
The ISP Column
A column on various things Internet

July 2025

Geoff Huston

Triggering QUIC

Last month, in June 2025, I reported on our progress with the adoption of the QUIC transport
protocol. Here I would like to look at the mechanisms used to trigger a client application (typically
a browser) to connect to the server using the QUIC transport protocol.

A conventional way to introduce a new transport service is to let applications initiate a connection
using the new service. If the connection is unresponsive, then the application can back off to use
the old transport service. In the case of QUIC, this would be a QUIC connection request made
via a UDP packet directed to the server’s port 443, and if the client doesn’t receive a response after
some timeout interval it will fall back to TCP (and TLS) by sending a SYN packet to the server’s
TCP destination port 443.

This connection process can be slow, particularly if the server or the intervening network does not
support QUIC transport. As the client isn’t necessarily aware of the round-trip time to the server,
the client would normally err on the side of caution and wait at this juncture for at least one or
two seconds before abandoning the connection attempt. QUIC was designed to increase the
responsiveness of services over the network, not to introduce new sources of delay. A client could
could use a smaller timeout interval, but this would be prone to false signals, where the client falls
back to TCP unnecessarily. A client could set up a “connection race”, sending a QUIC connection
packet and a TCP SYN packet, and follow through by completing the connection with the first
protocol to respond, but this would impose additional load on the server as it is forced to set up
two connection contexts for every client connection.

One way to establish if a QUIC connection is viable without paying a time penalty is for the server
to signal the capability to use QUIC to the client in the first (TCP/TLS) connection, allowing the
client to initiate a QUIC session on the second and subsequent connections. This second-use
approach is defined in an Internet standard for Alternative Services (RFC 7838), which is a means to
list alternative ways to access the same resources, using the HTTP header fields.

For example,

alt-svc: quic=":443"; ma=2592000;

This indicates that the same material is accessible using QUIC over port 443. The “ma” field is
the time to keep this information cached in the local client (in seconds), which in this case is 30
days. The semantics of this header is that this is not an unconditional directive, and the client is
free to ignore this information and continue with the existing TCP/TLS protocol choice.

However, it’s not quite as simple as it may sound. The HTTP protocol introduced the concept of
session persistence in HTTP/1.0 so that the underlying transport session is kept open for some

https://www.potaroo.net/ispcol/2025-06/quic.html
https://www.rfc-editor.org/rfc/rfc7838.html
https://www.ietf.org/archive/id/draft-duke-httpbis-quic-version-alt-svc-03.html

 Page 2

keepalive interval, allowing reuse of the TCP and TLS state without the overheads of establishing a
new session. The implication for the second-use signaling approach was that the original HTTP
session was kept open across multiple requests, indefinitely deferring any subsequent connection
that would use the QUIC transport protocol.

This form of triggering the use of QUIC has been bundled into the Chrome browser for more
than a decade.

When Apple introduced support for QUIC in its Safari browser they used a different trigger,
namely the DNS. The IETF has introduced the SVCB record in the DNS, allowing a number of
connection profile items to be stashed in the DNS (RFC 9460). SVCB records facilitate the
discovery of alternative endpoints for a service, allowing clients to choose the most suitable
endpoint based on their needs and capabilities. There is the HTTPS DNS record, which is the
SVCB record for use for HTTPS service connections. Relevant here is the Application-Layer
Protocol Negotiation (ALPN) field where the token h3 denotes a server capability to support
QUIC (HTTP/3) (RFC 9114).

Safari browsers that support the use of QUIC will query the DNS for an HTTPS record, and if
there is an alpn field that specifies h3 in this record, then the browser can immediately proceed
with opening a QUIC connection to the server, based on the knowledge that the server has
indicated that it can support QUIC connections.

This form of triggering the use of QUIC has been bundled into the Safari browser for more than
a year.

This means that we have two triggers for the use of QUIC, one as a “second use” in-band
alternative service directive imbedded in the HTTPS protocol exchange, predominately used by
the Chrome browser, and the DNS HTTPS trigger, predominately used by the Safari browser.

Measuring QUIC
The conventional ways to measure the uptake of a technology such as QUIC is to set up a service
that supports QUIC in additional to conventional TLS over TCP and count the relative use of
each transport protocol to access the service.

If we had access to a well-used service platform that supported both transport protocols, we could
certainly perform this measurement. This is what Cloudflare appears to have done, and the results
are visible on the Cloudflare Radar report. A screenshot of the relative use of QUIC (HTTP/3) in
the overall traffic mix seen by Cloudflare is shown in Figure 1.

