
How device misconfiguration drives TCP traffic to
parts of 1.0.0.0/8 – an initial investigation

Mattia Rossi, Grenville Armitage, Geoff Huston
Centre for Advanced Internet Architectures, Technical Report 110720A

Swinburne University of Technology
Melbourne, Australia

mrossi@swin.edu.au, garmitage@swin.edu.au, gih@apnic.net

Abstract—The Internet community is near the ‘bottom
of the barrel’ for unallocated IPv4 address prefixes. Net-
work 1.0.0.0/8 was allocated in January 2010 for use on
the public Internet, despite being unofficially utilised in
various ways for many years. Recent work has revealed
this prefix to be quite ‘dirty’, with significant levels of
public UDP and TCP traffic already inbound to certain
parts of 1.0.0.0/8. By running a simplified honeypot on
1.1.1.0/24 and 1.2.3.0/24 for two days in March 2010 we
have elicited new insights into the nature of the TCP traffic
polluting these prefixes. Our honeypot replied to inbound
TCP SYN packets with a SYN-ACK, thereby eliciting
a variety of subsequent response packets from sources
actively trying to connect into 1.1.1.0/24 or 1.2.3.0/24
space. By analyzing captured packet payloads, sequences,
retransmission patterns and burst rates within such TCP
flows, we find that most TCP traffic into these prefixes
is caused by some form of misconfiguration rather than
malice, and we discuss the possible causes for these
misconfigurations.

I. INTRODUCTION

IPv4 network 1.0.0.0/8 has been in the unallocated
pool of addresses for many years, and in January 2010
was allocated to APNIC (Asia Pacific Network Informa-
tion Centre) for use in allocation of addresses for the
public Internet [1].

Parts of 1.0.0.0/8 have been unofficially used as in-
ternal or testbed address space by many organizations
over the years. Recent studies have shown that anyone
advertising routes to certain /24 subsets of 1.0.0.0/8,
such as 1.1.1.0/24, 1.2.3.0/24 and 1.0.0.0/24, would be
flooded with tens to hundreds of Mbit/sec of uninvited
UDP traffic, rendering those /24 prefixes unsuitable for
assignment to end users [2], [3], [4]. TCP traffic was
also observed (mainly TCP SYN packets and a small
percentage of misrouted TCP DATA packets), but the
passive capture techniques allowed no further insight into
the nature of the TCP sources.

Our work extends previous studies of 1.1.1.0/24 and
1.2.3.0/24 traffic by acting as a simplified honeypot [5],
responding to TCP SYN packets with a specially crafted
SYN-ACK to elicit further packets from each source.
We study the subsequent reactions of each TCP source
to differentiate between sources controlled by malware
(for example, someone specifically doing portscans of
1.0.0.0/8 space, etc) and sources who reach 1.0.0.0/8
space through misconfiguration close to the source itself.

This paper studies TCP traffic to 1.1.1.0/24 and
1.2.3.0/24 collected during a brief period in mid-March
2010. We acted as a simplified honeypot for 10 hours and
observed 54.3M connection attempts (unique initial TCP
SYN packets) into 1.1.1.0/24, and 13.5M connection
attempts into 1.2.3.0/24. Not all TCP sources responded
to our SYN-ACKs – we observed a 71% response rate
from sources connecting into 1.1.1.0/24, and 78% for
sources connecting into 1.2.3.0/24. Responsive sources
behaved in a variety of ways. Many moved to the next
stage in their TCP state machine and attempted to send
us data, others simply closed their connections after
differing periods of time.

By evaluating patterns of behavior by responsive
sources we come to the following conclusion: sources
that attempt to establish a genuine TCP connection
into 1.1.1.0/24 or 1.2.3.0/24 generally do so due to
misconfiguration somewhere close to the source (rather
than because the source actively intends to probe desti-
nations in 1.1.1.0/24 or 1.2.3.0/24 space). This includes
the use of equipment configured to use 1.0.0.0/8 in a
private context where the local firewalls have failed to
contain the traffic, or the pre-configured device has been
relocated from a private environment to a public context
and the configuration cause the device to ”leak” traffic
to the public address. Malicious probing or scanning
contributes far less than to the pollution of 1.1.1.0/24 or
1.2.3.0/24 space than simple human misconfiguration.

CAIA Technical Report 110720A July 2011 page 1 of 10

mailto:mrossi@swin.edu.au
mailto:garmitage@swin.edu.au
mailto:gih@apnic.net


The paper is structured as follows: Section II sum-
marizes previous work on traffic seen heading towards
1.0.0.0/8. Section III details our own collection, and our
TCP traffic analysis occurs in Section IV. We conclude
in Section V.

II. RELATED WORK

Shortly after 1.0.0.0/8 was allocated to APNIC, con-
cerns arose about the level of unsolicited traffic that
would be received by anyone advertising subsets of
that prefix [6]. Initial trial announcements of parts of
1.0.0.0/8 by RIPE-NCC in collaboration with APNIC
confirmed the concerns, with the inbound traffic sat-
urating the 10 Mbit/sec link of the router advertising
1.1.10/24 and 1.2.3.0/24 [2]. About 90% of the traffic
was addressed to 1.1.1.1, while 4% of the traffic was
addressed to 1.2.3.4. Furthermore, 81% of packets were
UDP, 14% were TCP and 4% ICMP. Of the TCP
packets, 49% appeared to be HTTP connection attempts
(SYN packets to port 80), while 1% appeared to be
“established” HTTP connections (non-SYN packets to
port 80).

