November 2025 Geoff Huston

NANOG 95

The North American Network Operators Group (NANOG) can trace its antecedents to the group of so-called "Mid Level" networks that acted as feeder networks for the NSFNET, the backbone of the North American Internet in the first part of the 1990's. NANOG'S first meeting has held in June 1994, and NANOG held its 95th meeting some 30 years later, in Arlington, Texas in October of this 2025.

Here's my take on a few presentations that caught my attention through this three-day meeting.

5G, Fibre and WiFi

The last 45 years have been a wild ride in the communications industry, and Len Bozack's presentation at NANOG'95 illustrated some highlights in both cellular radio and Ethernet over this period (Figure 1). Ethernet has lifted in capacity from 10Mbps common bus to 800Gbs. The cellular systems have progressed through Kilo bps analogue systems, to today's 5G systems which have some 2.3 billion subscriptions worldwide. The mobile service market is now a market with a \$244 billion annual spend, out of a total of some \$462 billion per year in network infrastructure1 and devices. The balance, some \$212 billion per year is largely due to investments in core and access services in the fixed line networks. This is clearly big business!

In the mobile world 5G is gaining the dominant position most regional market, but interestingly the annual growth in data volumes has been slowing down since its peak in 2019, and by 2025 the annual growth rate in 5G network data volumes is down to 19% from a high of over 90% in mid-2018. This could be a sign of market saturation in many markets for mobile services, as well as some stability in service usage patterns in recent years.

Figure 1 – A Timeline of Wireless and WIFI – From NANOG 95 Presentation on 5G and WiFi

There has been a similar evolution in WiFi technology, despite the lack of commercial service operators, something that has been a feature of the evolution of the mobile cellular service. The initial WiFi technology was a 11Mbps service using QPSK encoding within the 2.4GHz band. Successive evolution of WiFi has increased the signal density, increased the number of channels and opened up new radio bands

Year	Gen	Speed	Technology
1999	1	11Mbps	20Mhz QPSK 2.4GHz
2003	2	54Mbps	20MHz multi-channel 64QAM 5GHz
2004	3	54Mbps	20MHz multi-channel 64QAM 2.4/5GHz
2009	4	600Mhz	40MHz channel bonding, 4x4 MIMO, 64QAM, 2.4/5GHz
2013	5	78Ghz	80/160Mhz channel bonding, 4DL MU-MIMO, 256 QAM
2019	6	9.6GHz	80/160Mhz channel bonding, OFDMA, UL, 4DL MU-MIMO, 1024 QAM
2024	7	23GHz	320MHz Channel Bonding, MLO, MRU, R-TWT, 4096 QAM

Table 1 – WiFi Generations

WiFi is now a \$35.6B market, showing a, 11% annual growth rate. Seamless Roaming (single mobility domains), Multi-AP coordination, and Enhanced Edge Reliability make Wi-Fi 8 a whole lot closer to Mobile 5.5/6G, albeit in a very limited domain.

The same advances in digital signal processing that have been fundamental to the performance improvements in 5G and WiFi have also been deployed in Hybrid Fibre Coax (HFC) deployments, with DOCSIS 4.0 using 2GHz of bandwidth and 4096 QAM modulation, with a capacity of 10Gbps downstream and 6GHbps upstream. HFC networks are very power intensive due to the amount of equipment in the outside network, including amplifiers and nodes. While the power efficiency of HFC systems has doubled in the past five years, fibre deployments consume less than half the power for comparable capacity. Fibre networks have a construction cost of USD \$59 per km using underground conduits, and one third of that cost using aerial fibre. XGS-PON splitters can deliver 10Gps per port.

I found the summary table in this presentation particularly interesting:

		17	Technology Angelian		
	Channel Capacity	Speed & Latency	Power Density & Consumption	Adoption, Maturity EOL	
	64-QAM (6 bits/hertz)	Pluggables at 800G	 800G: ~25 mW per Gb/s 	Underlying physics provide plenty	
Fiber	C+L band offers up to 12 THz of spectrum	Transponders at 1.6T+	Watts per bit decreases by ~25% for each generation engineering challenge to increase speeds while improving heat dissipation in smaller packages.		
	 4096-QAM (12 bits/hertz) 	10 Gb/s down, 6 Gb/s up	 Coax line amplifiers and set- top boxes require significant power, making it uncompetitive against FTTH or FWA 	HFC is a sunset technology surpassed by fiber/FTTH in key areas – similar to twist-pair copper.	
HFC	 Approaching the limit for coaxial cable 				
	 4096-QAM (12 bits/hertz), 	46 Gb/sLatency depends on network	Relies on low-power and sleep modes to reduce power and extend battery life	Wi-Fi is a mature local area technology with mass adoption, but still evolving with new features, capabilities, and speeds.	
Wi-Fi 7	no FEC				
	6GHz band just added	design & traffic engineering			
	1024-QAM (10 bits/hertz)	 20 Gb/s down, 10 Gb/s up 	 From 4G to 5G: watts per bit decreased ~90% From 5G to 6G: another 90% reduction is targeted 	5G is a mature wide area technology with mass adoption, but still evolving with new features, capabilities, and speeds.	
5G	plus FEC (up to 10-12 dB improvement)	 5ms latency target for URLLC 			
3G	New spectrum added	Latency depends on network			
	periodically	design & traffic engineering	roddollori io targotod		