Figure 1 – Use of QUIC as reported by Cloudflare Radar

https://www.rfc-editor.org/rfc/rfc9460.html
https://www.rfc-editor.org/rfc/rfc9114.html
https://radar.cloudflare.com/

 Page 3

Some 30% of the HTTP requests seen by Cloudflare use the QUIC protocol. But what does this
mean? Does all content served by Cloudflare use the alt-svc directive to indicate that the server is
capable of serving content via QUIC? Do they also use an HTTPS DNS record for all of their
content? Or for just some content? Or none? Without a basic understanding as to how the use of
QUIC is being triggered by Cloudflare, this 31% result is less helpful in terms of understanding
the overall picture of QUIC deployment.

This is another classic example of a producer/consumer relationship in
terms of adoption of a technology. A content server sees little in the way
of marginal benefit in supporting delivery of content over QUIC if few
clients support this transport protocol, and clients see little in the way of
marginal benefit of adoption of QUC if there is scant content that can be
accessed in this manner.

Without some form of initial impetus such a situation can lead to a situation
of stasis through mutual deadlock, with clients and servers awaiting a move
by the other party. This is by no means uncommon within the Internet, and
we've seen a similar standoff in the adoption of DNSSEC, with adoption
of DNSSEC signing and DNSSEC validation each dependant on the other.
Similarly, the adoption of IPv6 has been through a similar journey, with
IPv6 support in clients and networks awaiting support of IPv6 delivery of
content and services, while the content and service delivery side was
awaiting the deployment of IPv6 support in client systems.

Successful self-propelled adoption appear to require that both clients and
servers generate marginal benefits for themselves through the adoption of
the technology.

What we do know is that the Chrome browser has been supporting the QUIC protocol for at least
five years now (see the October 2020 Chrome announcement). Chrome appears to enjoy a market
share in the context of the public Internet of some 65% of the user base (source: statscounter).
It’s not clear to me how much content served by Cloudflare uses this alt-svc directive, and perhaps
equally importantly it’s unclear as to how users interact with these services, and in particular how
they formulate repeated requests to the same named content server. Both HTTP/1.0 and HTTP/2
allow for session persistence, so if a client performs a bunched cluster of requests to the same
server it’s likely that all the requests will be handled within the same underlying initial TCP session.
With alt-svc, it’s the second and subsequent connection that can use the QUIC protocol.

If the aim here is to measure the potential to use QUIC with the Chrome browser, then the
measurement technique needs to be carefully structured to trigger session termination and the
initiation of a new session, so that the client will then make use alt-svc directive. With the QUIC
measurement conducted by APNIC Labs we use a sequence of 7 repetitions of the query, spaced
in two second intervals, with a one second keepalive timer. The browser diagnostic screen showing
the spacing of these repeated queries is shown in Figure 2.

https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://gs.statcounter.com/browser-market-share

 Page 4

Figure 2 – HTTP request repetition to trigger the use of the alt-svc directive

What we anticipate here is that the initial request will be served using TCP, and the subsequent
requests will be served using QUIC.

In addition, the use of QUIC may be triggered using a DNS HTTPS resource record, with the
value alpn=”h3”. Queries for HTTPS records are now running at 10% of all queries seen in the
APNIC measurement, with A queries at 45% and AAAA queries at 16%.

The overall picture for potential QUIC use in the public Internet, as measured by APNIC Labs, is
shown in Figure 3. The blue line in this figure is the proportion of observed clients who use QUIC
on the first retrieval. As we’ve already noted, this initial retrieval is likely to be using the DNS
HTTPS query to trigger the use of QUIC. The subsequent retrievals using QUIC where the initial
retrieval was via HTTP/1,2 is likely to have been triggered using the alt-svc directive.

Figure 3 – Time series in Measuring QUIC

Can we associate these trigger mechanisms with the browsers? By using the User Agent string in
the observed web fetches, we can associate particular behaviours with browser types.

Who is Using the HTTPS Record?

Figure 4 shows the time series of the use of the HTTPS query on a daily basis for all browser types
(blue line), and a further breakdown into the relative use by Safari browsers, Chrome and others.

 Page 5

Figure 4 – Relative use of the HTTPS query by browser type

This figure shows that total some 30% - 40% of sampled clients generate an HTTPS query (blue),
where 90% of Safari browsers generate an HTTPS query, and 0.3% of Chrome browsers generate
an HTTPS query. The mix of other browser types has a 60% relative use of the HTTPS query.