APNIC collaborated with Merit Networks (AS 237)
and YouTube (AS 36351) on a second trial, where the
whole 1.0.0.0/8 prefix was announced at AS237 from
22 February 2010 until 1 March 2010, then at AS 36351
for 6 hours on March 21 [3]. The trial was dominated by
traffic inbound to 1.1.1.0/24 (around 90 - 100 Mbit/sec),
with 1.1.1.1 the main target address. Only 233 out of
65536 /24 prefixes (0.4%) of the 1.0.0.0/8 block, attract
more than 3 packets per seconds (and more than 3Kbps).
The remaining 99.6% of the /24s within 1.0.0.0/8 could
be considered “clean” as they experienced very little traf-
fic. The three most polluted /24 prefixes were 1.1.1.0/24,
1.2.3.0/24 and 1.0.0.0/24. Consistent with the RIPE-NCC
trial [2], the majority of inbound packets were UDP,
the majority of TCP packets were TCP SYN requests,
and the few remaining TCP packets were identified as
misrouted packets from established TCP connections.

Further research [4] announced (and captured traffic
to) a number of unallocated /8 blocks, and showed
that far more unsolicited traffic heads toward 1.0.0.0/8
than the (at the time unallocated) 35.0.0.0/8, 50.0.0.0/8
and 107.0.0.0/8 ranges. UDP traffic levels heading to
1.0.0.0/8 were similar to that seen in earlier work.
However, [4] went further and correctly identified a high
volume of UDP traffic as RTP streams carrying one-
way audio of a female voice saying “The number you
have dialed is not in service, please check the number
and try again”. We have observed this kind of behaviour

when, for example, an insecure trixbox VoIP server [7]
is subjected to a SIP INVITE scan. A misconfigured
INVITE message could easily direct the resulting RTP
stream at a target in 1.0.0.0/8.

To date, no-one has studied the behaviour of sources
attempting to create TCP connections into 1.0.0.0/8
space.

III. METHODOLOGY

Due to being identified as significantly polluted mem-
bers of 1.0.0.0/8 [3] we chose to focus on collecting
traffic destined for 1.1.1.0/24 and 1.2.3.0/24.

A. Data Collection

Data collection involved a locked-down FreeBSD host
connected via 1Gbit/sec Ethernet to the Australian Aca-
demic and Research Network (AARNet) from March
17th to March 19th 2010. At 10:00hr March 17th
(UTC) we announced AARNet (AS 7575) as a route
to both 1.1.1.0/24 and 1.2.3.0/24, and began collecting
all inbound IP packets with full payloads. We replied
to all inbound TCP SYN packets with a SYN-ACK.
Each SYN-ACK contained an artificial sequence number
so we could identify which subsequent inbound TCP
packets were triggered by particular SYN-ACKs. (The
sequence number was constructed from a source’s IP
address, bit-wise reversed and incremented by one.) At
20:10 on March 17th (UTC) we stopped responding to
TCP SYN packets, but continued passively collecting all
inbound IP traffic until 08:00 on March 19th.

In short, we actively triggering further responses from
remote TCP sources during the first 10 hours. The
subsequent 36 hours of passive traffic collection is used
for comparison with prior work.

B. Initial observations and post-processing

Our initial analysis unexpectedly revealed a stream of
TCP SYN packets (20% of all TCP SYNs received over
46 hours) purporting to come from 1.0.0.0/8 space, al-
ways targeting port 1 of their destination, with TTL val-
ues spread uniformly between 106 and 239, and source
addresses scattered across 99.8% of the 1.0.0.0/8 space.
As the originators could not have expected replies to
their forged (and officially unroutable) source addresses,
we eliminated these packets from further consideration.

Figure 1 shows the total data rate (all packets, regard-
less of protocol) to both prefixes after eliminating the
traffic purporting to be from 1.0.0.0/8. There is a clear
drop at the 10hr mark when we stopped responding with
SYN-ACK packets, and thus stopped triggering further

CAIA Technical Report 110720A July 2011 page 2 of 10



0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

Hours

M
B

it/
s

 

 

Total
1.1.1.0/24
1.2.3.0/24

Fig. 1. Inbound traffic rate during first 20 hours – total traffic,
and traffic to 1.1.1.0/24 and 1.2.3.0/24 separately. We stop sending
SYN-ACKs at 10hr mark.

TCP packets from responsive sources. After the 10hr
mark our results mimic that of previous research that
passively collected traffic to 1.1.1.0/24 and 1.2.3.0/24
(e.g. [3]). Consistent with prior work, traffic to 1.1.1.0/24
significantly outweighing traffic to 1.2.3.0/24 at all times.
This gives us some confidence that inbound TCP SYN
traffic during the first 10 hours is also likely to have been
‘typical’.

TCP traffic collected passively (such as the experi-
ments in Section II) contain both initial SYN packets
(from sources just beginning connection establishment)
and retransmitted SYN packets (from sources whose
initial SYN packet has not elicited a response from their
destination). Figure 2(a) drills down to show the TCP
SYN traffic that we received before and after the 10hr
mark.

Prior to the 10hr mark, our SYN-ACK replies substan-
tially eliminate retransmission of SYNs by standards-
compliant sources. After the 10hr mark there is a spike
in aggregate SYN traffic – the flow of new initial
SYN packets being supplemented by retransmissions of
previous SYNs that are now being ignored. Figure 2(b)
shows that, after eliminating retransmitted SYNs1, reply-
ing with a SYN-ACK (or not) has no significant impact
on the rate of initial SYNs.