Figure 2 – Assessment of Access Technologies – From NANOG 95 Presentation on 5G and WiFi

The future is, as usual, somewhat unclear. The mobile cellular markets are looking to the opening up of millimetre wavelength spectrum (92 – 300Ghz), labelled as part of 6G, however these elevated frequency radio signals have almost no penetrative ability, so such a service would be a constrained short range line-of-sight scenario, and the economic model that can sustain the higher network costs with the higher base station density is very unclear. WiFi 8 does not represent any fundamental increases in speed, but improvements in power management may extend battery life in low-power devices. HFC is very much at a technology end-of-life in most markets, with little in the way of further enhancements anticipated. Current Fibre systems can support 800G with a power budget of 25mW per Gbps. Smaller electronics need to be balanced again heat dissipation in the transponders.

Radio is generically a shared space, and the available spectrum is limited. As we shift into higher frequences we gain in available capacity, but lose out in terms of penetration, and therefore impaired utility. Cable-guided signals are not so limited, but this greater capability comes at a higher capital cost of installation and limited flexibility once its installed.

5G, Fiber, and Wifi. The IP Takeover is (Almost) Complete, Len Bosack, XKL

BGP Route Leaks

Route leaks are challenging to detect. A "leak" is a violation of routing policy where routes are propagated beyond its intended scope. It's not BGP acting incorrectly. BGP itself is not the problem. The issue is normally a configuration mishap where the operator-determined controls that are normally placed on BGP route propagation fail to act as intended (see RFC7908 for an extended exposition on Route Leaks). A common leak is a multi-homed stub network advertising one provider's routes to the other (Figure 3). Not only is this cross traffic essentially unfunded, the traffic is rerouted along paths that are inadequately dimensioned for the volume of traffic. Congestion ensues and performance is compromised.

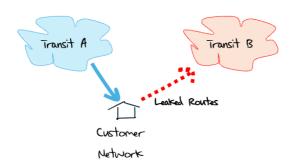


Figure 3 – Stub Route Leak

It is often assumed that each BGP *Autonomous System* (AS) (or network) has a single external routing policy that applies to all of its advertised prefixes. A neighbouring network is either a provider, a customer or a peer, a relationship which determines the default routing policy. Routes learned from customers are propagated to all other customers, peers and providers, while routes learned from providers and peers are propagated only to customers.

However, some networks, including Cloudflare, have a more complex arrangement that defines different routing policies for different prefixes. An adjacent network might be a peer for an anycast prefix, while it is a provider for a unicast prefix. Thankfully, this is not a common situation, as it would make the task of identification (and remediation) of route leaks extremely complex. The standard tools for route leak detection relies on assuming a single policy per AS, and using various

inference tools, assigning each visible pairwise AS adjacency a role (customer to provider, provider to customer, or peer to peer). We then look at AS Paths and look to see if there is a policy violation (such as a sequence of provider-to-customer-to-provider relationships) for any prefix. But if you're Cloudflare the problem is that policies vary between unicast and anycast prefixes and vary by location as well.

Cloudflare uses a conventional approach of passing BGP updates through a route leak detector that applies both inferred inter-AS relationships and some known truths about prefixes. They use Route Views and RIPE RIS as primary sources, and combine data from CAIDA/UCSD AS relationship data and open source BGPKIT AS relationship data. This can provide a confidence score for inferred AS relationships. In Cloudflare's case they also add additional constraints of known locations, AS's that are present at that location and known AS roles to ground the inference system in ground truth where available.

The next step is to filter out known route leaks. A simple and effective approach is called "Peerlock-lite", which states informally that no customer of yours should be sending you a route that contains a Tier-1 AS in its path. If you have a list of these Tier-1 ASN's, then the rule is readily applied to a route feed from a customer. A similar rule applies to non-Tier-1 AS peers.

Another commonly used approach is to set a maximum prefix count for each adjacent AS. The source of truth here is often PeeringDB entries. If the number of announced prefixes exceeds this limit, then the BGP session is shutdown. There are also AS-SET constructors in route registries that are used to construct route filters, but there have been a number of commentaries on how AS-SETs have been used in completely nonsensical ways, and it's a case of "use with extreme care!".

There is some hope in the RPKI construct of AS Provider Attestations (ASPA), but I'm of the view that this a somewhat forlorn hope. The ASPA construct is an overloading of partial policy and partial topology information, and frankly there are easier approaches that can be used if you split topology and policy issues. One such policy-only approach is described RFC 9234 and the Only To Customer (OTC) attribute (which is similar to the earlier NOPEER attribute). OTC is supported in a number of implementations of BGP and should applied to peer AS adjacencies.

Route leaks have been around for about as long as BGP itself. There is still a question for me as to whether routing policies are intended to globally visible to enable leak detection and filtering at a distance or should we look more closely at the application of routing policies that are locally visible and locally applied? The latter approach is significantly easier, and probably far more accurate in stopping unintended route propagation.

