that do not depend on packet drops alone. With
the increased deployment of applications and transports sensitive to the
delay and loss of a single packet (e.g., realtime traffic, short web trans-
fers), depending on packet loss as a normal congestion notification
mechanism appears to be insufficient (or at the very least, non-
optimal).”

The Future for TCP: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 6

References and Further Reading
[1] Huston, G., TCP Performance, The Internet Protocol Journal, Vol. 3,

No. 2, Cisco Systems, June 2000.

[2] Huston, G., Internet Performance Survival Guide: QoS Strategies for
Multiservice Networks, ISBN 0471-378089, John Wiley & Sons,
January 2000.

[3] Postel, J., “Transmission Control Protocol,” RFC 793, September 1981.

[4] Claffy, K., Miller, G., Thompson, K., “The Nature of the Beast: Recent
Traffic Measurements from an Internet Backbone,” INET’98
Proceedings, Internet Society, July 1998. Available at:
http://www.isoc.org/inet98/proceedings/6g/6g_3.htm

[5] Braden, R., “T/TCP—TCP Extensions for Transactions Functional
Specification,” RFC 1644, July 1994.

[6] Allman, M., Glover, D., Sanchez, L., “Enhancing TCP over Satellite
Channels Using Standard Mechanisms,” RFC 2488, January 1999.

[7] Jacobson, V., “Congestion Avoidance and Control,” ACM SIGCOMM,
1988.

[8] Floyd, S., Fall, K., “Promoting the Use of End-to-End Congestion
Control in the Internet,” Submitted to IEEE Transactions on
Networking.

[9] Allman, M., Paxson, V., Stevens, W., “TCP Congestion Control,” RFC
2581, April 1999.

[10] Mogul, J., Deering. S., “Path MTU Discovery,” RFC 1191, November
1990.

[11] Jacobson, V., Braden, R., Borman, C., “TCP Extensions for High
Performance,” RFC 1323, May 1992.

[12] Mathis, M., Mahdavi, J., Floyd, S., Romanow, A., “TCP Selective
Acknowledgement Options,” RFC 2018, October 1996.

[13] Allman, M., editor, “Ongoing TCP Research Related to Satellites,” RFC
2760, February 2000.

[14] Wireless Access Protocol Forum, http://www.wapforum.org

[15] Karn, P., Falk, A., Touch, J., Montpetit, M., Mahdavi, J., Montenegro,
G., Grossman, D., Fairhurst, G., “Advice for Internet Subnet
Designers,” work in progress, July 2000.

[16] Jacobson, V., “Compressing TCP/IP Headers for Low-Speed Serial
Links,” RFC 1144, February 1990.

[17] Casner, S., Jacobson, V., “Compressing IP/UDP/RTP Headers for Low-
Speed Serial Links,” RFC 2508, February 1999.

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 7

[18] Stewart, R., et al., “Stream Control Transmission Protocol,” work in
progress, July 2000.

[19] Balakrishnan, H., Seshan, S., “The Congestion Manager,” July 2000.

[20] Floyd, S., editor, “Congestion Control Principles,” work in progress,
June 2000.

[21] Padhye, J., Firoiu, V., Towsley, D., Kurose, J., Modeling TCP
Throughput: A Simple Model and Its Empirical Validation, UMASS
CMPSCI Tech Report TR98-008, Feb. 1998.

[22] M. Mathis, M., Semke, J., Mahdavi, J., Ott, T., “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm,” Computer
Communication Review, Vol. 27, No. 3, July 1997.

[23] Ott, T., Kemperman, J., Mathis, M., “The Stationary Behavior of Ideal
TCP Congestion Avoidance,” available at:
ftp://ftp.bellcore.com/pub/tjo/TCPwindow.ps

[24] Floyd, S., Mahdavi, J., Mathis, M., Podolsky M., “An Extension to the
Selective Acknowledgement (SACK) Option for TCP,” RFC 2883, July
2000.

[25] Allman, M., Balakrishnan, H., Floyd, S., “Enhancing TCP’s Loss
Recovery Using Early Duplicate Acknowledgment Response,” work in
progress, June 2000.

[26] Allman, M., “TCP Congestion Control with Appropriate Byte
Counting,” work in progress, July 2000.

[27] Ramakrishnan, K., Floyd, S., “A Proposal to Add Explicit Congestion
Notification (ECN) to IP,” RFC 2481, January 1999.

[28] Bradner, S., “The Internet Standards Process—Revision 3,” RFC 2026,
October 1996.

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University.
He has been closely involved with the development of the Internet for the past decade,
particularly within Australia, where he was responsible for the initial build of the Inter-
net within the Australian academic and research sector. Huston is currently the Chief
Scientist in the Internet area for Telstra. He is also a member of the Internet Architecture
Board, and is the Secretary of the Internet Society Board of Trustees. He is author of The
ISP Survival Guide, ISBN 0-471-31499-4, Internet Performance Survival Guide: QoS
Strategies for Multiservice Networks, ISBN 0471-378089, and coauthor of Quality of
Service: Delivering QoS on the Internet and in Corporate Networks, ISBN 0-471-24358-
2, a collaboration with Paul Ferguson. All three books are published by John Wiley &
Sons. E-mail: gih@telstra.net

