
The Middleware Dilemma

Geoff Huston
 March 2001

It is not often that an entire class of technology generates an emotive response. But, somehow,
middleware has managed to excite a lot of folk. For some ISPs middleware, in the form of web
caches, is not only useful, its critical to the success of their enterprise. For many corporate
networks middleware, in the form of firewalls, is the critical component of their network security
measures. For such folk middleware is an integral part of the network. For others, middleware is
seen as something akin to network heresy. Not only does middleware often break the semantics
of the internet protocol, it is also in direct contravention to the end to end architecture of the
Internet. Middleware breaks the operation of certain applications.

Emotions have run high in the middleware debate, and middleware has been portrayed as being
everything from absolutely essential to the operation of the Internet as we know it through to
being immoral and possibly illegal. Strong stuff indeed for an engineering community.

So what is middleware all about and why the fuss? One definition of middleware is a network
device which does something other than forward an IP packet onward along the best path to the
packet's destination address. In other words, anything other than a router. Middleware units may
intercept the packet and alter the header or payload of the packet, redirect the packet to be
delivered to somewhere other than its intended destination, or process the packet as if it was
addressed to the middleware device itself.

Why would a network go to all this bother to trap and process certain packet? Surely its easier
and cheaper to simply forward the packet onward to its intended destination? The answer can
be "yes" or "no", depending on how you feel about the role of middleware.

Lets look at this in a bit more detail, using a specific form of middleware. A common form of
middleware is the so-called "transparent web cache". Such a web cache is constructed using
two parts, an interceptor and a cache system. The interceptor is placed into the network, either
as a software module added to a router or as a device which is spliced into a point-to-point link.
The interceptor takes all incoming TCP traffic addressed to port 80 (an HTTP session) and
redirects it across to the cache system. All other traffic is treated normally. The cache system
accepts all such redirected packets as if they were directly addressed to the cache itself. It
responds to the HTTP requestor as if it were the actual intended destination, using a source
address which matches the destination address of the original request, assuming the identity of
the actual intended content server. If the requested web object is located in the local cache it will
deliver the object to the requestor immediately. If it is not in the cache it will set up its own
session with the original destination, send it the original request, and feed the response back to
the requestor, while also keeping a copy for itself in its cache.

Caching of content works well in the web world simply because so much web traffic today is
movement of the same web page to different recipients. It is commonly reported that up to one
half of all web traffic in the Internet is a duplicate transmission of content. If an ISP locally
caches all web content as it is delivered, and checks the cache before passing through a
content request, then the ISP's upstream web traffic volume may be halved. Even a moderately
good cache will be able to service about one quarter of the web content from the cache. That
amount of local caching can be translated into a significant cost saving for the ISP. The cached
web content is traffic that is not purchased as transit traffic from an upstream ISP, representing
a potential saving on the cost of upstream transit services. This saving, in turn, can allow the
ISP to operate at a lower price point in the retail market. The cache is also located closer to the

ISP's customers, and correctly configured, the cache can also deliver cached content to the
customer at a consistently much faster rate than a request to the original content server. For
very popular web sites the originating server may be operating slowly under extreme load, while
the local cache continues to operate at a consistent service level. The combination of the
potential for improved performance and lower overall cost is certainly one which looks enticing:
the result is the same set of web transactions delivered to customers, but cheaper and faster.

But not everything is perfect in this transparent caching world. What if the web server used a
security model which served content only to certain requestors, and the identity of the requestor
was based on their IP address? This is not a very good security model, admittedly, but it enjoys
very common usage. With the introduction of a transparent cache the web client sees something
quite strange. The web client can ping the web server, the client can communicate with any
other port on the server, and if the client were to query the server's status, the web server would
be seen to be functioning quite normally. But, mysteriously, the client cannot retrieve any web
content from the server, and the server does not see any such request from the client. Given
that the middleware cache is sitting inside a network somewhere on the path between the client
and the service, it is not surprising that this is a remarkably challenging operational problem for
either the client or the server to correctly diagnose.

A similar case is where a web server wishes to deliver different content to differnet requestors,
based on some inference gained from the source IP address of the requestor, or the time of
day, or some other variable. A transparent cache will not detect such variations in the server's
response and will instead deliver the same version of the cached content to all clients whose
requests pass through the transparent cache. Variations of this situation of percieved abnormal
service behaviour abound, all clustered around the same concept that it is unwise in such an
environment for a server to assume that it is always communicating with the end client.

More subtle vulnerabilities also are present in such a middleware environment. A client can
confidently assert that packets are being sent to a server, and the server appears to be
responding, but the data appears to have been corrupted. Has the server been compromised? It
may look like this is the case, but when middleware is around, looks can be deceiving. If the
integrity of the cache is compromised, and different pages are substituted in the cache, then to
the clients of the cache it appears that the integrity of original server has been compromised.
The twist with transparent cache middleware is that the clients of the cache are unaware that
the cache exists, let alone that their requests are being redirected to the cache server. Any
abnormalities in the responses they receive are naturally attributed to problems with the server.

The common theme of these issues is that there are a set of inconsistent assumptions at play
here. One the one hand, the assumption of an end to end architecture leads an application
designer to assume that an IP session opened with a remote peer will indeed be with that
remote peer, and not with some intercepting network-level proxy agent attempting to mimic the
behaviour of that remote peer. On the other hand is the assumption that transactions adhere to
a consistent and predictable protocol, and transactions may be intercepted and manipulated by
middleware as long as the resultant interaction behaves according to the defined protocol.

Are transparent caches good or bad? Is the entire concept of middleware good or bad? There is
no doubt that middleware can be very useful. Cache systems can create improved service
quality and reduced cost. Network Address Translators can reduce the demand for IP address
space. Firewalls can be reasonably effective security policy agents. Middleware can provide
services within the network that relieve the end user of a set of tasks and responsibilities, and
middleware can improve some aspects of the service quality. But middleware comes at a steep
long term price.

The leverage of the Internet lies in its unique approach to network architecture. In a telephone
network the end device, a telephone handset is a rather basic device consisting of a pair of
transducers and a tone generator. All the functionality of the telephone service is embedded

within the network itself. The architecture of the Internet is the complete opposite. The network
consists of a collection of packet switches with basic functionality the service is embedded
within the protocol stack and applications that are resident on the connected computer. Within
this architecture adding new services to the network is as simple as distributing new
applications. The network makes no assumptions about the services it supports, and network
services can be added, refined and removed without requiring any change to the network itself.
This results in a cheap, flexible and basic network, and passes the entire responsibility for
service control to the network's users. The real strength of the Internet lies in its architectural
simplicity and lack of interdependencies within the network.

Middleware cuts across this model by inserting directly into the network functionality which alters
packets on the fly, or, as with a transparent cache, intercepts traffic, interprets the upper level
service request associated with the traffic and generates responses by acting as a proxy for the
intended recipient. With middleware present in an internet network, sending a packet to an
addressed destination and receiving a response with a source address of that destination is no
guarantee that you have actually communicated with the address remote device. You may
instead be communicating with a middleware box, or have had the middleware box alter your
traffic in various ways. Now its not just the end user applications which define an Internet
service. Middleware also is becoming part of the service. To change the behaviour of a service
which has middleware deployed requires the network's middleware to be changed. A new
service may not be deployed until the network's middleware is altered to permit its deployment.
Any application requiring actual end-to-end communications may have to have additional
functionality to detect if there is network middleware deployed along the path, and then explicitly
negotiate with this encountered middleware to ensure that its actual communication will not be
intercepted and proxied.

All this middleware overhead makes applications more complex, makes the network more
complex, and makes networking more expensive and less flexible. From this perspective
middleware is an unglamorous hack; nasty, brutish and, hopefully, short-lived.