Fighting Route Leaks at Cloudflare - Bryton Herdes, Cloudflare

Networking for High Frequency Trading

In the world of the high frequency trader, speed is everything. There is a distinct advantage in being the first to know, and the first to lodge a trade into a stock exchange, and when building communications networks to support trading, then speed is a vital consideration. In seeking the fastest possible communications, the issue is to identify the causes to delay and eliminate them.

Delay comes in many forms. There is network and host buffering delay, where a packet is placed into a local queue before it is placed onto the transmission medium. There is the serialisation delay where larger packets and lower bandwidth paths take more time to deliver the complete packet. There are intermediate switching delays, where cut-through switches can determine the forwarding

path as soon as the packet header is received, instead of waiting to assemble the entire packet before passing into the switching system. There are MPLS systems where the forwarding decision is based on the label wrapper rather than the full packet header, making a cut-through function even faster. Forward Error Correction can also add further packet processing delays. There are also propagation delays. While radio systems can propagate a signal at speeds close to the speed of light, there are attendant coding and decoding delay factors. Copper is slower, operating at 0.75 of the speed of light, and fibre cable is slower, at 0.65 the speed of light. Even in fibre, there are subtle factors that have a bearing on delay. The light path through a section of multi-mode cable is longer (and slower) than the path through the same length of single mode cable due to the use of internal reflection in multi-mode cable. More recently, there is hollow core fibre, where the light signal is passed through an internal hollow core. The principle is the same as single mode fibre and its use of internal reflection, but with an open core rather than a silica core. It brings the propagation speed back to close to the speed of light, a 50% speed improvement over glass fibre.

There are also path length factors. Shorter is faster, and faster is better. It was reported that a significant part of the business case of the trans-Atlantic Hibernia Express cable was a 6ms improvement in the delay between London and New York compared to existing cables. Circuitous cable paths that avoid problematic surface features may provide greater resilience in the long run, but shorter, riskier paths are far more attractive to the high-speed traders.

There are encryption and decryption delays. Is it worth paying a delay penalty of the additional microseconds, or potentially milliseconds, to encrypt (and decrypt) a communication? From the perspective of the high-speed trader these trade-offs have an obvious answer, where improved speed is the paramount consideration every time.

Then there are various protocol related tricks. One hack I thought was particularly cute was to exploit packet fragmentation by sending in advance all but one byte of a number of packets, each representing a potential trade, and then sending the small trailing packet fragment for the intended packet when the trading decision has been made.

With the quest for minimising delay there is also a quest for higher precision time. The NTP protocol is widely used, but it has a 1 – 10ms accuracy. Alternatives are the Precision Time Protocol (IEEE 1588) that can offer a local clock accuracy of up to 5 nanoseconds, and highly accurate pulse-per-second systems that provide pulse accuracy at a level of microseconds or greater.

Normally this area of precision time and extreme techniques to reduce delays in a system is of interest only to a small band of physicists, computer scientists and high frequency stock traders, but this story has even prompted a film, The Hummingbird Project, from 2019.

Networking at the Speed of Light - Jeremy Fillibean, Jump Trading

Hardware Fakes!

Network equipment depends on a complex global supply chain spanning design, production, and assembly, both at the macro level of the physical units, and the microscopic level of the integrated circuits used in this equipment. We've seen concerns raised over counterfeit router and switch components, and this have evolved into broader concerns over supply chain integrity. This form of compromise of supply chains with counterfeit components was the domain of sophisticated nation-state actors who had access to both resources and production capability, but such attacks are increasingly accessible to smaller groups or individuals, as seen in cases of criminal counterfeit consumer electronics.

How can you detect a fake chip? For this team at Purdue University it was a case of throwing all kinds of visual and chemical analysers at a selection of Raspberry Pi chips to see if there were detectable differences. This included microscopy, last profilometer, X-ray microscopy and spectral analysis, and for chemical analysis they used X-ray fluorescence, Laser breakdown spectroscopy and X-ray photoeletron spectroscopy.

Their tests were certainly capable of identifying that some of the tested chips were from different manufacturers, and if the knowledge of which chip manufacturers were genuine was also available it would be possible to isolate the rogue chips.

Tests for Counterfeit Integrated Circuit Detection - Sean Klein - Purdue University

Radiation Shielding

One would normally expect a presentation on this topic at a nuclear science conference, but the current interest in communications in outer space has prompted a search for approaches to shield microelectronics from solar radiation. It's an area of engineering compromise, in that the most protective cladding is lead, which is also one the heaviest material, and while paper can absorb alpha particles, it's useless for beta and gamma radiation. You need material that is lightweight, blocks the transmission of gamma radiation, and is thermally conductive. No single material optimises in all these characteristics, so a layered approach is generally used (Figure 4).

Layered shielding design

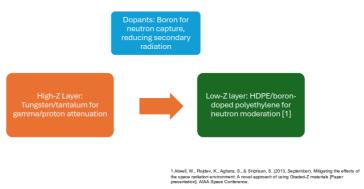


Figure 4 – Layered shielding Design

Preliminary results suggest that combining high atomic-number materials (e.g., tungsten) to shield gamma radiation with complementary layers containing boron for neutron moderation can reduce the total shielding mass, compared to previously published shield designs. These findings offer an alternative solution for designing space-capable transceivers to allow for high-speed data transmission at low bit error rates. By evaluating an off the shelf component for space applications, this research presents a cost-effective option that may help reduce testing costs and accelerate qualification time for new parts, which is greatly needed in the growing space industry today.

