
Papers and Articles

An occasional series of articles on the social and technical evolution of the Internet

by Geoff Huston

Anatomy: A Look Inside Network Address Translators

August 2004
Geoff Huston

Over the past decade numerous IP-related technologies have generated some level of
technical controversy. One of these is the Network Address Translator, or NAT. This article
describes the inner workings of NATs in some detail, and then looks at the issues that have
accompanied the deployment of NATs in the Internet that appear to have fuelled this
technical controversy. NATs are a very widespread feature of today's Internet, and this
article attempts to provide some insight as to how they operate, why there is such a level
of technical controversy about NATs, and perhaps some pointers to what we have learned
about technology and the process of standardization of technology along the way.

NAT Motivation

The first RFC document describing NATs was by Kjeld Egevang and Paul Francis in 1994 [1].
The original motivation behind the NAT work was based on efforts in the early 1990s
associated with a successor protocol to IPv4. The overall effort of a successor protocol to
IPv4 was to devise a protocol that would directly address the issues of accelerating address
consumption in IPv4 that appeared to be leading to the prospect of imminent address
exhaustion. Although IPv4 was capable of uniquely addressing some 4.4 billion devices, it
was evident by as early as 1992 that the world was heading down a path of very intensive
deployment of devices that included communications capabilities, and that IPv4 was not
going to be able to extend across the full range of future device deployment. The objective
with NAT was to define a mechanism that allowed IP addresses to be shared across
numerous devices. In addition, it was intended that NATs could be deployed in a piecemeal
fashion within the Internet, without causing changes to hosts or other routers. Other forms
of address-sharing technologies relied on intermittent connectivity, whereas NATs were
intended to allow a collection of connected devices to share an address pool dynamically.
The original RFC portrays this approach as being a measure that can "provide temporarily
relief while other, more complex and far-reaching solutions are worked out."

So, as documented, the original intent of NATs was to be a possible short-term response to
address exhaustion while longer-term solutions were being devised. NATs were also
intended to be unmanaged devices that are transparent to end-to-end protocol interaction,
requiring no specific interaction between the end systems and the NAT device.

A decade later NATs are attaining a status of near-ubiquitous deployment across the
Internet, and although IPv6 has been defined and deployment is commencing, NATs appear
to be a very well-entrenched part of the network landscape. And, for the most part, NATs
continue to function as unmanaged devices.

They can be transparent to some forms of protocol interaction, but, as the voice-over-IP
folks are finding out, they can be very obvious to the point of being highly disruptive to
other forms of protocol operation.

Anatomy: A Look Inside Network Address Translators Page 1 of 25

NAT Operation

The operation of NATs is deceptively easy to describe in general terms. They are active
units placed in the data path, usually as a functional component of a border router or site
gateway. NATs intercept all IP packets, and may forward the packet onward with or without
alteration to the contents of the packet, or may elect to discard the packet. The essential
difference here from a conventional router or a firewall is the discretional ability of the NAT
to alter the IP packet before forwarding it on. NATs are similar to firewalls, and different
from routers, in that they are topologically sensitive. They have an "inside" and an
"outside," and undertake different operations on intercepted packets depending on whether
the packet is going from inside to outside, or in opposite direction.

NATs are IP header translators, and, in particular, NATs are IP address translators. The
header of an IP packet contains the source and destination IP addresses. If the packet is
being passed in the direction from the inside to the outside, a NAT rewrites the source
address in the packet header to a different value, and alters the IP and TCP header
checksums in the packet at the same time to reflect the change of the address field. When
a packet is received from the outside destined to the inside, the destination address is
rewritten to a different value, and again the IP and TCP header checksums are recalculated
(Figure 1). The "inside" does not use globally unique addresses to number every device
within the network served by the NAT. The inside (or "local") network may use addresses
from private address blocks, implying that the uniqueness of the address holds only for the
site. Let's look at this using an example.

As shown in Figure 2, how can local (private) host A initiate and maintain a TCP session
with remote (public) host B? Host A first uses the Domain Name System (DNS) to find the
public IP address for host B, and then creates an IP packet using host B's address as the
destination address and host A's local address as the source, and passes the packet to the
local network for delivery. If the packet was delivered to host B without any further
alteration, then host B would be unable to respond. The public Internet does not (or should
not at any rate!) carry private addresses, because they are not globally unique addresses.

Anatomy: A Look Inside Network Address Translators Page 2 of 25

With a NAT between hosts A and B, the NAT intercepts host A's outgoing packet and
rewrites the source address with a public address. NATs are configured with a pool of public
addresses, and when an "inside" host first sends an outbound packet, an address is drawn
from this pool and mapped as a temporary alias to the inside host A's local address. This
mapped address is used as the new source address for the outgoing packet, and a local
session state is set up in the NAT unit for the mapping between the private and the public
addresses.

After this mapping is made, all subsequent packets within this application stream, from this
internal address to the specified external address, will also have their source address
mapped to the external address in the same fashion.

When an incoming packet arrives on the external interface, the destination address is
checked. If it is one of the NAT pool addresses, the NAT box looks up its translation table. If
it finds a corresponding table entry, the destination address is mapped to the local internal
address, the packet checksums are recalculated, and the packet is forwarded. If there is no
current mapping entry for the destination address, the packet is discarded.

The mode of operation of a NAT is shown in Figure 3. So, continuing our example, the local
host at address A is directing packets to the external server host at address B. Because the
NAT is in the path, the NAT has altered the packets so that address A is translated to
address X. Host A is aware that it is communicating with host B, and from host A's
perspective this is a normal session. Host B believes that it is communicating with a host at
address X, and is entirely unaware of address A. From host B's perspective this is a normal
session with a host at address X.

Anatomy: A Look Inside Network Address Translators Page 3 of 25

Dynamically created mapping entries (or "bindings") are typically maintained by the NAT
with a timer. If no packets that use the mapping are received by the NAT within a certain
time window, then the binding is removed from the NAT and the public address is returned
to the NAT pool.

NAPTs

A variant of the NAT is the Port-Translating NAT, or NAPT. This form of NAT is used in the
context of TCP and User Datagram Protocol (UDP) sessions, where the NAT maps the local
source address and source port number to a public source address and a public-side port
number for outgoing packets. Incoming packets addressed to this public address and port
pair are translated to the corresponding local address and port. Again, the binding is
maintained by a NAT idle timer, and upon expiration of the timer the public address and
port pair are returned to the NAT pool (Figure 4).

Again the NAPT is attempting to be transparent in terms of providing a consistent view of
the session to each end, using a symmetric binding of a local address and port pair to an
external address and port pair.

A reasonable question to ask is: Why should NAPTs bother with port translation? Are
straight address translations not enough? Surprisingly, NATs can be relatively profligate
with addresses. If each TCP session from the same local host is assigned a different and
unique external pool address, then the peak address demands on the external address pool

Anatomy: A Look Inside Network Address Translators Page 4 of 25

Anatomy: A Look Inside Network Address Translators Page 5 of 25

could readily match or exceed the number of local hosts, in which case the NAT could be
consuming more public addresses than if there were no NAT at all! NAPTs allow concurrent
outgoing sessions to be distinguished by the combination of the mapped address and
mapped port value. In this way each unique external pool address may be used for up to
65,535 concurrent mapped sessions.

For a while the terminology distinction between NATs and NAPTs was considered important,
but this has faded over time. For the remainder of this article we use current terminology,
and look at NATs and NAPTs together and refer to them collectively as "NATs."