IV. DETAILED ANALYSIS OF TCP CONNECTION

ATTEMPTS

A. These are not address or port scans

The first thing we notice from inbound TCP SYN
traffic is the limited evidence of ‘scanning’. Instead, the

1
Which we defined as one or more SYNs in a 2 minute window for the same source and destination

pair, and same initial sequence number

0 2 4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

Hours

P
ac

ke
ts

/s

 

 

1.1.1.0/24
1.2.3.0/24

(a) SYN rate with retransmissions

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

Hours

P
ac

ke
ts

/s

 

 

1.1.1.0/24
1.2.3.0/24

(b) SYN rate w/out retransmissions

Fig. 2. TCP SYN packets/sec received over the first 20 hours by
1.1.1.0/24 and 1.2.3.0/24, averaged every 2 minutes

Prefix 1.1.1.0/24 Prefix 1.2.3.0/24
Address Init. SYNs % of total Address Init. SYNs % of total
1.1.1.1 183358388 82.9% 1.2.3.4 49300508 82.0%
1.1.1.2 11618081 5.3% 1.2.3.250 3403628 5.7%
1.1.1.4 9194874 4.2% 1.2.3.13 1061002 1.8%
1.1.1.3 8981316 4.1% 1.2.3.11 913787 1.5%
1.1.1.5 1222798 0.6% 1.2.3.12 893395 1.5%

TABLE I
TOP 5 DESTINATION ADDRESSES FOR INITIAL SYN PACKETS

OVER 46 HOURS (PERCENTAGE RELATIVE TO TOTAL COUNT OF
INITIAL SYNS)

inbound TCP connection attempts (initial SYNs) target
a small range of IP addresses and ports. Table I shows
the top 5 most targeted addresses and Table II shows
the top 10 most targeted ports across the entire 46 hours
of packet collection for 1.1.1.0/24 and 1.2.3.0/24. Both
tables count only initial SYNs.

Roughly 83% of new connection attempts into
1.1.1.0/24 target address 1.1.1.1, and 82% of new con-

CAIA Technical Report 110720A July 2011 page 3 of 10



1.1.1.0/24 1.2.3.0/24
Port Init. SYNs % of total Port Init. SYNs % of total
80 53192548 24.0% 80 24566078 40.9%
6112 39248168 17.7% 82 12482184 20.8%
5022 23022143 10.4% 8888 5618099 9.3%
443 15243794 6.9% 25 2575354 4.3%
6667 10698972 4.8% 4201 2375348 3.9%
25 6330188 2.9% 7777 1309942 2.2%
3175 6326319 2.9% 443 801374 1.3%
502 4119181 1.9% 6969 771991 1.3%
110 3906095 1.8% 6112 486364 0.8%
6969 3221953 1.5% 8080 444187 0.7%

TABLE II
TOP 10 DESTINATION PORTS FOR INITIAL SYN PACKETS OVER 46

HOURS (PERCENTAGE RELATIVE TO TOTAL COUNT OF INITIAL
SYNS)

nections into 1.2.3.0/24 target address 1.2.3.4 – addresses
that are symbolic and easy to remember in dotted-quad
form. The top five addresses account for 97% and 92%
of all new connections into 1.1.1.0/24 and 1.2.3.0/24 re-
spectively. New connections are attempted to 28 433 and
10 323 different ports across 1.1.1.0/24 and 1.2.3.0/24
respectively. However, only 10 destination ports account
for roughly 75% and 85% of initial TCP SYN packets
sent to 1.1.1.0/24 and 1.2.3.0/24 respectively. Taken
together with the very narrow selection of observed
destination IP addresses, we believe no one is doing
comprehensive address and port scans within either of
those prefixes.

B. Responses to SYN-ACKs

Our SYN-ACKs might elicit no response for a variety
of reasons. A source’s response packet might simply be
lost, our SYN-ACK itself might be lost, or the source
might simply be probing with SYNs and having no
intention of establishing or closing a connection in a
standards-compliant manner. Losses might be due to
congestion in either direction, or filters somewhere along
the path objecting to traffic to or from anywhere in
1.0.0.0/82.

Nevertheless, the majority of SYN-ACKs elicited a
further response3. Figure 3 shows the arrival rate of
initial SYNs towards 1.1.1.0/24 and 1.2.3.0/24 during the
first 14 hours, and arrival rate of responses to our SYN-
ACKs during the first 10 hours. Response rates seem to
be a fairly constant fraction of initial SYNs. Our SYN-
ACKs elicited 38.8M responses from 54.3M connection
attempts to 1.1.1.0/24 and 10.5M responses from 13.5M
connection attempts to 1.2.3.0/24.

2
For example, an asymmetric firewall configuration mistakenly allowing ‘private’ 1.0.0.0/8 traffic

to leak out but correctly blocking inbound traffic towards internal privately addressed devices
3

Unique responses, ignoring retransmitted SYN packets and ACK, FIN, RST or DATA packets
which don’t seem to be part of any TCP connection attempt

0 2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

Hours

P
ac

ke
ts

/s

 

 

TCP SYNs received
Responses to TCP SYN/ACKs

(a) 1.1.1.0/24

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

Hours

P
ac

ke
ts

/s

 

 

TCP SYNs received 
Responses to TCP SYN/ACKs

(b) 1.2.3.0/24

Fig. 3. TCP SYN packets and packets elicited by a TCP SYN-ACK
over 10 hours

Around 55% of connection attempts to addresses
1.1.1.1 and 1.2.3.4 (the top most targeted addresses in
each prefix) responded to our subsequent SYN-ACK.
Table III shows the variation in response rates for con-
nection attempts to the top 10 ports in each prefix.