A testing framework for Microelectronics – Sean Klein, Purdue University

IPv6 War Stories

It is commonly thought that enterprise networks are lagging in the world of IPv6 deployment, so it's refreshing to see a presentation from a large-scale enterprise provider on their experience in running an IPv6-only enterprise-wide WiFi network. Admittedly in this case it's a very tech-savvy enterprise, namely Meta. It's also a large WiFi deployment, with some 100,000 wireless clients in

90 cities, served by 28 data centres, with 40,000 wireless access points and 400 wireless controllers and equipment and associated network management systems sourced from two vendors.

Their rationale was that they were running out of room in the two IPv4 private use prefixes they were using for the corporate network by 2018 and the prospect of using an IPv6 only network where each subnet was a complete /64 removed the consideration of constant adjustment of subnet assignments across all of their sites to respond to demand growth.

Their migration started with the first vendor's WiFi equipment, migrating these networks to IPv6-only across 2018 and 2019, and once that was complete turning their attention to the second vendor's equipment in 2020.

Wireless Access Points (APs) made use of DHCPv6 Option 52 to perform controller discovery, which worked as intended. Hosts presented some challenges as they cannot immediately identity the characteristics of the local network at boot time and commonly configure their interfaces with both IPv4 and IPv6 addresses as part of the boot process. The underlying issue is a byproduct of IPv6's origins in design-by-committee, where multiple solutions to a situation have emerged. And host systems may not support all options. In this case the issue is host configuration where there is Stateless Auto-address Configuration (SLAAC) and DHCPv6 for stateful assignment from DHCP controllers. Android systems don't support DHCPv6, while Apple iOS devices use SLAAC as the primary address assignment function and use DHCPv6 for additional information (such as DNS resolver location).

IPv6 makes extensive use of multicast, which can be problematical on large WiFI networks as multicast is handled in the same way as an all-stations broadcast. With WiFi subnets with large client counts the broadcast traffic loads can be significant. Some effort is made to limit the airtime volume, and neighbour solicitation is performed through the controller rather than by broadcast. They also experimented with the use of DHCP Option 108, which is an instruction from a DHCP server to a client that directs it to disable its IPv4 stack and switch to IPv6-only mode. While this worked on their employee network where they had greater control over the set of devices and device behaviours, it was a failure on their guest network, where they encountered devices that had already disabled IPv6!

I was struck by one of the conclusions in this presentation, namely that "Doing IPv6-only for clients is tricky if you don't have full control over your client base. Even so, we've run into weird issues and dependencies, especially when going from one major OS version to another." And of course there is the usual bugbear of IPv6 fragmentation handling where explicit ACL entries needed to be added to permit the passing of IMCPv6 Packet Too Big messages and IPv6 packets with the IP Packet Fragmentation Extension Header.

Large Scale Enterprise WiFi using IPv6 – Steve Tam, Meta

IPv4 War Stories

These days most recent IPv4 deployments in the public Internet rely on NATs, and in most parts of the Internet there is still sufficient residual IPv4 use in the online provision of ghoods and services to preclude an IPv6-only offering. AS a common shared piece of infrastructure, NATs work most efficiently when they are large. A single NAT, working with a single pool of IPv4 addresses will operate more efficiently than a collection of NATs with the address pool divided up between them. In a large-scale network this results in an objective to bring the internal client traffic into a large-scale NAT cluster. You can't just locate NATs at the physical exterior portals of your network, but you need to create bidirectional internal paths between customers and the

NAT cluster and bidirectional paths from the exterior portals to the same NAT cluster. Simple destination-based hop-by-hop routing frameworks find this challenging, and we have resorted to a more complex overlay (and its own terminology) with Pseudowire Headends (PWHE) with Policy-Based Routing (PBR), and Virtual Routing and Forwarding (VRF) router configurations to segregate traffic steams into distinct routing contexts.

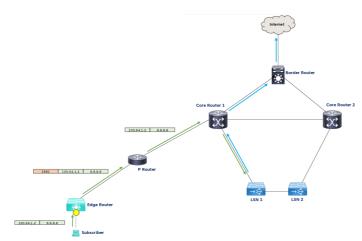


Figure 5 - Using Segment Routing to Access Core Nats

This presentation explored a different approach to this challenge, using Segment Routing. The carrier NATs are directly connected to the internal core routers, and these routers form a single segment using a shared anycast loopback. PBR in the core routers allows outbound traffic from clients to be directed to the internal NAT, while translated outbound traffic from the NAT (using the same destination address) to be directed to the network's border router. Inbound traffic is similarly directed from the border router to the NAT cluster.

Personally, I'm not sure if swapping one form of overlay complexity, Virtual Routing and Forwarding for another, in the form of Segment Routing, makes the scenario any less complex.