NAT Behaviour

The use of NATs involves two basic issues: One is that NATs make applications "brittle" in
that NATs support a particular style of application operation, and if the application deviates
in any way from this style then the application no longer works. The second is of much
more concern, and that is that NATs differ from each other in quite fundamental ways.
What works across one NAT may not work at all for another class of NAT. It has also been
reported that NATs differ not only on a vendor-by-vendor basis, but even on a model-by-
model basis within a single vendor's range of NAT units. The implication here is that such
differences of behaviour become a matter for discovery by applications rather than
something applications can predict in advance. This section explores this behavioural
aspects of NATs in further detail.

Symmetry and Sessions

NATs can manage address mapping in numerous ways, and many implementations of NATs
use a form of binding termed a "symmetric" binding.

A symmetric binding is where the mapping of a local address to a public address is
exclusively tied to the destination address used in the initial trigger outgoing packet for the
lifetime of the binding. Incoming external packets with the mapped public address as their
destination are translated to the local address only if the source address of the incoming
packet matches the destination address of the original mapping. Multiple sessions to
different public hosts may use the same mapped public address, or may use different public
addresses for each session. This mapping is "endpoint" sensitive. Symmetric NATs
represent a restricted model of operation, where each NAT binding represents a window
through the NAT that is visible only to the destination host (Figure 5).

By comparison, a full-cone NAT allows any external host to use this opened window, where
all incoming packets addressed to the mapped external address are translated to the
mapped internal address and forwarded through the NAT. Symmetric NATs represent the
most restrictive form of behaviour, whereas full-cone NATs represent a far more permissive
mode of operation.

In the context of NATs, this symmetric mode of operation refers to the session state 5-tuple,
made up of Transport Protocol, the local IP address and port number, and the destination IP
address and port number. When a session is opened from the local host to a remote service
port on a remote host, then only that remote service can pass packets back through the
NAT to the local host on that port. As with NATs, a full-cone NAT allows any remote service
entity to direct packets back through the port window.

NATs can be further refined by having different behaviours for TCP and UDP transports. A
NAT may behave in a symmetric manner for TCP sessions, and operate in a full-cone mode
for UDP transactions. The variations in NAT behaviour has led to an exercise in categorizing
NAT behaviours and developing a discovery protocol whereby a pair of cooperating systems

Anatomy: A Look Inside Network Address Translators Page 6 of 25

can discover if one or more NATs is on the network path between them, as well as
attempting to establish the type of NAT.

Discovering NAT Behaviours and STUN

NAT behaviour has not been the topic of any industry standardization efforts, and it should
not be surprising to learn that, given that a range of possible NAT behaviours exist under
certain conditions, the market contains NAT offerings that cover the full spectrum of
possibilities. In the absence of common specifications or standards, implementers have
been placed in the position of having to make some creative guesses as to what the "right"
behaviour should be under such circumstances. This is a significant problem for the
application designer, given the prospect that in today's Internet any popular application
must have a means of being able to function correctly in the face of one or more NATs on
the path between two hosts that are communicating using the application.

One of the more pressing problems here is that NATs commonly enforce an application
model where the local "hidden" host must initiate a transaction in order to create a window
in the NAT to allow the packets of the remote host back into the local network.

Some applications may wish to undertake "referral," where the correspondent host on the
external side may want to pass the externally presented address and port details of the
local host to a third party in order to commence a further part of the transaction. Other
application transactions may simply want to be initiated from the external side. Although
this may have been thought of as a relatively obscure condition, it was brought into the
forefront of attention when various forms of voice-over-IP and peer-to-peer applications
gained popularity. In particular, the question of "how can the external side initiate a packet
flow in the presence of a NAT?" has become increasingly important.

Given that the application needs to perform some additional gymnastics in such a case,
there is the additional question that the application must answer, namely: "How does the
application learn that there are NATs in the path in the first place?"

At this point the application is placed in the role of performing a forensic exercise of
establishing whether or not its packets are being altered by one of more NATs when it
attempts to establish an end-to-end packet transaction. If so, what types of implementation
decisions have been made by the NAT in terms of the way in which packets are being
systematically modified? In others words, what is the anatomy of the particular NATs that
have been discovered along the path? This anatomy exercise is further complicated by the
observation that NATs are silent devices, so the application cannot directly interrogate the
NAT to establish its behaviour. All that is left is a somewhat unsatisfying guessing game for
the application. It is forced to send particular types of test packets through the NAT to
some pre-defined counterpart on the other side. The application must then compare the
self-view of the IP address and port number of the local host to the remote view of its IP
address and port number, and then attempt to guess the nature of the systematic
transforms that the NAT is applying.

In the case of TCP it appears that the prevalent NAT behaviour is that of a symmetric NAT
based on address and port bindings. This implies that when the local host opens up a TCP
session with a remote host, the NAT address and port bindings for the local host are
coupled with the address and port of the destination host. Only packets with a source field
of the destination host can pass packets back through the NAT to the TCP session of the
local host. In other words, when a TCP session has been established within a NAT, only the
two endpoints of the TCP session can access the NAT bindings, and attempts by others to
direct packets to the external-side presented address and port meet with the NAT discard
response. The fine-grained behaviour of NATs with respect to TCP sessions can vary
according to the amount of TCP state maintained by the NAT. At a basic level, the NAT can

maintain a binding based on the local address and port and the remote address and port.
The NAT also can keep the binding timer at a high value until a FIN exchange is observed,
or until the session is reset through the RST flag being set, at which point the binding timer
can be reduced to a very short interval. The NAT can also track the sequence number
windows of the two sides and associated window sequence number scaling values and not
adjust the binding timer of the session for TCP packets with sequence numbers outside the
sequence number window with their FIN or RST flags set.

These NAT behaviours are based on the explicit signalling of changes in session state within
the TCP packet exchange, and the consequent ability of the NAT to track the session state
and adjust the associated binding timer in response to this state information. UDP is not so
straightforward, because there is no explicit session state within a UDP packet exchange,
and various NATs behave differently with respect to UDP-based bindings.

Various classes of NAT behaviour relate to how UDP bindings are managed within a NAT.
These have been classified into four types of behaviours [11]:

• Symmetric: We have already encountered the symmetric NAT, where the NAT
mapping refers specifically to the connection between the local host address and
port number and the destination address and port number and a binding of the local
address and port to a public side address and port. Any attempts to change any one
of these fields requires a different NAT binding. This is the most restrictive form of
NAT behaviour under UDP, and it has been observed that this form of NAT behaviour
is becoming quite rare, because it prevents the operation of all forms of applications
that undertake referral and handover.

• Full-cone: A full-cone NAT is the least restrictive form of NAT behaviour, where the
binding of a local address and port to a public-side address and port, when
established, can be used by any remote host on any remote port address. (Refer to
Figure 6.)

Anatomy: A Look Inside Network Address Translators Page 7 of 25

• Restricted-cone: A restricted-cone NAT is one where the NAT binding is accessible
only by the destination host, although in this case the destination host can send
packets from any port address after the binding is created. (Refer to Figure 7.)

• Port-restricted-cone:
A port-restricted-cone NAT is one where the NAT binding is accessible by any remote
host, although in this case the remote host must use the same source port address
as the original port address that triggered the NAT binding. (Refer to Figure 8.)