1.1.1.0/24 1.2.3.0/24
Port Init. SYNs Response rate Port Init. SYNs Response rate
80 14956761 66.06% 80 6923442 62.42%
5022 10706960 68.91% 82 3675359 84.86%
6112 10106443 28.11% 25 876805 66.15%
443 4043301 83.93% 4201 833548 55.05%
6667 2403285 21.91% 8888 488026 55.29%
25 2344910 53.44% 6969 465967 6.85%
110 1848456 29.87% 443 258555 73.07%
6969 1280985 74.84% 8000 243444 19.49%
6881 1277988 95.97% 8080 228592 31.96%
3175 1080826 12.92% 6112 216078 70.19%

TABLE III
NUMBER OF CONNECTION ATTEMPTS TO TOP 10 PORTS OVER

FIRST 10 HOURS, AND PERCENTAGE OF RESPONSES ELICITED BY
OUR SYN-ACKS.

CAIA Technical Report 110720A July 2011 page 4 of 10



C. Retransmission of responses

Most of the responses to our SYN-ACKs are retrans-
missions caused by the lack of sending ACKs from the
server back to the clients. Figure 4 shows the number of
TCP connections and the number of source IP addresses
per number of retransmission attempts. While most of
the connections to either 1.1.1.0/24 or 1.2.3.0/24 time
out between 1 and 9 packet retransmissions, there is
a noticeable peak of sources that retransmits packets
between 11 to 14 times. A further, less evident peak can
be found between 15 and 20 retransmissions. We also
detected TCP connections with abnormal retransmissions
scattered from 21 up to 485 times in 1.1.1.0/24 and from
21 to 583 times in 1.2.3.0/24, all caused by a small set
of 20 to 30 different source addresses. In 1.1.1.0/24 we
additionally found a single host retransmitting packets
up to 27727 times.

The finding suggest, that there are three distinct groups
of operating systems or TCP stacks with fixed timeout
values at 9, 14 and 20, and a handful of sources doing
something odd. Apart from the single source retrans-
mitting 27727 times, we also found sources reusing the
same sequence numbers when resending a SYN after a
retransmission timeout. It is also possible to determine
from the graph, that given the lower number of unique IP
addresses compared to TCP connections, single sources
attempt multiple TCP connections to the site.

A comparison of TTL values of the SYN packet to the
TTL values of the response packets of each connection
resulted in 1.2M TTL value changes for prefix 1.1.1.0/24,
and 346K for prefix 1.2.3.0/24 between a SYN and
the response packets. Furthermore we found that TTL
values changed multiple times within a retransmission
sequence in 10545 cases for prefix 1.1.1.0/24, and in
1441 cases for prefix 1.2.3.0/24. Sometimes the TTL
difference between SYN and response packets is quite
high as shown in Figure 5. Of the 1330855 sources
responding to our SYN/ACKs we found 2474 sources
whose TTL changes by more than 30 between their SYN
and subsequent response packets4. Of those sources, 98%
re-connect more than once and exhibit the same change
in TTL during each re-connection attempt.

We also approximated the hop count by subtracting
the measured TTL value from the next highest multiple
of 32. Multiples of 32 are commonly used as initial
values for the TTL field in IP stacks (with the exception

4Small TTL differences might be caused by path changes occurring
between the source’s transmission of SYN and ACK, but TTL
differences over 30 cannot be explained by path changes.

0 5 10 15 20
0

2

4

6

8

10

x 10
6

number of retransmission attempts

 

 

established TCP connections
unique IP addresses

(a) 1.1.1.0/24

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3x 10
6

number of retransmission attempts

 

 

TCP connections
unique IP addresses

(b) 1.2.3.0/24

Fig. 4. Number of TCP connections and unique source IP addresses
per number of packet retransmissions. The graph has been limited to
20 packet retransmissions for better readability

of 256; we considered the start value of 255 instead).
Figure 6 shows the spread of the calculated hop counts
between SYNs and ACKs. Comparing the TTL and hop-
count graphs, we see that many changes in TTL between
SYN and subsequent response packets do not always
show up as a change in path length. This might occur
if a middlebox close to the source rewrites the initial
TTL value of either the SYN or the ACK. As we use
multiples of 32 as initial TTL values, we can only detect
a maximum of 32 hops. This restriction is characterized
by the outliers seen at the top of the graphs in Figure 6.
We suspect that some paths are even slightly longer
than 32 hops, which would be displayed with a hop

CAIA Technical Report 110720A July 2011 page 5 of 10



0 50 100 150 200 250
0

50

100

150

200

250

TTL SYN

T
T

L 
A

C
K

 a
nd

 r
et

ra
ns

m
is

si
on

s

(a) 1.1.1.0/24

0 50 100 150 200 250
0

50

100

150

200

250

TTL SYN

T
T

L 
A

C
K

 a
nd

 r
et

ra
ns

m
is

si
on

s

(b) 1.2.3.0/24

Fig. 5. Spread of TTL values of SYN packets and responses

count like 1 or 2 in the graph. Paths of 32 hops or
longer might seem plausible (having been seen even in
1998 [8]). However, we believe it is more likely that
some hosts targeting our 1.1.1.0/24 and 1.2.3.0/24 space
are using non-standard TCP stacks that exhibit distinctly
unusual initial TTL values. Most of the hosts which
yield paths of 32 hops or a huge difference between the
pathlength of a SYN and the ACKs are also responsible
for the abnormally high number of TCP retransmissions
within a single connection, coupled with an abnormally
high retransmission time out. Hosts with such abnormal
settings have been found in small numbers throughout
the dataset at almost all path lengths, but with higher
concentration at very long paths (>30 hops) and very
short paths (<5 hops), which increases our suspicion
of the presence of paths longer than 32 hops. We doubt
that such stacks use a standard initial TTL value in some
cases, and we believe the initial TTL is set to different
values for SYN and ACK packets.