Let’s look at Safari behaviour in a little more detail, looking at the “conversion rate” from the
HTTPS query to a fetch using the QUIC protocol. Figure 5 shows the relative proportion of Safari
browsers who make an HTTPS query. Over the past 7 months this has been a relatively steady
90% of browsers making this DNS query. Figure 5 also shows the rate of these browsers
performing the subsequent web object fetch using QUIC. Over the same period this QUIC use
rate is between 50% to 60% of Safari browsers.

Figure 5 – Relative use of the HTTPS query and QUIC fetch for Safari Browsers

 Page 6

In asking why this is happening, one theory is that the DNS infrastructure is blocking HTTPS query type
responses. Given that Safari browsers ask for A, AAAA (when IPv6 is available) and HTTPS records, the
absence of an HTTPS response would not be noted as unusual. The A and AAAA responses would guide Safari
to use either HTTP/1.0 or HTTP/2 to perform the web object retrieval.

To test this theory, we ran a modified experiment where the DNS name only had an HTTPS resource record.
No A and no AAAA. To provide the client with the address of the web object we used the ipv4hint and
ipv6hint attributes of the HTTPS record:

test_name IN HTTPS 1 . alpn="h2,h3" ipv4hint=192.0.2.1 ipv6hint=2001:db8::1

The result of this experiment, run over a 24-hour period, is shown in Table 1:

 HTTPS and alt-svc
 All Chrome Safari Other
DNS query (any) 13,177,108 9,487,295 3,602,160 87,653
DNS Query HTTPS 3,701,867 28.1% 155,926 1.6% 3,491,146 96.9% 54,795 62.5%
QUIC First 2,837,425 21.5% 111,679 1.2% 2,693,192 74.8% 32,554 37.1%
HTTP/1,2 First 10,243,793 77.7% 9,293,260 98.0% 896,028 24.9% 54,505 62.2%

 HTTPS-only
 All Chrome Safari Other
DNS query (any) 13,177,108 9,487,295 3,602,160 87,653
DNS Query HTTPS 3,708,895 28.1% 157,695 1.7% 3,506,664 97.3% 44,536 50.8%
QUIC First 2,710,668 20.6% 4,793 0.1% 2,701,516 75.0% 4,359 5.0%
HTTP/1,2 First 770,205 5.8% 1,164 0.0% 768,351 21.3% 690 0.8%
Table 1 – Use of HTTPS query for various browser types

It’s evident from this table that only a very small set of Chrome users make an HTTPS query, and of these even
fewer followup with a QUIC fetch. Given that the only way that the browser can obtain address information is
via this HTTPS query in the HTTPS-only experiment, it’s also evident that HTTPS DNS responses are making
it back to the end client, and the decision to use HTTP/1,2 for the first fetch in 21% of cases is a local browser
decision.

Who Uses the alt-svc directive?
The same question can be asked of the alt-svc directive. It’s clear that this is used by the Chrome
browser, but does the Safari browser use the alt-svc directive when no HTTPS DNS record is
present?

To measure this, we used an experiment that had no HTTPS record, the web object contained the
alt-svc directive, and the experiment performed a number of repeated fetches. The results are
shown in Table 2.

 alt-svc only
 All Chrome Safari Others
Samples 14,163,673 9,788,178 4,251,430 124,065
HTTP/1,2 First Fetch 14,055,816 99.2% 9,787,962 100.0% 4,151,937 97.7% 115,917 93.4%
QUIC 1st Fetch 107,857 0.8% 216 0.0% 99,493 2.3% 8,148 6.6%
QUIC 2nd Fetch 9,183,332 64.8% 8,966,915 91.6% 122,086 2.9% 94,331 76.0%

Table 2 – Use of alt-svc directive for various browser types

It’s evident from this data that the Safari browser makes no use of the alt-avc directive, and relies
solely on the alt-svc directive to switch to use the QUIC protocol.

Conclusions and Questions
If you want to serve content over QUIC you need to support both QUIC trigger methods. You
need to provision a DNS HTTPS record that specifies support of the HTTP/3 protocol (QUIC)

 Page 7

and use an alt-svc directive in the HTTP content headers to signal QUIC capability to Safari and
Chrome clients respectively.

Why doesn’t the Chrome browser also use a DNS HTTPS query? Are they concerned about the
significantly greater DNS query load that would result from such a change in this extensively used
browser? And why doesn’t Safari also use the alt-svc directive as a trigger to use QUIC?