Anatomy: A Look Inside Network Address Translators Page 8 of 25

So can an application tell if one or more NATs are in the path, and, if so, what form of
behaviour the NAT is using? For this purpose the Simple Traversal of UDP through NATs
(STUN) protocol has been developed [11]. STUN is a probe system that examines the
interchange between a STUN client that may lie behind a NAT and a STUN server that is
positioned on the public side of the NAT. The STUN-server host must be configured with
two IP addresses, and the STUN itself should respond to queries on two UDP port numbers.
The protocol is a simple UDP request-response protocol that uses embedded addresses in
the data payload, and compares these addresses with header values in order to determine
the type of NAT that may lie in the path between client and server.

The basic operation of STUN is a request-response protocol, using a common request of the
form: "Please tell me what public address and port values were used to send this query to
you."

STUN can be used to discover if a NAT is on the path between a client and server, and
attempt to discover the type of NAT by a structured sequence of requests and responses.
The client sends an initial request to the STUN server. If the public address and port in the
returned response are the same as the local address, then the client can conclude that
there is no NAT in the path between the client and the server. If the values differ, the client
can conclude that there is a NAT on the path. STUN then uses subsequent requests to
determine the type of NAT. One critical additional item of information returned by the STUN
server in the initial response is an alternate IP address and port number that can also reach
the same STUN server.

The second STUN request is directed to the same address and port as the initial request,
but this time the request includes a control flag that requests the STUN server to respond
using its alternate source address and port values. If the STUN client receives this
alternate-sourced response, then it can conclude that it is behind a full-cone NAT. This is
because the initial NAT binding of the local host address to the external presentation
address can evidently be accessed by third-party external hosts.

If no response is received to the second request, then the STUN client sends the original
probe request, but this time the request is addressed to the alternate destination address

Anatomy: A Look Inside Network Address Translators Page 9 of 25

and port pair for the STUN client. If the returned address and port values relating to the
new NAT binding are different from those of the first request, then the client can conclude
that it is behind a symmetric NAT.

If the values are unaltered, then a further request can be made to determine the form of
restricted-cone behaviour. This fourth request includes a control flag to direct the STUN
server to respond using the same IP address, but with the alternate port value. A received
response indicates the presence of a port-restricted cone, and the lack of a response
indicates the presence of a restricted cone.

Periodic exchanges between the STUN client and server can also discover the timer used by
the NAT to maintain address bindings. Additional components of STUN are intended to
provide some reasonable level of integrity in the packet exchange. A flowchart of a STUN-
based NAT discovery process is shown in Figure 9.

Further Behaviours: Hairpins and Determinism

It would be good if NAT behaviour remained that simple. However, it does not, and some
further tests on NATs reveal further differences in various NAT implementations [16].

The first area of difference is whether the NAT supports the so-called hairpin operation,
where a local host directs a packet to the public address and port of an already mapped
local host, or even to its own mapped address and port. If successful, then the NAT

Anatomy: A Look Inside Network Address Translators Page 10 of 25

supports hairpin operation, where the NAT bindings, when created, are available to either
side of the NAT. (Refer to Figure 10.)

Furthermore, the NAT may generate a binding for this operation—or not—thereby
presenting the hairpin packet with an external address and port, indicating that an
outbound binding has been performed in conjunction with the inbound binding, or with an
internal address and port, indicating that only an inbound binding is being performed.

The second is in the general class of NAT determinism. Nondeterministic NATs change their
binding behaviour when a binding conflict of some sort occurs in the NAT. This is further
based on the classification of whether "primary," "secondary," or even "tertiary" NAT
behaviours differ. To explain primary, secondary, and tertiary behaviours, it is first noted
that some NATs attempt to preserve the port address in the binding, so that the local
source port and the externally bound port are the same whenever possible. This is the
"primary" binding of the NAT. If another local host obtains a NAT binding using the same
source port number, then the behaviour of the NAT for this conflicting port binding may
differ from that where the port number is preserved. The first conflict of port allocations in
bindings is the "secondary" binding. In some cases the primary behaviour is that of a full
cone, or a restricted cone, while the NAT behaves in a symmetric fashion for the secondary
instance where the port number has been mapped to a new value by the NAT.

A tertiary behaviour occurs when a third binding is added to the NAT, because, again, the
behaviour of the NAT may be different for this binding.

It is also possible that the NAT may elect to preserve the binding in any case, and remove
the current binding and replace it with a new binding that refers to the most recent packet
that the NAT has processed.

All these behaviours can be classified as nondeterministic, in that the NAT behaviour
becomes one that is determined by the order of outbound traffic. The implication is that
repetitions of the same STUN test at different times may produce different classifications of
the type of NAT. The inference is that if an application uses STUN to determine the type of
NAT in the path, and then selects a certain behaviour based on this STUN-derived
knowledge of the NAT type, nondeterministic NATs may behave differently between the
STUN test and the application. The NAT response for a particular binding cannot be

Anatomy: A Look Inside Network Address Translators Page 11 of 25

predicted in advance, and even when a binding state is established it may be disrupted or
altered by subsequent traffic.

Another Approach to Classifying NATs

Further tests on NATs reveal that the various behaviours are yet more complex, and that
different sequences of tests across a NAT will lead the test routine to come to different
conclusions as to the type of NAT [13]. The key observation here is that NATs are the
conjunction of two distinct behaviour sets:

• Binding, or context-based packet translation: Detecting those packets that can be
associated with a current binding and using that binding in a manner according to
the logical direction of the packet to perform packet header transforms

• Filtering, or packet discard: Discarding those packets that cannot be associated with
current bindings and discarding them

If a STUN-like test sequence was for a local host to send a packet to one destination and
obtain a response of what NAT binding was used, and then to send a packet to a second
destination and compare the results, the observation of the NAT using a different binding
for each request may lead the tester to conclude that the NAT is a fully symmetric NAT. If
the test sequence is for the NAT to send one packet to a destination and have the
destination respond using a different source address, then the observation that the
response packet is successfully delivered through the NAT back to the originating local host
may lead the tester to the conclusion that the same tested NAT is some form of cone NAT.

The STUN approach classifies NAT behaviours on the basis of a single binding being
established by the local host when contacting an external host, and then considers what
constraints are placed on third-party external hosts as they attempt to access this initial
binding. An adjunct to this approach is based on the local host establishing two bindings to
two distinct external hosts, and looking for any relationship between these two bindings.
(See Figure 11).

Anatomy: A Look Inside Network Address Translators Page 12 of 25

Anatomy: A Look Inside Network Address Translators Page 13 of 25

The behaviours of NATs under this condition can be classified under numerous behavioural
aspects.

Binding

Binding behaviour can be seen as the amalgam of three somewhat distinct design decisions,
namely the manner in which a binding is generated, the behaviour of the NAT in managing
external ports used in bindings, and the manner in which expiration timers that govern the
continued existence of the binding are refreshed.

NAT Binding Behaviour:

• Endpoint independent: The NAT reuses the port binding for subsequent sessions
initiated from the same internal IP address and port to any external IP address and
port. This is analogous to a full-cone NAT.

• Endpoint address dependent: The NAT reuses the port binding for subsequent
sessions initiated from the same internal IP address and port only for sessions to the
same external IP address, regardless of the external port. This is a looser form of
symmetric NAT, where the binding is created on the basis of the external address,
rather than the external address and port.

• Endpoint address and port dependent: The NAT reuses the port binding for
subsequent sessions initiated from the same internal IP address and port only for
sessions to the same external IP address and port. This is a more precise form of
UDP symmetry where the binding is available only to a single session, where a
session is the 5-tuple of protocol, source address, source port, destination address,
and destination port.