0 10 20 30 40
0

5

10

15

20

25

30

35

Hops SYN

H
op

s 
A

C
K

 a
nd

 r
et

ra
ns

m
is

si
on

s

(a) 1.1.1.0/24

0 10 20 30 40
0

5

10

15

20

25

30

35

Hops SYN

H
op

s 
A

C
K

 a
nd

 r
et

ra
ns

m
is

si
on

s

(b) 1.2.3.0/24

Fig. 6. Spread of TTL values of SYN packets and responses

D. Observed response sequences

Where sources responded to our SYN-ACKs, we
observed response sequence falling into one of four
categories. The following list indicates the percentage
of each sequence type observed for 1.1.1.0/24 and
1.2.3.0/24 respectively:

1) [68.49%, 46.28%] TCP ACKs followed by TCP DATA
packets and in cases by a RST, or FIN, or a FIN
followed by an RST, including retransmission of ACKs
and DATA. DATA can be piggybacked on the initial
ACK, and always carries the ACK flag, while eventual
RSTs and FINs are mostly piggybacked on the last
retransmitted ACK (which can also carry retransmitted
DATA).

2) [26.99%, 47.53%] TCP ACKs without DATA immedi-
ately followed by a FIN or RST, or a FIN followed by
an RST (sometimes compressed to a single RST/ACK
or FIN/ACK) including retransmissions of the ACKs. In
case of ACK retransmission, the RST and FIN are pig-

CAIA Technical Report 110720A July 2011 page 6 of 10



gybacked on the last retransmitted ACK. In case of an
RST following a FIN it’s mostly without ACK. In some
cases the RST/ACK or FIN/ACK are again followed by
an ACK and the whole series is retransmitted.

3) [0.015%, 0.005%] Immediate RST.
4) [4.5%, 6.18%] TCP ACKs without DATA piggybacked

and not followed by a RST or FIN. The ACKs are
sometimes retransmitted, while other times they are sent
multiple times with different sequence numbers.

Where an ACK is involved in a packet sequence (with
or without carrying DATA, RST or FIN), the PSH flag
could be set as well. In very few cases retransmissions
of ACKs have the URG flag set as well.

Sequence 1 reflects sources with data to send – pos-
sibly genuine TCP connections timing out on the clients
side. Sequences 2 and 3 lack data transfer, and suggest
some form of port scanning or probing5. Sequence 4
opens a connection to the destination but sends no data.
This could be malware or other software that opens a
connection then waits for the other end to push content
back.

We also found 4.6M connection attempts sending an
ACK, followed by an RST/ACK after approximately
30 seconds. While the packet order corresponds to Se-
quence 2, we suspect these are also sources that open a
connection then wait for the other end to push content
back.

E. Examples of connections that transfer no data

Three examples cover 61% of all connection at-
tempt/response sequences coming into 1.1.1.0/24 that fall
under Sequence 2, 3 or 4 (connections carrying no data).

The first example (23% of sequences without data, 7%
of the total number of responses) involves connection
attempts to port 6112 where the source responds with
an ACK followed by a RST/ACK in less than 2ms.
It originates from 25 unique sources over the 10 hour
period, with individual sources launching sustained at-
tempts over periods from 2 to 5 hours (and the most
active source averaging 64 connections/sec for 4 hours).
Port 6112 seems to be used for a variety of games
by Blizzard Entertainment [10]. The sustained repetition
of connection setup and rapid teardown leads us to
leading us to suspect these sources may be attempting
to disrupt network access of a distant game client or
server. We also see the same sequences from 20 sources
targeting destination 1.2.3.4, covering 1.4% of the total
connection attempts, and 2.7% of sequences without

5
For example, Nmap [9] port scans close connections by sending a FIN/ACK or RST packet after

receiving a SYN-ACK. Nmap is not the only tool in use, as we see many sequences of ACKs followed
shortly after by RST/ACKs

data to 1.2.3.0/24. Interestingly, 99% of these connection
attempts arrive from a single source over roughly 6
hours.

Two more examples (37% of sequences without data,
12% of the total number of responses) involve 23611
sources sending sequences consisting of ACKs followed
by a RST/ACK or a FIN/ACK 30 or 120 seconds later
(with FIN/ACKs retransmitted up to 6 times). Sequences
ending in RST/ACK mostly target port 80 and 443,
while the sequences ending in a FIN/ACK mostly target
ports 25 and 110. There are a large number of sources
tending to send the same sequence continuously at fixed
time intervals. We suspect the sources host a form of
malware that uses well-known ports to ‘call home’ for
pushed content. The target is usually 1.1.1.1, probably
hard coded into the malware, left over from initial
testing, or due to the sources being behind some form
of misconfigured proxy.

The amount of connections covered by the three
examples present a lower bound, as possible packet loss
makes it difficult catalogue all connection into the correct
sequence.

F. Non-HTTP connections that try to transfer data
Responses with DATA packets allow us to gain further

insight into the possible intentions behind each connec-
tion attempt. Here we look at a number of non-HTTP
examples (HTTP traffic will be analyzed in the next
section).

Around 300K different source addresses were seen
establishing connections to destination 1.1.1.1 port 5022,
constituting 18% of all the connection attempts (and 26%
of connections with data). We saw a 69% response rate
to our SYN-ACKs, and inspection of the DATA payloads
revealed clear text such as “MicrosKdsDisplayAppV1.0”
and “Order currently cannot be completed” in every
response. This strongly suggests that much of the port
5022 traffic was originating from widely deployed, yet
misconfigured, instances of a ”MICROS Kitchen Display
System” product used in the hospitality industry [11]. We
observed a continuous load of around 70 connections/sec
over the entire 10 hours.