And while we have questions, why do 24% of Safari clients not perform a QUIC fetch despite a
HTTPS record indicating that the server supports QUIC?

“The good thing about standards is that there are so many to choose from!”
is a somewhat disparaging comment that is commonly attributed to
Andrew Tanenbaum. The IETF’s RFC series has just published RFC 9813,
and it would an insane flight to fancy to think that all these specifications
are mutually consistent. They’re not.

We have two standardised mechanisms used to trigger the use of the QUIC
protocol. RFC 7838 describes HTTP Alternative Services, used by the alt-
svc directive that is embedded in the HTTP headers of the content being
serves. RFC 9460 specifies the DNS HTTPS Resource Record. HTTPS
records allow a service to be provided from multiple service delivery points,
each with associated parameters such as the transport protocol.

What we don’t have is mutual interoperability. A client that is configured
to look for the alt-svc directive will not necessarily query for a DNS
HTTPS resource record, as there is no standard specification that mandates
such an action. The same holds in the other direction, in that a client that
scans for HTTP alternative services is not required by any standard
specification to query for a DNS HTTPS resource record as well.

Many years ago, we were accustomed to criticising the OSI protocol suite
on the basis that it standardised both connection-oriented and
connectionless transport protocols. Two standards-compliant OSI
endpoints were unable to interoperate if one endpoint exclusively used
connection-oriented transport services and the other opted to use
connectionless transport services. We find ourselves in a similar situation
here with the triggering of the QUIC transport service and the use of
HTTP alternative services and the DHS HTTP Resource Record.

The aim of QUIC is to improve the speed and efficiency of transactions,
so it is hardly reasonable to standardise a “probe and wait” form of
connection initiation. The desired QUIC triggering mechanism is one
based on a positive indication from the content server that is is capable of
supporting a QUIC connection, so when a client initiates a QUIC session
it does so on the basis of a clear indication that the server supports the use
of this protocol. Both the alt-svc direction and the HTTPS DNS resource
record provide this functionality.

However, they have quite different properties. The client will be unaware
that there is an alt-svc directive this is applicable to this resource until it
has performed an initial fetch using the default transport protocol (in the
HTTP context this implies a fetch over HTTP/1.0 or HTTP/2). Both of
these HTTP protocol versions feature session persistence, where the overhead
of establishing a TCP session and an overlay TLS session can be amortised
across multiple individual HTTP fetch operations. The alt-svc approach is
fast, lightweight and imposes little in the way of external side effects on

 Page 8

other systems. However, if objective here is to facilitate a transition to use
QUIC as broadly as possible, then the alt-svc is not exactly going to
achieve that outcome.

The DNS HTTPS resource record can be folded into the connection
initiation process, where in addition to the address record queries for the A
and AAAA resource records, the HTTPS record can be used to signal the
capability to use QUIC from the outset. The DNS operates within the
constraint that each query contains just a single resource record. To query
for a name’s IPv4 and IPv6 addresses requires two query/response DNS
transactions. They can be performed in parallel, but they remain separate
DNS transactions. Adding a HTTPS query adds a third query to be used in
the connection process. There is an obvious impact on the DNS
infrastructure here with an increase in the DNS query load in line of the
uptake of client systems that use this form of QUIC triggering.

Today we have a split environment in the web client world. Some two
thirds of the client base use the Chrome browser and also exclusively use
the alt-svc directive. Slightly under one quarter of the client base use the
Safari browser, which exclusively uses the HTTPS DNS resource record.

The failure of to reach alignment on a single trigger system for QUIC in
the client world implies that the cost burden of this failure is imposed on
the service platforms, where both QUIC trigger systems need to be
supported.

If the ultimate aim of the IETF’s Standards process is to provide effective
and efficient interoperability for both clients and servers alike, then in this
case (and in other similar cases) the IETF’s Standards Process is failing us.
Diversity of approaches is fine in terms of overall resilience of an
engineered system, but at a cost where every actor is placed in a position of
having to support every approach to maximise interoperability. The case
can be made that an effective standards process is more about making
choices between functionally equivalent approaches, and far less about
developing a huge suite of diverse ways of achieving the same outcome. I
suspect that the IETF has already undergone this transition, and its core
deliverable today is the standard themselves, and not necessarily an efficient
and interoperable network platform as instantiated in the form of the public
Internet!

 Page 9

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific
Network Information Centre.

Author

Geoff Huston AM, M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry
serving the Asia Pacific region.

www.potaroo.net

http://www.potaroo.net/