Port Binding Behaviour:

• Port preservation: In addition to the differences in the binding between the two
cases, the NAT may attempt to preserve the local port number, if possible. The
terminology proposed here is port preservation to describe this NAT action.

• Port overloading: Some NATs attempt to undertake port preservation at all times, so
that when a different local host establishes a binding using a port that is already
being preserved, the new binding will usurp the existing binding. This behaviour is
proposed to be termed port overloading.

• Port multiplexing: The alternative to port overloading is use of the external entity to
perform the de-multiplexing of the port. In this case if two local systems use the
same source port to send packets to two different external hosts, the NAT preserves
the source port in the two bindings. If the NAT is using a single external address, the
external view is two packets with the same source address and source port, sent to
two different external addresses. The reverse packets have the same destination
address and port, and the NAT determines the appropriate binding based on the
source address and port in the reserve packets. This requires an endpoint address
and port-dependant binding behaviour. If two internal hosts are directing packets to
the same external endpoint using the same source port addresses, then it is
necessary for one of the sessions to use a binding with an altered port number. This
could be considered as nondeterministic behaviour.

Binding Timer Refresh:

• Bidirectional: The NAT does not keep the binding active indefinitely, and normally
removes the binding if there are no further packets that use the binding within a
certain time period. However, there are variations in the classification of packets
that the NAT considers as packets that reset the timer. In the case of bidirectional

Anatomy: A Look Inside Network Address Translators Page 14 of 25

binding timer refresh, packets from either the local hosts or an external host that
uses the NAT binding cause the NAT binding expiration time to be reset.

• Outbound: An outbound binding timer refresh NAT resets the expiration timer only
when packets pass from the local host to the external host within the context of the
binding. The implication is that a local host may have to use some form of keepalive
operation to maintain a NAT binding in the face of an inbound UDP unidirectional
traffic flow. Additionally, the expiration timer may be on a per session basis, or may
be on a per-binding basis if multiple sessions are associated to a single binding in
the NAT.

• Inbound: As the name suggests, this is the opposite of the previous case, where only
inbound packets cause the expiration timer of the binding to be refreshed.

• Transport Protocol state: Although these forms are useful in the case of UDP-based
sessions, when the binding is based on a transport session (such as TCP), the NAT
can base its binding timer refresh on the transport session state. For TCP this would
infer a binding refresh time that is refreshed by any session packet in either
direction (bidirectional), with the exception of packets with the TCP RST or FIN flags
set. Although it would be an option to drop the NAT binding state when such packets
are seen, this makes the NAT vulnerable to denial-of-service attacks by third-party
injection of TCP RST packets, so there is some merit in using the binding timer for
TCP sessions.

Filtering

The second phase of the test has two external hosts directing a probe to the same binding
address, and classifying the behaviours based on what packets are filtered and discarded by
the NAT (Figure 12).

External Filtering:

• Endpoint independent: The NAT does not filter and discard packets that are
addressed to the external part of the binding, irrespective of the source values in the
packet. This is analogous to a full-cone NAT.

• Endpoint address dependent: The NAT filters and discards packets that are
addressed to the external part of the binding, unless the source address of the
packet matches the destination address used in the binding. This is analogous to a
restricted-cone NAT.

• Endpoint address and port dependent: The NAT filters and discards packets that are
addressed to the external part of the binding, unless the source address and port
number of the packet matches the destination address used in the binding. This is
analogous to a port-restricted-cone NAT or a symmetric NAT.

External Filtering Timer Refresh:

As with binding timers, these timers can be refreshed bidirectionally, inbound or outbound.

NAT Behaviours

The approach of carefully identifying the areas where NAT behaviours differ and classifying
these behavioural differences in a methodical manner is one that has the potential to at
least allow us to use the same sets of words when we talk about NAT behaviours, and
hopefully also refer to the same set of actual behaviours when we use the same
descriptions. The original approach with the STUN work used the terms symmetric, full-
cone, and forms of restricted-cone to describe variations of NAT behaviours. Experience
with this form of classification has exposed further variations in NAT behaviours, and this
has led to a form of NAT classification that first uses a delineation of binding and filtering

Anatomy: A Look Inside Network Address Translators Page 15 of 25

behaviours, and then classifies the various ways in which these bindings and filters are
maintained within the NAT. Additional classification attributes include whether the NAT
supports hairpin connections or not and whether it operates in a deterministic or
nondeterministic manner.

This exercise is not another study in comparative taxonomies. A NAT has no standard way
in which to advertise its presence, nor does it have any standard way in which to advise
protocols or applications of the particular behaviours it applies to packets being passed
through the NAT. In the absence of such explicit advertisements of the presence of a NAT,
it is left to the application to make the necessary adjustments that allow it to function in the
presence of NATs. The aim of behavioural classification is to associate test sequences that
expose the presence of a NAT, and to determine its behaviour. This allows applications to
invoke a test procedure that exposes a particular choice of behaviours of a NAT
implementation, and then allows the application to invoke a mode of operation that can
operate across the particular NAT.

The choices available to application environments include the use of agents as session
initiation intermediaries, where the endpoints make initial contact through agents, who then
assist in passing binding information to the endpoints, allowing them to directly
communicate. Other forms of application behaviour need to be invoked when the NAT is
endpoint address and port dependant for both binding and filtering. Different application
responses are applicable when one endpoint is behind a NAT and when both endpoints are
behind NATs. A typical application response in this latter case where both endpoints are
behind highly restrictive NATs is for the endpoints to use agents as session intermediaries,
so that the application payload is then passed through the intermediaries because an end-
to-end pair of NAT bindings cannot be established.

Living in a NAT World

It would be a reasonable conclusion to draw from the previous sections that we are left in
the somewhat unsatisfying position of observing that there is near-universal deployment in
today's Internet of NAT devices that do not conform to any particular well-defined
behaviour set. NAT behaviour varies across implementations, and NATs have no ability to
disclose their particular behaviours to applications that are attempting to compensate for
their presence in the path. It is extremely challenging for applications to reliably predict the
behaviour of the NATs that lie in the path, and more so in the face of multiparty
applications, such as interactive game environments, where the application is attempting to
understand the level to which this silent intermediary is capable of supporting a relatively
promiscuous NAT binding state in terms of external entities that wish to send packets to the
local host, and communicate between themselves about the local host as a single entity.

NATs, Client-Server, Peer-to-Peer, and Multiparty Applications

NATs, as a class of devices, have strong associations with a client-server model of
communications. As long as all the servers have a consistent external visibility, with stable
addresses in terms of an IP address and port number, and as long as clients initiate
connections with servers in a fixed two-party communications model using TCP as a
transport protocol, and refrain from turning on IP Security (IPSec), then NATs generally
behave in a relatively stable and unobtrusive manner. Applications that operate
conservatively in this limited mode can be unaware of the presence of NATs in their path.
The relatively widespread deployment of NATs and the continued use of client-server-based
applications on the Internet attests to the capability of the NAT to perform transparently
and effectively within the strict confines of this particular mode of communication.

However, peer-to-peer applications are more problematic for NATs, because they have
extended the model of a NAT beyond its original realm of capability. If the desire is to

Anatomy: A Look Inside Network Address Translators Page 16 of 25

continue to support the NAT dynamic binding, but also allow external parties to initiate a
communication to a local host, then the NAT ceases to be transparent and unobtrusive, and
in this extended environment the NAT transforms itself into an application-visible network
element. It is overly presumptuous to claim that NATs have led to the increasing
deployment of multiparty applications on the Internet, but certainly multiparty applications
have been seen to be useful in circumventing some of the more aggravating shortcomings
of NATs in various peer-to-peer realms.