Large Scale NAT Routing To Centralized Cluster over SR – Renee Santiago, Ezee Fibre

High Performance SSH

The Secure Shell application, SSH, has a well-deserved reputation for being slow. It delivers a authenticated and secured access channel, which today is highly desirable, and its highly available on many platforms, but it can be painfully slow. Painful to the point of being actively discouraged! Why should adding encryption to a transport channel exact such a hefty performance penalty?

It's slow because it has an application layer receive buffer of a maximum 2Mb in size. This makes the effective window of a SSH connection the minimum of this 2MB buffer and the underlying TCP connection. SSHv2 is a multiplexed protocol where a single underlying TCP connection carries multiple simultaneous data channels, with each channel using its own flow control. SFTP has additional flow controls imposed on top of the SSH control. The effective receive buffer for an SSH file transfer is the minimum of these three limits (and yes, the maximum performance is limited to 1 effective receive buffer per round trip time). The result is that in small RTT networks SSH performs well, but this drops off as the RTT increases.

Chris' approach to improve SSH performance was to resize the internal SSH buffers to the same size as the TCP buffers. Encryption is not a significant performance penalty so lifting the receive buffer size in SSH lifts the performance of the protocol to a speed that's comparable to TCP on

the same network path. HPN-SSH follows OpenSSH, and as well as lifting the receive buffer size HPN-SSH uses parallelised cipher operation, adds session resumption with SCP. Its compatible with any SSHv2 client or server implementation. The SSH bottleneck is on the receiver, not the sender, so an HPN-SSH client extract greater performance from an existing SSH server.

His approach uses a call to interrogate the underlying TCP socket to return its TCP window size and then uses this value to force the SSH channel buffer to grow to the same value, and this value is sent to the sender as receive-available space, which directs the sender to send this amount of data inside a single RTT.

It might sound simple, but Chris observed that he has been working in this for 20 years, and its more complicated than it might initially appear. The OpenSSH call graph is reproduced from Chris' presentation – its complicated! (Figure 6)

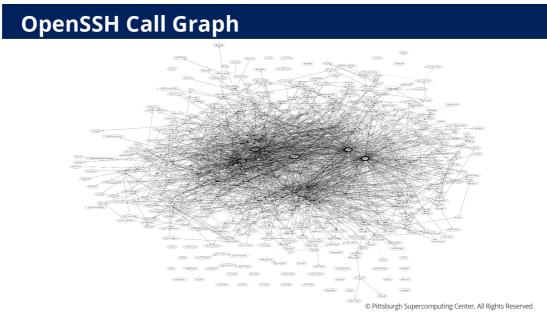


Figure 6 – OpenSSH internal call graph – from HPN-SSH Presentation

After removing the receive buffer bottleneck other bottlenecks are exposed. Ciphers are processed in a serial manner, completing each SSH datagram before moving on to the next. Parallelising ciphers is a lot more challenging than it sounds in OpenSSH, as the cipher implementations are highly customised, and translating these ciphers to a threaded implementation is significant exercise. Their approach was to extract the "raw keystream" data into distinct data caches and then perform the XOR function with the data blocks in parallel. This has resulted in a dramatic performance improvement for HPN-SSH.

There is also the question of whether authentication and channel encryption need to go together. Yes, encryption is needed to secure authentication, but for non-sensitive data the data transfer then shifts to a NONE cipher, which can achieve higher data transfer performance. They are also working on MultiPath-TCP as a runtime option which can allow for network roaming and parallel path use.

In the quest for higher speed, it appears that it's more stable to use a collection of individual steams working in parallel. For example, a single 10Gpbs transfer is less stable than 10 parallel 1Gbps transfers. They have developed a tool to run on top of HPN-SSH, *parsyncfp2*, a parallel version of

the *rsync* tool, that will achieve more than 20Gbps sustained over a high capacity high speed infrastructure.

This work can be found at https://www.psc.edu/hpn-ssh-home/

And yes, SSH over QUIC is coming in SSHv3, and an HPN version of this is also in the works!

HPN-SSH - Chris Rapier, Pittsburgh Supercomputing Centre

From the Archives

It you want to look for a great example of large-scale design by committee and the insane complexities that ensue, then perhaps you should look no further than the US telephone system of the mid-1980's. In 1984 the AT&T monopoly, established in 1913 with the Kingsbury Commitment between AT&T and the US Government, came to a partial end, with the breakup of the single company onto 9 Regional Bell Operating Companies and a single long-distance carrier. Within this was the central concept of a LATA, or Local Access and Transport Area (LATA). These are geographic areas where phone calls between parties in the same LATA are managed by the Local Exchange Carrier (LEC) and map be either a local call or a regional toll call. LATAs translated to the phone number address plan, where the initial digit designated the LATA. The US State system also intruded into this structure, so there were various forms of call types each with its own tariff and each with its own body providing oversight. There were calls within the same LATA and same State with oversight from the State's Public Utilities Commission (PUC), and calls within the same LATA but between different States, with oversight from the FCC, calls between LATAs, but with within the same State, which were handled by the Inter Exchange Carrier (IXC, or long distance carrier), with oversight by the PUC, and calls between LATAs across State boundaries, handled by an IXC with oversight from the Federal Communications Commission (FCC). The system had many built-in anomalies. The State PUCs were often a less effective market regulator than the FCC, leading to some long-distance intra-State calls costing more than inter-State calls. This system of local monopolies in the LATAs by the LECs was opened to competitive entry with the Telecommunications Act of 1996 that introduced the Competitive Local Exchange Carrier (CLEC).