Traffic to port 6969 contains mostly HTTP style GET
requests as used by Bittorrent to communicate to the
tracker, with around 90% of the requests containing the
same domain in the requests “host” part, but addressed
to 1.1.1.1, showing an obviously misconfigured DNS
entry 6. Packets to port 6881 contain some Bittorrent

6
This domain still resolved to 1.1.1.1 in December 2010 and is registered at “no-ip.info” [12], a

common dynamic DNS service. A web search showed a variety of torrent files listed a Bittorrent tracker
at the domain on port 6969

CAIA Technical Report 110720A July 2011 page 7 of 10



handshakes and what looks like packets containing large
chunks of data or encrypted data (similar to packets sent
to port 443). The data sent to port 6881 does not seem
related to the misconfigured tracker.

At port 6667, used by the IRC protocol, we find
mostly seemingly real IRC connection attempts and
some non IRC traffic. The seemingly real IRC traffic
were mostly initiated with a NICK and USER of the form
“TsGhUSA-XP”. According to various sources in the
Internet, this user is attributable to the “TsGh BotNet”
and various malware. Similar IRC malware connections
have also been found in connections to ports 6969, 7029
and 51987.

The “t1-e1-over-ip” protocol is assigned to port 3175.
It seems to be intended for encapsulating and sending
audio and video from circuit switching system over IP.
All connections to the port carry data, which we could
not decode and could in fact be part of the “t1-e1-over-
ip” protocol. About 10% of the sources connecting to
port 3175 also connect to port 81 before. The content of
the data to port 81 could not be decoded as well.

Port 4201 is assigned to the “vrml-multi-use” protocol,
but seems to be used by the “War” Trojan as well –
which we believe is the cause of the connections. It
carries packets of around between 300 and 500 bytes
in length, containing information about the OS, the
browser and Mail client of the source, as well as it’s
local IPv4 address. It originates from 126482 different
source addresses, many of them contiguous and attempts
3 to 4 connections per second continuously over 10
hours. We believe that in that case, the two destination
addresses 1.2.3.4 (77% of connections) and 1.2.3.5 (23%
of connections) are coded into the worm.

Around 1% of connection attempts to port 25 (SMTP)
and 110 (POP3) responded with DATA packets. The
data packets typically contained USER, PASS and QUIT
requests for port 110 and QUIT, HELO, RSET, EHLO,
DATA and MAIL FROM requests for port 25. A sin-
gle source was responsible for a high percentage of
port 25 traffic, apparently deliberately (but misguidedly)
redirecting email to 1.1.1.1. The PASS requests in port
110 only contained 2 different passwords: “leak” and
“h4xg4ng”. The “leak” attempts were carried out by
45 source addresses, the “h4xg4ng” only by two. For
“h4xg4ng”, the first source was probing for 3 hours,
then stopped, then the second source was probing for
1.5 hours.

1.1.1.0/24 1.2.3.0/24
“host” field con-
tents

Dest.
addr.

% tot. “host” field con-
tents

Dest.
addr.

% tot.

1.1.1.1 1.1.1.1 40.1% 1.2.3.4 1.2.3.4 8.6%
1.1.1.5 1.1.1.5 2.3% 1.2.3.13 1.2.3.13 7.6%
1.1.1.4 1.1.1.4 2.3% chewinggym.com 1.2.3.4 7.5%
1.1.1.2 1.1.1.2 2.3% www.sinfors

.com.cn
1.2.3.4 6.7%

1.1.1.3 1.1.1.3 2.2% 1.2.3.10 1.2.3.10 3.70%
swupmf.adobe
.com

1.1.1.1,
1.1.1.0,
1.1.1.2

1.5% 1.2.3.12 1.2.3.12 3.6%

urs.microsoft
.com:443

1.1.1.1,
1.1.1.200

1.5% 1.2.3.11 1.2.3.11 3.6%

g.ceipmsn.com 1.1.1.1 1.4% provisioning.pure
-ip.com:80

1.2.3.4 3.6%

weather.service
.msn.com

1.1.1.1 0.6% 1.2.3.9 1.2.3.9 3.3%

lastfm.mxmm.de 1.1.1.1 0.6% 1.2.3.6 1.2.3.6 1.8%

TABLE IV
THE 10 MOST COMMON “HOST” FIELD VALUES FOUND IN HTTP
REQUESTS TO PORTS 80, 81, 82, 8000, 8080 AND 8888 AND THE
IPV4 ADDRESS THEY ARE MAPPED TO (PERCENTAGE RELATIVE

TO THE TOTAL AMOUNT OF CONNECTIONS CARRYING HTTP
DATA IN EACH PREFIX).

G. A better look at HTTP traffic

Data is carried by 79% and 76% of the “established”
connections to port 80 in 1.1.1.0/24 and 1.2.3.0/24 (20%
and 31% respectively of all “established” connections).
Connections to port 80 without data exhibited sequences
of type 2 or 4 (Section IV-D). Although HTTP traffic
was also directed to ports 81, 82, 8000, 8080 and
8888, almost 98% and 91% of the data carrying HTTP
connections were initiated to port 80 within 1.1.1.0/24
and 1.2.3.0/24 respectively.

HTTP GET and POST requests were the most com-
mon HTTP data payloads received on all the observed
ports and both prefixes. Well-formed HTTP requests
contain at least a “host” and a “user-agent” field and
most often also an “accept-language” and “referer” field,
which allows us to infer some information about the
origin and destination of these requests. The most com-
mon “host” fields for prefix 1.1.1.0/24 and 1.2.3.0/24 are
listed in Table IV.

The host field can contain either an explicit IP address
or a fully qualified hostname, which should match the
packet’s destination address. At the time of our exper-
iment no hostnames would legitimately resolve to an
IP address in 1.1.1.0/24 or 1.2.3.0/24 space. Thus a
hostname in the host field indicates either a misconfig-
ured DNS or a proxy or gateway wrongly rewriting the
destination address. We also found a few cases (0.04%)
where the host field contained an address from all
three prefixes of the IPv4 private address space, namely
10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16. While the

CAIA Technical Report 110720A July 2011 page 8 of 10



“referer” field contents #reqs #Dest
addr

#Src
addr

#Dest
hosts

http://1.1.1.1/info.html 2619350 1 262 1
http://1.1.1.1/info 771519 1 160 1
http://www.wittelsbuerger.de/ 80319 5 543 5
http://kinoinfos.bplaced.net/ 51777 4 2605 4
http://www.erodate.pl/pl/odebrane/ 49573 5 836 5
http://www.facebook.com/?http://www
.facebook.com/home.php?ref=home

32194 6 2228 121

http://www.facebook.com/?ref=home 27589 6 2005 79
http://www.wittelsbuerger.com/ 22482 5 168 5
http://s1.4399.com:8080
/4399swf/upload swf /ftp/20080421/6.swf

21397 1 348 1

http://1.1.1.40:8888/Openobject
/down0.asp?id=1594

16445 1 241 2

TABLE V
THE 10 MOST COMMON “REFERER” FIELD VALUES FOUND IN

HTTP REQUESTS TO PORTS 80, 81, 82, 8000, 8080 AND 8888
FOR PREFIX 1.1.1.0/24

top 5 most common host field values in prefix 1.1.1.0/24
are explicit IP addresses matching the destination, there
is a long tail to the distribution – 36.2% of all host fields
contain a hostname, implying misconfiguration near the
source (and in 1.2.3.0/24 this rises to 62.3% of all HTTP
connections).

The host field may match the destination address for
a number of reasons:

1) User explicitly enters an IP address into their browser
2) User unwittingly follows a link (embedded in a web

page or provided by other software) which contains the
IP address instead of a hostname

3) User gets redirected to a web page on a private 1.0.0.0/8
network with an IP address as URL (a common tech-
nique for Wi-Fi Hot-spots [13]), and the private network
is leaking connections to the Internet.

4) An embedded HTTP client is establishing HTTP con-
nections with or without the user’s knowledge (such
as software update clients, anti-virus and anti-spyware
programs, download tools or malware)

Although possible, it seems unlikely that thousands
of users are typing addresses like 1.1.1.1 and 1.2.3.4 in
their browsers. Table V reveals additional information
that may be obtained from the “referer” field of HTTP
data heading to 1.1.1.0/24. The top two referer fields are
a good example of Wi-Fi hot-spot login pages, such as
provided by [13]. Together they are found in 23.8% of
the HTTP connections.

Table VI shows the top 10 “user-agent” fields (where
provided). The majority are not generated by well known
browsers, but can be attributed to malware or software
update services from various vendors. For example, user-
agent “x” (1.2.3.0/24) is likely associated with malware,
as it always occurs in combination with a host field
of “chewinggym.com” (Table IV) which is used by

1.1.1.0/24 1.2.3.0/24
user-agent count user-agent count
SyLink Profile Session 585577 x 466594
Mozilla/5.0 525040 SiteBacker 266945
MxPEG-ActiveX 464192 Mozilla/5.0 (compatible;

Yahoo! Slurp/3.0)
216892

Microsoft URL Control -
6.00.8169

259060 Mozilla/4.0 136132

VCSoapClient 214131 Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT
5.1)

132376

SeaPort/1.2 207069 Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT
5.1; SV1)

101753

WinHttp-Autoproxy-
Service/5.1

188000 Windows-Update-Agent 101346

TABLE VI
THE 7 MOST COMMON “USER-AGENT” FIELD VALUES FOUND IN
HTTP REQUESTS TO PORTS 80, 81, 82, 8000, 8080 AND 8888

the W32/Nugg worm [14]. Additionally “user-agent”
values could be attributed to browsers, browser plug-ins,
“browser toolbars”, proxy clients, smart-phone browsers
or smartphone applications and unknown applications or
software.

We also analyzed the HTTP traffic for the values in
the “proxy-connection” field. we found that it is set
for 1.8% of the connections with a “referer” field for
prefix 1.1.1.0/24 and for 0.44% of such connections for
prefix 1.2.3.0/24, while it is set for approximately 3.8%
for prefix 1.1.1.0/24 and 7.6% for prefix 1.2.3.0/24 if
no “referer” field is present. If the “proxy-connection”
field is set, and the “referer” field is missing, the
“host” field value contains “microsoft.com” in 41.3%
of the cases in 1.1.1.0/24, and “www.sinfors.com.cn”
in 88.7% of the cases in 1.2.3.0/24. User agents for
the cases in 1.1.1.0/24 are mostly “Microsoft URL
Control - 6.00.8169” and “VCSoapClient”. The user
agents found in 1.1.1.0/24 belong to Microsoft’s anti-
phishing service for IE7 or IE8 [15]. It shows again hosts
using misconfigured proxies, leaking private networks
or misconfigured DNS resolvers. For connections to
“www.sinfors.com.cn”, we don’t find any “user-agent”
field, and the “proxy-connection” field is set to “close”.
The domain belongs to a company producing WAN
optimization software and VPN software [16], thus we
believe that we are dealing with a developer mistake in
a client software of this manufacturer.

V. CONCLUSIONS

This paper extends previous studies of IPv4 traf-
fic being sent to previously-unllocated 1.1.1.0/24 and
1.2.3.0/24 address space. We focus on TCP traffic during
a brief period in mid-March 2010. By studying the

CAIA Technical Report 110720A July 2011 page 9 of 10



reactions of sources when we respond to their TCP SYN
packets with our own TCP SYN-ACK, we are able to
assess the degree to which inbound traffic appears to be
intentionally or unintentionally targeting destinations in
1.1.1.0/24 and 1.2.3.0/24.

Over a 10 hour period our simplified honeypot elicited
38.8M responses from 54.3M connection attempts to
1.1.1.0/24 and 10.5M responses from 13.5M connection
attempts to 1.2.3.0/24 (representing 71% and 78% of all
initial SYNs to 1.1.1.0/24 and 1.2.3.0/24 respectively).
We believe many of the non-responsive sources come
from asymmetric leakage of private networks using
1.0.0.0/8 space (internally destinated SYN packets in-
stead leak outside through the NAT, but our returned
SYN-ACKs are blocked).

By evaluating patterns of behavior by responsive
sources we conclude that most sources attempting to
establish a genuine TCP connection into 1.1.1.0/24 or
1.2.3.0/24 generally do so due to misconfiguration some-
where close to the source, rather than because the source
application actively intends to probe destinations in
1.1.1.0/24 or 1.2.3.0/24 space. Close analysis of payloads
from received HTTP-like connection attempts suggest
that misconfiguration problems affect legitimate users,
embedded clients (such as automatic software updaters),
and malware alike. This suggests we might ‘clean up’
these prefixes through better education of the end-users
and network equipment administrators.

VI. ACKNOWLEDGMENTS

This work has been made possible in part by a grant
from APNIC Pty Ltd.

REFERENCES

[1] Internet Assigned Numbers Authority - IANA, “IANA IPv4
Address Space Registry.” [Online]. Available: http://www.iana.
org/assignments/ipv4-address-space/ipv4-address-space.txt

[2] RIPE NCC, “Pollution in 1/8,” Feb. 2010. [Online]. Available:
http://labs.ripe.net/content/pollution-18

[3] G. Huston and G. Michaelson, “Traffic in Network 1.0.0.0/8,”
Mar. 2010. [Online]. Available: http://www.potaroo.net/ispcol/
2010-03/net1.html

[4] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston,
“Internet background radiation revisited,” in Proceedings of the
10th annual conference on Internet measurement, ser. IMC ’10.
New York, NY, USA: ACM, 2010, pp. 62–74.

[5] L. Spitzner, Honeypots: Tracking Hackers. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[6] North American Network Operators Group – NANOG, “1/8
and 27/8 allocated to APNIC (Discussion),” Jan. 2010.
[Online]. Available: http://mailman.nanog.org/pipermail/nanog/
2010-January/017402.html

[7] Fonality, “trixbox - The Open Platform for Business
Telephony.” [Online]. Available: http://fonality.com/trixbox/

[8] A. Fei, G. Pei, R. Liu, and L. Zhang, “Measurements on delay
and hop-count of the internet,” jan 1998.

[9] G. Lyon, “NMAP Security Scanner.” [Online]. Available:
http://nmap.org

[10] Blizzard Entertainment, “Blizzard Support.” [Online].
Available: http://us.blizzard.com/support/article.xml?locale=en
US&articleId=21015

[11] Micros Systems Inc., “Micros Kitchen Display Systems.”
[Online]. Available: http://www.micros.com/Products/RES/
KitchenDisplaySystem/

[12] Vitalwerks Internet Solutions, “no-ip, The DNS service
provider.” [Online]. Available: http://www.no-ip.com/

[13] Cisco Systems Inc., Cisco Wireless Control System Configura-
tion Guide. San Jose, CA, USA: Cisco Americas Headquarters,
2010.

[14] F-Secure, “Virus description: P2P-Worm:W32/Nugg.” [Online].
Available: http://www.f-secure.com/v-descs/p2p-worm w32
nugg.shtml

[15] Aqtronix, “User Agents Database.” [On-
line]. Available: http://www.aqtronix.com/useragents/?Action=
ShowAgentDetails&Name=VCSoapClient

[16] SANGFOR, “Sangfor Company Overview.” [Online].
Available: http://www.sangfor.com/company/overview.html

CAIA Technical Report 110720A July 2011 page 10 of 10

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.txt
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.txt
http://labs.ripe.net/content/pollution-18
http://www.potaroo.net/ispcol/2010-03/net1.html
http://www.potaroo.net/ispcol/2010-03/net1.html
http://mailman.nanog.org/pipermail/nanog/2010-January/017402.html
http://mailman.nanog.org/pipermail/nanog/2010-January/017402.html
http://fonality.com/trixbox/
http://nmap.org
http://us.blizzard.com/support/article.xml?locale=en_US&articleId=21015
http://us.blizzard.com/support/article.xml?locale=en_US&articleId=21015
http://www.micros.com/Products/RES/KitchenDisplaySystem/
http://www.micros.com/Products/RES/KitchenDisplaySystem/
http://www.no-ip.com/
http://www.f-secure.com/v-descs/p2p-worm_w32_nugg.shtml
http://www.f-secure.com/v-descs/p2p-worm_w32_nugg.shtml
http://www.aqtronix.com/useragents/?Action=ShowAgentDetails&Name=VCSoapClient
http://www.aqtronix.com/useragents/?Action=ShowAgentDetails&Name=VCSoapClient
http://www.sangfor.com/company/overview.html

	Introduction
	Related work
	Methodology
	Data Collection
	Initial observations and post-processing

	Detailed analysis of TCP connection attempts
	These are not address or port scans
	Responses to SYN-ACKs
	Retransmission of responses
	Observed response sequences
	Examples of connections that transfer no data
	Non-HTTP connections that try to transfer data
	A better look at HTTP traffic

	Conclusions
	Acknowledgments
	References