In this latter context, the local party is forced to advertise its willingness to participate in a
peer-to-peer realm by communicating with an external agent. The local agent performs a
NAT discovery test, and then selects a mode of operation that is consistent with the
discovered behaviours of a NAT that may be on the path between the client and the agent.
The agent then advertises itself as the local party's intermediary to other peers within the
application realm. Attempts to initiate a connection with the local party are directed to the
external agent, who then undertakes to perform a rendezvous function in order to establish
a session.

Depending on the NATs that may exist between the two parties, the rendezvous function
may need to perform a convoluted handshake process, or, in some instances, may not be
able to set up a peer-to-peer session at all. This topic of establishing connectivity in the
face of NATs in the path is sufficiently complex to warrant a separate examination, and the
various techniques and approaches are not examined in this article other than providing
some suggestions for further reading.

The salient general observation is that NATs have fuelled a new generation of applications
that use intermediaries and rendezvous protocols. This shift in application behaviour has
implied greater attention to security frameworks for applications, because intermediaries
represent an additional active element in the trust model. This, in turn, has implied that the
application level has to turn to other chains of derivation of trust, because the basic
Internet model of some form of persistent identity as being an attribute of an IP address is
no longer a workable proposition in the face of NATs. The position we are reaching here is
that identity and trust need to be derived from other attributes of the end host and the
application that it has invoked.

ICMP

If an Internet Control Message Protocol (ICMP) message is passed through NAT, there is
not only the outer IP header to consider, but also the ICMP payload. Most ICMP messages
contain part of the original IP packet in the body of the message, so for the NAT to behave
as transparently as possible, the IP address of the IP header contained in the data part of
the ICMP packet should be modified according to the NAT binding state, as well as the IP
header Checksum field of this inner packet header.

NATs and IP Fragmentation

NATs that use bindings that include both address and port values do not have a clear and
uniform response to fragments of an IP packet. The TCP or UDP header is resident only in
the initial IP fragment, and subsequent IP packet fragments do not contain a copy of the
transport layer packet header.

Some NATs attempt packet reassembly as if they were the end host, and they perform the
NAT translation only when the original IP packet has been reassembled. Of course the
reassembled packet may be too large to be forwarded onward, and the NAT may be forced
to further fragment the packet. The interplay between this behaviour and various forms of
path Maximum Transmission Unit (MTU) discovery become a source of frustration.

Anatomy: A Look Inside Network Address Translators Page 17 of 25

Other NAT packet fragmentation behaviours do not attempt packet reassembly, but rely on
a stored packet fragment translation state that directs the translation to be performed on
subsequent packet fragments after the initial packet header translation has been performed
on the initial IP packet fragment.

This form of behaviour has weaknesses in terms of out-of-order fragments, when following
fragments are received by the NAT prior to the initial IP packet fragment, and in such cases
the NAT often has little choice but to silently discard the out-of-order fragment as
untranslatable.

NATs and Application Level Gateways

This brings up one of the more vexing questions regarding NAT behaviour, namely, should
the NAT include knowledge of the payload of certain applications? Numerous applications,
including FTP and the DNS resolution protocol, include IP addresses within the payload of
the application. In an effort to achieve complete transparency of operation, some NATs
have included Application Level Gateway (ALG) functionality for certain applications so that
this use of IP addresses in the payload can be detected and altered according to the current
NAT translation bindings.

The case of ICMP represents one of the simpler forms of gateway functionality, because it
can be performed in the same manner as the basic NAT transform, on a per-packet basis
while attempting to maintain retained session state. Payload transformations in the case of
a TCP-based application have implications in terms of requiring subsequent alteration of
TCP sequence numbers, length fields, and even the repacketization of the payload data
stream, given that the data transform required by the address change may imply a change
of payload length.

Some units attempt to combine the functionality of a NAT with that of an ALG, such that the
NAT is an active intermediary in the transport session. This allows the NAT/ALG to perform
"deep" inspection of the packets, and use both application protocol knowledge and per-
application-session retained state in order to apply the NAT binding transforms to the
application payload as well as to the outer IP packet header.

The most widely deployed application that can use IP addresses in the payload is FTP,
where IP addresses are passed in the payload of the control channel in order to allow data
sessions to be initiated on distinct transport sessions. The variability and reliability of FTP
ALG support in NATs has led to the widespread use of the passive mode of FTP operation,
where the data flow is passed within the control session.

A related question is that of the use of IPSec and NATs. IPSec with Authenticated Header
protection attempts to protect what it believes is the fixed part of the IP packet header,
including the source and destination addresses. The NAT changes to the IP packet
invalidate the Authentication Header integrity check. Also the NAT changes the IP and UDP
or TCP checksums, and this disrupts the Encapsulating Security Payload (ESP) function of
IPSec. The implication is that IPSec needs to operate upon a TCP or UDP payload, as in the
IPSec operating tunnel model, or IPSec carried as a payload within other types of tunnel
operation.

It is also the case that NATs today are heavily enmeshed with the UDP and TCP transport
protocols. Other transport protocols exist, including the Streams Control Transport Protocol
(SCTP) and the Datagram Congestion Control Protocol (DCCP), and doubtless more
transport protocol offerings will follow over time. In each case it is a matter of individual
choice how NAT implementations define NAT responses to such additional transport
protocols. Although it is tempting to propose that NATs should fall back to an address-only
form of binding that was not address-and-port based, this does not appear to be practical

Anatomy: A Look Inside Network Address Translators Page 18 of 25

guidance. Another aspect of today's NAT deployment is that the most common scenario
appears to be that of a single external address and mapping each locally initiated session
into a binding that uses this common external IP address and a variable external port
number. This means that NATs need to be able to identify and transform port addresses
from the Transport Protocol section of the IP header.

Another salient factor here is the common association of NATs and firewalls into a single
unit, and the coupling of address utilization compression properties of the NAT with its
associated packet-filtering actions. Deploying a NAT at the external interface of a site does
lead to more restrictive site filtering outcomes and a more restrictive model of application
interaction, where the model attempts to impose the constraint that applications are
initiated from within the site, and that unknown or unidentifiable external traffic is
considered hostile and should be subject to firewall-based inspection and filtering. From this
perspective there is little desire to make more permissive NATs as an isolated exercise, and
there is instead a co dependence between NAT behaviours and popularly used applications.
Applications that work across today's NATs appear to enjoy popular uptake, and
applications that enjoy popular uptake appear to determine what forms of traffic pass
across NATs.

Popular or not, there are a class of applications that simply cannot work in a "native mode"
across NATs, nor can ALGs assist here. These are applications that attempt to impose some
level of end-to-end protection on the IP header fields, or use the IP address of the endpoint
in a context of some form of persistent identity token. When the NAT alters the IP address,
an application that uses strong forms of header validation rejects such packets as corrupted.
Within this class of applications and tools, one of the more commonly referenced tools is
that of IPSec with Authentication Header. There is a certain sense of irony in the
observation that NATs are often seen as part of an overall approach to site security, yet
cannot support a "native mode" operation of some of the basic tools that applications could
use to support secure end-to-end data transfer.

Views on NATs

It is certainly the case that NATs are very common in today’s Internet, and it is worth
understanding why NATs have enjoyed such widespread deployment while other
technologies appear to be meeting some considerable resistance to widespread deployment.
As the original NAT document points out:

"The huge advantage of this approach is that it can be installed incrementally,
without changes to either hosts or routers. (A few unusual applications may
require changes.) As such, this solution can be implemented and
experimented with quickly. If nothing else, this solution can serve to provide
temporarily relief while other, more complex and far-reaching solutions are
worked out."