In world of conventional telephony, based on Time Division Multiplexing, interconnects between carrier networks were the subject of regulatory constraint. It weas mandatory for an ILEC (one of the "original" LECS to interconnect with a CLEC upon request. However, within the ILEC, CLEC and IXC structure call routing is also highly constrained, and LECs must use an IXC when the call is made across LATAs (Figure 7).

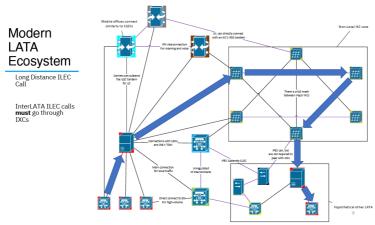


Figure 7 – Long Distance Call in the US TDM Phone Network

The IP network has had a profound effect on the PSTN in the US. Not just in the technologies of carriage of voice over IP networks and switching calls, but in this structure of CLECs and IXCs. There are no regulations as to how CLECs handle Long Distance calls using IP carriage, so the sale Long Distance call can be routed directly between CLECs using IP interconnection (Figure 8).

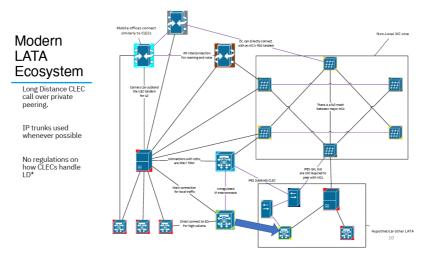


Figure 8 – Long Distance Call in the US Phone System using IP interconnect

When you add number portability to the mix, the phone number address plan has to carry the burden. A phone number needs to be mapped to a Local Routing Number (or LRN) which is a call routing number code that is used in path call establishment though the morass of LECS, CLECS and IXCs. The database of these LRNs is operated manually, and can best be envisaged as a collection of CSV files that are loaded into switches to guide call routing. On the Internet an update in BGP propagates across the entire network in an average of 70 seconds. A new number block entry in the LRN table takes some 60 days to take effect!

The Internet has often been accused of being acronym dense, and there is some truth to these accusations, but I'm still puzzling over this classic from the phone industry: "An AOCN loads data to the BIRRDS database, which feeds the LERG, which, in turn, maps thousands blocks and CO codes to CLLI codes, used in a CSV format to manually build routing entries on LEC switches."

That all this works at all is a miracle!

Journey to the Centre of the PSTN – Enzo Damato

From the Future

Much has been said about so-called quantum computers in recent years. Quantum physics encompasses the concept of the wave/particle duality and replaces determinism with probabilistic functions that contain random elements, include the role of an observer and uncertainty, also folds in superposition, interference and entanglement. Classical physics describes the behaviour of the physical universe at a large scale, while quantum physics describes this behaviour at atomic and subatomic scales. Quantum-scale objects (are they actually particles or just wave functions or probability?) exist in multiple states at the same time as a probabilistic wave, termed a *superposition*. These objects will remain in a superposition of probabilistic states until they are measured, at which point the wave function collapses into a definite, classical state.

In quantum computing the *Qubit* is the fundamental unit of quantum information. It can be implemented by any two-state quantum system which can be in a state of superposition. Qubits can be entangled with each other, allowing certain calculations to be performed exponentially faster than classical computers. Two of these calculations, solving discrete logarithms over finite fields and elliptical curves, and factoring large numbers into primes, are important to today's digital security, as the first is used by Diffie-Hellman key exchange and the second is the basis of the RSA cryptosystem. In classical computer terms it is possible to use key sizes that make computing a "solution" to these problems computational infeasible. In 1994 Dr Peter Shor devised a quantum algorithm that solves both of these problems in short finite time on a large-scale quantum computer.

Qubits can be stored as electron spin, photon polarization, electric current in a superconducting circuit where the current can flow clockwise and counterclockwise at the same time, or two hyperfine atomic ground states or trapped ions in a vacuum. All physical qubit implementations are inherently unstable and noisy, and they are prone to decoherence where all of the quantum information has been lost. Quantum noise can be thermal noise, electromagnetic noise and vibration. Like Forward Error Correction Codes in classical computing, a *logical qubit* is a combination of physical qubits using quantum error correction codes, allowing an error in a physical qubit to be corrected by other qubits.

One qubit can represent 2 states at the same time, 2 qubits can represent 4 states, and more generally *n* entangled qubits can represent 2ⁿ states at the same time. A operation on one entagled qubit instantly adjusts the values of all entangled qubits. The effort is to build quantum computers with a large number of entangled qubits. *Quantum logic gates* are components of quantum circuits to perform calculations on qubits by altering the probabilities of measuring a one or a zero and the relative phase between the qubits interfering waves. These logic gates are imposed on the qubits by way of different electromagnetic pulses. Quantum logic gates have high error rates, which limits the circuit depth which limits algorithm complexity. A quantum algorithm is never run just once, but run many times to produce a probability distribution where the probability of the "correct" answer as a wave probability function is significantly higher than all other possible outcomes.

We're up to a quantum computer with 24 qubits. It's going to take a minimum of 2,098 logical qubits to run Shor's algorithm to break a RSA-2048 but key with a stunning $6x10^{14}$ gate operations.

It seems like a truly capable quantum computer is a long time off, but perhaps this is an illusory comfort. In a three-month window at the start of 2025 we saw:

- Nov 2024: Microsoft/Atom's QPU with 24 entangled logical qubits.
- Dec 2024: Google's Willow QPU with 105 logical qubits and a 49:1 physical to logical qubit ratio
- Feb 2025: Microsoft's Majorana 1 QPU with 8 error resistant physical qubits that make up 8 "topological" logical qubits.
- Feb 2025: Amazon's Ocelot QPU with 5 error resistant, logical "cat" qubits.

Authentication is a "here and now" problem, and the case to introduce crypto algorithms for authentication that present challenges even to quantum computers (so-called Post-Quantum Cryptography (PQC)) is still not an overwhelmingly strong one today. This includes authenticity in the DNS (DNSSEC) and authenticity in the web (the Web PKI). To play it safe, don't use extended lifetimes with cryptographic credentials. Channel encryption is a different matter, and if a definition of "secrecy" includes maintain the integrity of the secret for the next 20 years, then the likelihood of cryptographically capable quantum computers being available in that period is

generally considered to be high. That means that if what you want to say needs to be a secret for the next twenty years, then you need to use PQC right now!

Basics of Quantum Computing and the Threat to Asymmetric Encryption – William Nelson, Third Federal Savings and Loan

What Do You Have?

The databases that associate domain names and IP numbers with the names of the entities who control them has had a varied history. At the outset we thought it was appropriate to operate a directory, similar to a telephone directory, that allowed a querier to use a domain name, an IP address or an Autonomous System number. We operated this using a simple query protocol, called *whois* where you provided a query (Domain Name, IP address, AS Number) which looked up a registry and it returned some details. *whois* still works well – it queries the IANA server, which refers it to the relevant RIR database which returns a block of information relating to the holder of these addresses. For domain names it's not working so well because the use of directory proxies to occlude the true domain name holder is extremely common.

But let's return to number resources and AS numbers in particular. While *whois* does a decent job in returning the registration details for an AS number, we can't ask slightly different questions, such as: "List all the AS numbers controlled by an organisation?" or "Which other AS Numbers have been registered by the same organisation? Or even: "Which IP addresses are registered to the same organisation what controls this AS number?"

These questions relate to establishing relationships between individual registration entries in the databases operated by the Regional Internet Registries, and such relationships are not made explicit in the publicly available registry data, either in responses to individual *whois* queries or by processing the daily database snapshots published by the RIRs.

However, if you take these database snapshots (which contain organisation names) and combine this data with entries contained in the Peering Database, and then use these organisation names as search keys to web crawlers and then pass this through some LLM model to distil out the organisation name, you can then construct your own organisational entity relationship as an overlay to RIR database. Which is what a research group at Virginia Tech has done with the tool asint (https://asint.netsecurelab.org/).

There is little doubt that the key to securing funding for your research program these days is to use the key terms "AI" or "Quantum", or preferably both, in your research proposal. But sometimes this is a rather expensive distraction, and there are far simpler approaches.

If you want to see the relationship between resource holders and the resources that they control in the RIRs' data records, then there is an item of public information that can lead you straight to the answer without a hint of AI! It's the daily extended stats file published by the Number Resource Organisation. As the file description indicates: "[Column 8 of this report] is an in-series identifier which uniquely identifies a single organisation, an Internet number resource holder. All records in the file with the same opaque-id are registered to the same resource holder."

Never underestimate the awesome power of *grep*. To list all the IP number resources used by APNIC Labs I can start with the AS Number 131072 and use that to find all the Labs' address resources as follows:

```
$ curl https://ftp.ripe.net/pub/stats/ripencc/nro-stats/latest/nro-delegated-stats >stats
$ grep `egrep "asn\|131072" nro-stats | cut -d '|' -f 8` stats
apnic|AU|asn|9838|1|20100203|assigned|A91872ED|e-stats
apnic|AU|asn|24021|1|20080326|assigned|A91872ED|e-stats
apnic|JP|asn|38610|1|20070716|assigned|A91872ED|e-stats
apnic|AU|asn|131072|1|20070117|assigned|A91872ED|e-stats
apnic|AU|asn|131074|1|20070115|assigned|A91872ED|e-stats
apnic|AU|ipv4|1.0.0.0|256|20110811|assigned|A91872ED|e-stats
apnic|AU|ipv4|1.1.1.0|256|20110811|assigned|A91872ED|e-stats
apnic|AU|ipv4|103.0.0.0|65536|20110405|assigned|A91872ED|e-stats
apnic|AU|ipv4|103.10.232.0|256|20110803|assigned|A91872ED|e-stats
apnic|AU|ipv4|203.10.60.0|1024|19941118|assigned|A91872ED|e-stats
apnic|JP|ipv4|203.133.248.0|1024|20070522|assigned|A91872ED|e-stats
apnic|AU|ipv4|203.147.108.0|512|20080326|assigned|A91872ED|e-stats
apnic|AU|ipv6|2401:2000::|32|20070619|assigned|A91872ED|e-stats
apnic|AU|ipv6|2401:2001::|32|20110803|assigned|A91872ED|e-stats
apnic|AU|ipv6|2408:2000::|24|20191106|assigned|A91872ED|e-stats
```

There! Now that wasn't so hard was it?

AS-to-Organization Mapping at Internet Scale – Tijay Chung, Virgina Tech

Where are You?

Geolocation on the Internet is somewhat messy. It's hard enough to locate IP addresses into countries, but when you want to locate into cities, districts, or even street addresses things get even messier. It's also a useful question to ask as to the use case of this geolocation information. Street addresses are fine for a postal network, but frankly what a Content Distribution Network wants to know is limited to the country, to figure out if there are applicable content access constraints to apply, and the network-relative distance between the client and the candidate content server points.

As I observed already, the current key to securing funding for your research program these days is to use the key terms "AI" or "Quantum" or preferably both in your research proposal. So, when you have a proposal to use the reverse PTR records in the DNS and apply an LLM to these DNS names, then the research looks a whole lot more attractive!

The project presented here applies a form of machine learning to associate a host name, as contained in the PTR records of the DNS reverse zone, with a city/state/country location.

Oddly enough, this works quite well! Many network operators embed some structured textual tokens in the DNS names of their equipment, and many then use the same names when populating the reverse space. They can be airport codes, abbreviated city names, suburb names, even street addresses in some cases.

This project has its web page - https://thealeph.ai/ - if you want to play with their data.

Decoding DNS PTR Records with Large Language Models – Kedar Thiagarajan, Northwestern

Open BGP

These days we have numerous choices when looking for an open source implementation of a BGP daemin. They are not just useful as a routing daemon used in open source routers, but as route reflectors, looking glasses, routing analysers, DOS mitigators, SDN controllers and more. There are a number of available BGP implementations in the open source world, including the venerable Quagga, FRRouting, goBGP, Bird, OpenBGPD, RustyBGP, ExaBNGP and holo-routing. How "good" are these BGP implementations? What are their strengths and weaknesses? This presentation looked at these 8 BGP implementations using a number of criteria relating to their use in an operational environment.

- Quagga was once the major open source BGP tool, but interest in Quagga has waned in recent years and the last commit was 8 years ago.
- FRRouting is a fork of Zebra, the BGP component of Quagga, and comes with an active contributor community. It is implementation is on C and Python and is generally perceived as the successor of Zebra.
- goBGP is a 10 year old project of BGP implemented in Go, with contributors generally drawn from the Japanese community.
- Bird was developed with support from the Czech CZ.NIC, and has been used extensively for the past 25 years, and is still actively supported.
- OpenBGPD was originally developed for Open BSD, and is still actively supported, with contributors drawn from the German community.
- RustyBGP is a Rust implementation of BGP, originally implemented some 5 years ago. It appears to be stable, in that the last contribution was a couple of years, ago.
- ExaBGP is, as its website says, ExaBGP is a BGP implementation designed to enable network engineers and developers to interact with BGP networks using simple Python scripts or external programs via a simple API. It appears to be supported with a UK community.
- Holo is another Rust-based BGP implementation.

Admittedly this exercise can be very subjective, but Claus' summary of the relative capabilities of these BGP implementations is shown in Figure 9.

Figure 9 – Assessment of BGP implementations

However, these implementations each have different strengths and weaknesses, and a summation of the relative merits of each BGP implementation may be more helpful:

- If you really like working in Python, then ExaBGP is a clear choice
- If you are looking for an implementation that is fast to load and runs with a small footprint, contains DDoS mitigation measures and supports flowspec, then Bird is a clear choice.
- A more conservative option, with easy support and an active community are features of FRR, GoBGP & Bird
- If you want use gRPC to inject and collect updates, then its GoBGP and Holo
- If you want a C implementation, then Bird and OpenBGP
- And if you are looking to build your own router then FRR, Holo and Bird might make sense for you.

Clash of the BGP Titans: Which Open Source Routes It Best? - Claus Rugani Töpke, Telcomanager

NANOG 95

This is a small selection of the material presented at NANOG 95 in October 2025. There were also presentations on ASIC design in high speed routers, Routing security, network measurement tools, QUIC, among many others.

I had a concern at one point that NANOG had drifted a bit too far into the space of sales and marketing, but I am really pleased to observe that the NANOG Program Committee has done a truly excellent job of turning this perception around and NANOG 95 was a good example of producing a three-day meeting that has valuable and relevant content for almost anyone working in this industry in the general areas of network operations and research. And the social contacts you will make at these meetings are every bit as helpful as the content! Yes, it's a tough call, but I would say that these days it's back among the best network operator meetings on the global calendar!

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network Information Centre.

Author

Geoff Huston AM, M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving the Asia Pacific region.

www.potaroo.net