—Egevang and Francis,
"Network Address Translator," RFC 1631

More generally, the positive attributes of NATs include the following considerations:

• End hosts and local routers do not change. Whether there is a NAT in place between
the local network and the Internet or not, local devices can use the same software
and support the same applications. NATs do not require customized versions of
operating systems or router images.

• As long as you accept the limitation that sessions must be initiated from the "inside,"
NATs can work in an entirely transparent fashion for a set of client-server classes of
applications.

Anatomy: A Look Inside Network Address Translators Page 19 of 25

• If you accept the perspective that services and usage scenarios that are not
supported by NATs are "unwelcome" or "unsafe," then NATs can be placed into a
role as a component of a site's security architecture, providing protection from
attacks launched from the outside toward the inside network.

• NAT conserves its use of public address space.
• NAT allows previously disconnected privately addressed networks to connect to the

global Internet without any form of renumbering or host changes—and renumbering
networks can be a very time-consuming, disruptive, and expensive operation, or, in
other words, renumbering is difficult.

• NAT address space is an effective, provider-independent addressing solution with
multihoming capabilities. NAT allows for rapid switching to a different upstream
provider, by renumbering the NAT address pool to the new provider's address space.
In essence, NATs provide the local network manager with the flexibility of using
provider-independent space without having to meet certain size and use
requirements that would normally be required for an allocation of public, provider-
independent address space.

• NAT allows the network administrator to exercise some control over the form of
network transactions that can occur between local hosts and the public network.

• NATs require no local device or application changes. This is perhaps one of the major
"features" of NATs, in that the local network requires no changes in configuration to
operate behind a NAT.

• NATs do not require a coordinated deployment. There is no transition, and no "flag
day" across the Internet. Each local network manager can make an independent
decision whether or not to use a NAT. This allows for incremental deployment
without mutual dependencies.

• These days the common theme of the public address assignment policy stresses
conservative use of address space with minimum waste. The standard benchmark is
to be able to show that a target of 80 percent of assigned address space is assigned
to a number of connected devices. Achieving such a very high usage rate is a
challenging task in many network scenarios, and NATs represent an alternative
approach where the local network can be configured using private addresses without
reference to the use of public addresses.

• NATs are very widely available and bundled into a large variety of gateway and
firewall units. In many units NATs are not an optional extra—they are configured in
as a basic item of product functionality.

The market has taken NATs and embraced them wholeheartedly. And in a market-oriented
business environment, what is wrong with that?

Unfortunately NATs represent a set of design compromises, and no delving into the world of
NATs would be complete without exploring some of their shortcomings. So, after
enumerating what are commonly seen as their benefits, it is now necessary to enumerate
some of the broken aspects of the world of NATs.

"This solution has the disadvantage of taking away the end-to-end
significance of an IP address, and making up for it with increased state in the
network."

—Egevang and Francis,
"Network Address Translator," RFC 1631

"An opposing view of NAT is that of a malicious technology, a weed which is
destined to choke out continued Internet development. While recognizing
there are perceived address shortages, the opponents of NAT view it as
operationally inadequate at best, bordering on a sham as an Internet access
solution. Reality lies somewhere in between these extreme viewpoints."

—Tony Hain,
"Architectural Implications of NAT," RFC 2993

http://rfc2993.potaroo.net/

Anatomy: A Look Inside Network Address Translators Page 20 of 25

• First, NATs cannot support applications where the initiator lies on the "outside." The
external device has no idea of the address of the local internal device, and, therefore,
cannot direct any packets to that device in order to initiate a session. This implies
that peer-to-peer services, such as voice, cannot work unaltered in a NAT
environment.

• The workaround to this form of shortcoming is to force an altered deployment
architecture, where service platforms used by external entities are placed "beside"
the NAT, allowing command and control from the interior of the local network, and
having a permanent (non-NAT) interface to the external network. Obviously this
implies some further centralization of IT services within the NATted site.

• Even this approach does not work well for applications such as voiceover-IP, where
the "server" now needs to operate as some form of proxy agent. The generic
approach here for applications to traverse NATs in the "wrong" direction is for the
inside device to forge a UDP connection to the outside agent, and for the inside
device to then establish what NAT translated address has been used, and the nature
of the NAT in the path, and then republish this address as the local entity's published
service rendezvous point. Sounds fragile? Unfortunately, it is. The other approach is
to shift the application to use a set of endpoint identifiers that are distinct from IP
addresses, and use a distributed set of "agents" and "helpers" to dynamically
translate the application level identifiers into transport IP addresses as required. This
tends to create added complexity in application deployment, and also embarks on a
path of interdependency that is less than desirable. In summary, workarounds to re-
establish a peer-to-peer networking model with NATs tend to be limited, complex,
and often fragile.

• The behaviour of NATs varies dramatically from one implementation to another.
Consequently, it is very difficult for applications to predict or expose the precise
behaviour of one or more NATs that may exist on the application data path.

• Robust security in IP environments typically operates on an end-to-end model,
where both ends include additional information in the packet that can detect
attempts to alter the packet in various ways. In IPSec the header part of the packet
is protected by the Authentication Header, where an encrypted signature of certain
packet header fields is included in the IPSec packet. If the packet header is changed
in transit in unexpected ways, the signature check will fail. Obviously IPSec attempts
to protect the packet address fields—the very same fields that NATs alter! This leads
to the observation that robust security measures and NATs do not mix very well.
NATs inhibit implementation of security at the IP level.

• NATs have no inherent failover. NATs are an active in-band mechanism that cannot
fail into a safe operating fallback mode. When a NAT goes offline, all traffic through
the NAT stops. NATs create a single point where fates are shared in the NAT device
maintaining connection state and dynamic mapping information.

• NATs sit on the data path and attempt to process every packet. Obviously bandwidth
scaling requires NAT scaling.

• NATs are not backed up by industry-standardized behaviour. Although certain NAT-
traversal applications make assumptions about the way NATs behave, it is not the
case that all NATs necessarily behave in precisely the same way. Applications that
work in one context may not necessarily operate in others.

• Multiple NATs can get very confusing with "inside" and "outside" concepts when NATs
are configured in arbitrary ways. NATs are best deployed in a strict deployment
model of an "inside" being a stub private network and an "outside" of the public
Internet. Forms of multiple interconnects, potential loops, and other forms of
network transit with intervening NATs lead to very strange failure modes that are at
best highly frustrating.

• With NATs there is no clear, coherent, and stable concept of network identity. From
the outside these NAT-filtered interior devices are visible only as transient entities.

• Policy-based mechanisms that are based on network identity (for example, Policy
Quality of Service [QoS]) cannot work through NATs.

Anatomy: A Look Inside Network Address Translators Page 21 of 25

• Normal forms of IP mobility are broken when any element behind the NAT attempts
to roam beyond its local private domain. Solutions are possible, generally involving
specific NAT-related alterations to the behaviour of the Home Agent and the mobile
device.

• Applications that work with identified devices, or that actually identify devices (such
as the Simple Network Management Protocol [SNMP] and DNS) require very careful
configuration when operating an a NAT environment.

• NATs may drop IP packet fragments in either direction: without complete TCP/UDP
headers, the NAT may not have sufficient stored state to undertake the correct
header translation.

• NATs often contain ALGs that attempt to be context-sensitive, depending on the
source or destination port number. The behaviour of the ALGs can be difficult to
anticipate, and these behaviours have not always been documented.

• Most NAT implementations with ALGs that attempt to translate TCP application
protocols do not perform their functions correctly when the substrings they must
translate span across multiple TCP segments; some of them are also known to fail
on flows that use TCP option headers, for example timestamps.

From this perspective, NATs are a short-term expediency that is currently turning into a
longer-term set of overriding constraints placed on the further evolution of the Internet.
Not only do new applications need to include considerations of NAT traversal, but we appear
to be entering into a situation where if an application cannot work across NATs, then the
application itself fails to gain acceptance. We seem to be locking into a world that is almost
the antithesis of the Internet concept. In this NAT-based world, servers reside within the
network and are operated as part of the service provider's role, whereas end devices are
seen as "dumb" clients, who can establish connections to servers but cannot establish
connections between each other. The widespread use of NATs appears to be reinforcing a
re-emergence of the model of "smart network, dumb clients," whereas others would argue
that the network is getting no smarter, it is just that the number of obstacles and amount
of network debris is increasing while clients are getting worse at maintaining coherent end-
to-end state in the face of such changes.

However, despite their shortcomings, despite the problems NATs create for numerous
applications and their users, and despite the continued grappling over a common language
to understand how NATs behave, numerous NATs are deployed, and, at least in the IPv4
realm, NATs appear to be a firmly fixed part of the future of the Internet. NATs continue to
proliferate in today's Internet.

Moving on with NATs

One commonly held belief is that deployment of IPv6 will eliminate the problem of NATs
within the Internet. Certainly it is reasonable to observe that if achieving high address
utilization densities is no longer the objective, then there will be plentiful public IPv6
address space and that particular reason to deploy NATs is significantly discounted in an
IPv6 realm.

That does not say that IPv6 NATs will not be implemented, nor used. Indeed IPv6 NATs are
already available, and they are being used, albeit to some small extent. NATs are, rightly or
wrongly, considered to be part of a security solution for a site because of their filtering
properties that prevent incoming packets from entering the site unless the NAT already has
a permitting binding initiated from the inside. In addition, NATs allow a site to use an
internally persistent naming and addressing scheme based on some form of deployment of
IPv6 unique site local address, and deploy NATs at the edge to create an external view of
the site that fits within a provider-based address aggregated view of the IPv6 Internet.

Anatomy: A Look Inside Network Address Translators Page 22 of 25

So it would perhaps be too enthusiastic a level of conjecture to suppose that IPv6 will drive
away all forms of NAT use in IPv6. It is reasonable to predict that some use of NAT will be
seen in IPv6, although many would be highly disappointed if the level of IPv6 NAT use rose
to anywhere approaching that of NAT in IPv4.

However, the Internet is still largely a network that uses IPv4 and NATs, and efforts
continue along the lines of reducing the amount of friction and frustration in a world in
which NATs are prolific. One of the ways to progress here is to treat NAT boxes as yet
another instance of Internet middleware, and attempt to apply the same sets of processes
to NATs that appear in other instances of middleware. The work of the IETF in the
Middlebox Communication Working Group uses a model that attempts to expose NATs, as
well as firewalls, performance-enhancing proxies, application proxies, and relay agents, to
the application, and allows the application to specify the policy that the middlebox should
apply. In the case of NATs, this could allow an application to communicate to a NAT that it
does not require any form of third-party access, and that a fully symmetric behaviour could
be applied to the binding without any loss in application functionality. Equally, an
application could indicate to the NAT that it expects third parties to be able to use the NAT
binding, and that the binding that the NAT will set up for the application should be managed
as a port-restricted cone. There is much that could be achieved here that would allow
applications to function with some level of determinism, rather than attempting to equip an
application with a large and complex toolset of all the relevant techniques of NAT traversal
that may be required by the application when confronted by various NAT behaviours.

In the meantime the NAT-behaviour guessing game continues. The generic class of
techniques that support this function is termed Unilateral Self-Address Fixing (UNSAF). This
is a process whereby the local entity attempts to determine the address and port by which
the entity is known externally, and to determine the characteristics of this association to
understand in what contexts the external address may be used as a service rendezvous
point for externally initiated communication. Work in this area [10] has exposed many
relevant considerations, including a set of deficiencies noted in the previous section.

So, what would a NAT implementation look like if there were standards relating to NAT
behaviours and the implementation were to comply with these standards? Numerous efforts
have been made to document various forms of network- and application-friendly ways in
which NATs could behave, but it would appear that such an effort will require the
imprimatur of a standard in order to attain a level of general acceptance from NAT
implementations. However, it is possible to predict that any such effort at a "standardized"
form of NAT behaviour will include the following considerations. The following set of
behaviours is based on that enumerated in [13]:

• NATs must show endpoint-independent behaviour for UDP-based bindings. This is to
ensure that the NAT can support application rendezvous without the need for various
multiparty relays and agents.

• NAT should not use port preservation nor port overloading, and should operate in a
deterministic manner. Port preservation exposes the NATs to non-standard
behaviours when port preservation cannot be enforced. In addition, NATs must have
deterministic behaviour.

• A dynamic NAT UDP binding timer should be 5 minutes, and should avoid expiration
timers of 2 minutes or less. This is to ensure that the timeout is long enough to
avoid excessively frequent timer refresh packets.

• The NAT UDP timeout binding must use a timer refresh based on outbound traffic,
and all sessions that use a particular binding should use a common refresh timer.
This requirement is a security consideration, in that letting inbound traffic refresh
the timer allows an external party to keep a port open on the NAT.

• The NAT filtering function should be address dependant. This represents a balance
between security and utility.

Anatomy: A Look Inside Network Address Translators Page 23 of 25

• The timeout behaviour of the NAT UDP filter must be the same as that of the NAT
UDP binding timeout. This is intended to reduce the complexity of applications that
are reliant on long-held NAT state.

• The NAT should support hairpin connections, using the external address and port.
• If the NAT includes ALG support, the ALGs should be configurable in terms of being

able to turn off the ALG function on a per-application basis.
• NATs should support fragmentation and forwarding of packet fragments.
• NATs must support ICMP Destination Unreachable messages, and the ICMP timeout

should be greater than 2 seconds.

Learning from NATs

At this stage we can observe a few relevant lessons about NATs:

The first is that we need standards and we rely on standards. For many years the IETF has
viewed standardization of NATs and their behaviour as being an action that would
encourage further deployment of a technology that was apparently considered undesirable.
The result has been that NATs have been deployed for reasons entirely unconnected with
the IETF and standardization, but because the original specification of NAT behaviour was at
such a general level each NAT implementer has been forced into making local decisions as
to how the NAT should behave under specific circumstances. We now enjoy a network with
widespread deployment of an active device that does not have consistent implementations
and, in the worst cases, exhibits nondeterministic behaviours. This has made the task of
deployment of certain applications on the Internet, including voice-based applications,
incredibly difficult.

Whether NATs are good or bad, they would be less of a collective headache today if they
shared a common standard core behaviour. NATs for IPv6 may be considered to be
unnecessary today, and it can be argued they represent no real value to an IPv6 site. But a
collection of IPv6 NAT implantations with no common core behaviour would constitute a far
worse problem to application users. Standardization of technology at least eliminates some
of the worst aspects of application level guesswork out of technology deployment.

Secondly, a little bit of security is often far worse than no security. NATs are very poor
security devices, and in terms of their behaviour with UDP, NATs afford only minor levels of
protection. The task of securing a site from various forms of attack and disruption remains
one of a careful exercise of assessment of acceptable risk coupled with detailed
consideration of site-management functions. NATs are not a quick way out of this effort.

In considering NATs it seems that we are back to the very basics of networking. The basic
requirements of any network are "who," "where," and "how," or "identity," "location," and
"forwarding." In the case of IP, all these elements were included in the semantics of an IP
address, and when addresses get translated dynamically we lose track of IP-level identity
across the network. Maybe, just maybe, as we look at the longer-term developments of IP
technology, one potential refinement may be the separation of endpoint identity to that of
location, and as a potential outcome, NATs could readily manipulate location-based
addresses while applications could look to a different token set as a means of establishing
exactly who is the other party to the communications.

Of course, if we ever venture down such a path, I trust that such a move toward the use of
explicit identities does not generate a complementary deployment of Network Identity
Translators, or NITs, as an adjunct to the current set of NATs. Too many NITs and NATs will
definitely send us all NUTs!

Anatomy: A Look Inside Network Address Translators Page 24 of 25

Further Reading

There is no shortage of material on NATs from a wide variety of sources. The following is a
list of IETF-related documents, encompassing both published Request for Comments (RFCs)
and works in progress, that have been circulated as Internet Drafts.

RFCs:
[1] Egevang, K., and P. Francis, "The IP Network Address Translator (NAT)," RFC 1631, May 1994.
[2] Srisuresh, P., and D. Gan, "Load Sharing Using IP Network Address Translation (LSNAT)," RFC 2391,

August 1998.
[3] Srisuresh, P., and M. Holdrege, "IP Network Address Translator (NAT) Terminology and Considerations,"

RFC 2663, August 1999.
[4] Tsirtsis, G., and P. Srisuresh, "Network Address Translation—Protocol Translation (NAT-PT)," RFC 2776,

February 2000.
[5] Hain, T., "Architectural Implications of NAT," RFC 2993, November 2000.
[6] Srisuresh, P., and K. Egevang, "Traditional IP Network Address Translator (Traditional NAT)," RFC 3022,

January 2001.
[7] Holdrege, M., and P. Srisuresh, "Protocol Complications with the IP Network Address Translator," RFC

3027, January 2001.
[8] D. Senie, "Network Address Translator (NAT)-Friendly Application Design Guidelines," RFC 3235,

January 2002.
[9] Srisuresh, P., J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan, "Middlebox Communication

Architecture and Framework," RFC 3303, August 2002.
[10] Daigle, L., and IAB, "IAB Considerations for Unilateral Self-Address Fixing (UNSAF) Across Network

Address Translation," RFC 3424, November 2002.
[11] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy, "STUN—Simple Traversal of User Datagram

Protocol (UDP) Through Network Address Translators (NATs)," RFC 3489, March 2003.
[12] Aboba, B., and W. Dixon, "IPsec—Network Address Translation (NAT) Compatibility Requirements," RFC

3715, March 2004.

Internet Drafts:

Internet Drafts enjoy a fleeting existence, and the following documents may not be
available when you read this article. In such cases it is often the case that a decent Internet
search will locate the document, or its successor.

[13] Audet, F., and C. Jennings, "NAT/Firewall Behavioural Requirements," work in progress, draft-audet-nat-
behave, July 2004.

[14] Ford, B., P. Srisuresh, and D. Kegel, "Peer-to-Peer(P2P) Communication across Network Address
Translators (NATs)," work in progress, draft-ford-midcom-p2p, June 2004.

[15] Rosenberg, J., "Interactive Connectivity Establishment (ICE): A Methodology for Network Address
Translator (NAT) Traversal for the Session Initiation Protocol (SIP)," work in progress, draft-ietf-mmusic-
ice, July 2004.s

[16] Jennings, C., "NAT Classification Results Using STUN," work in progress, draft-jennings-midcom-stun-
results, July 2004.

[17] J. Rosenberg, J. Weinberger, R. Mahy, and C. Huitema, "Traversal Using Relay NAT (TURN)," work in
progress, draft-rosenberg-midcom-turn, July 2004.

Other Resources:
[18] NAT Check: Ford, B. and D. Andersen, Nat Check Website:

http://midcom-p2p.sourceforge.net
[19] STUN Client and Server:

http://sourceforge.net/projects/stun
[20] Phifer, Lisa, "The Trouble with NAT", The Internet Protocol Journal, Volume 3, No. 4, December 2000.

http://rfc1631.potaroo.net/
http://rfc2391.potaroo.net/
http://rfc2663.potaroo.net/
http://rfc2776.potaroo.net/
http://rfc2993.potaroo.net/
http://rfc3022.potaroo.net/
http://rfc3027.potaroo.net/
http://rfc3027.potaroo.net/
http://rfc3235.potaroo.net/
http://rfc3303.potaroo.net/
http://rfc3424.potaroo.net/
http://rfc3489.potaroo.net/
http://rfc3715.potaroo.net/
http://rfc3715.potaroo.net/
http://draft-audet-nat-behave.potaroo.net/
http://draft-audet-nat-behave.potaroo.net/
http://draft-ford-midcom-p2p.potaroo.net/
http://draft-ietf-mmusic-ice.potaroo.net/
http://draft-ietf-mmusic-ice.potaroo.net/
http://draft-jennings-midcom-stun-results.potaroo.net/
http://draft-jennings-midcom-stun-results.potaroo.net/
http://draft-rosenberg-midcom-turn.potaroo.net/
http://midcom-p2p.sourceforge.net/
http://sourceforge.net/projects/stun
http://www.cisco.com/web/about/ac123/ac147/ac174/ac182/about_cisco_ipj_archive_article09186a00800c83ec.html

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University. He has
been closely involved with the development of the Internet for the past decade, particularly
within Australia, where he was responsible for the initial build of the Internet within the
Australian academic and research sector, and has served his time with Telstra, where he
was the Chief Scientist in their Internet area. Geoff is currently the Internet Research
Scientist at the Asia Pacific Network Information Centre (APNIC). He is also the Executive
Director of the Internet Architecture Board, and is a member of the Board of the Public
Interest Registry. He is author of The ISP Survival Guide, ISBN 0-471-31499-4, Internet
Performance Survival Guide: QoS Strategies for Multiservice Networks, ISBN 0471-378089,
and co-author of Quality of Service: Delivering QoS on the Internet and in Corporate
Networks, ISBN 0-471-24358-2, a collaboration with Paul Ferguson. All three books are
published by John Wiley & Sons. E-mail: gih@apnic.net

Anatomy: A Look Inside Network Address Translators Page 25 of 25

mailto:gih@apnic.net

	Papers and Articles
	Anatomy: A Look Inside Network Address Translators
	NAT Motivation
	NAT Operation
	NAPTs
	NAT Behaviour
	Symmetry and Sessions
	Discovering NAT Behaviours and STUN
	Further Behaviours: Hairpins and Determinism

	Another Approach to Classifying NATs
	Binding
	NAT Binding Behaviour:
	Port Binding Behaviour:
	Binding Timer Refresh:

	Filtering
	External Filtering:
	External Filtering Timer Refresh:

	NAT Behaviours
	Living in a NAT World
	NATs, Client-Server, Peer-to-Peer, and Multiparty Applications
	ICMP
	NATs and IP Fragmentation
	NATs and Application Level Gateways

	Views on NATs
	Moving on with NATs
	Learning from NATs
	Further Reading
	RFCs:
	Internet Drafts:
	Other Resources:

