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A QUIC Progress Report 
 
There has been a major change in the landscape of the internet over the past few years with the 
progressive introduction of the QUIC transport protocol. Here I’d like to look at where we are up 
to with the deployment of QUIC on the public Internet. But first, a review of the QUIC protocol. 

QUIC 
QUIC is not exactly a recent protocol, as the protocol was developed by Google in around 2012, 
and initial public releases of this protocol were included in Chromium version 29, released in 
August 2013. QUIC is one of many transport layer network protocols that have attempted to 
refine the basic operation of IP’s Transmission Control Protocol (TCP). 
 
Why were we even thinking about refining TCP? 
 
TCP is now used in billions of devices and is perhaps the most widely adopted network transport 
protocol that we’ve ever seen. Presumably if this protocol wasn’t fit for general use, then we would 
have moved on and adopted some other protocol or protocols instead. But the fact is that TCP is 
not only good enough for a broad diversity of use cases, but in many cases, TCP is incredibly good 
at its job. 
 
Part of the reason for TCP’s longevity and broad adoption is TCP’s incredible flexibility. The 
protocol can support a diverse variety of uses, from micro-exchanges to gigabyte data movement, 
transmission speeds that vary from tens of bits per second to tens and possibly hundreds of 
gigabits per second. TCP is undoubtedly the workhorse of the Internet. But even so, there is always 
room for refinement. TCP is put to many different uses, and the design of TCP represents a set 
of trade-offs that attempt to be a reasonable fit for many purposes but not necessarily a truly ideal 
fit for any particular purpose. 
 
One of the aspects of the original design of the Internet Protocol suite was that of elegant brevity 
and simplicity. The specification of TCP (RFC 793) is not a single profile of behavior that has 
been cast into a fixed form that was chiseled into the granite slab of a rigid Internet Standard 
specification. TCP is malleable in a number of important ways. Numerous efforts over the years 
have shown that it is possible to stay within the standard definition of TCP, in that all the packets 
in a session use the standard TCP header fields in mostly conventional ways, but also to create 
TCP implementations that behave radically differently from each other. 
 
TCP is an example of a conventional sliding window positive acknowledgement data transfer 
protocol. But while this is what the standard defines, there are some variable aspects of the 
protocol. Critically, the TCP standard does not strictly define how the sender can control the 
amount of data in flight across the network. The intention is to strike a fair balance between this 
data flow across the network and all other flows that coincide across common network path 

https://www.rfc-editor.org/rfc/rfc793.html
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elements (fairness) while at the same time not leaving unused network capacity if it can be avoided 
(efficiency). Informally, the objective of each TCP session is to go as fast as possible while not 
crowding out other concurrent TCP sessions that use common transmission elements. There is a 
long-standing convention in TCP control algorithms to adopt an approach of slowly increasing 
the amount of data in flight while there are no visible problems in the data transfer (as shown by 
the stream of received acknowledgement packets) and quickly responding to signals of network 
congestion (interpreted from instances of network packet drop, as shown by duplicate 
acknowledgements received by the sender) by rapidly decreasing the sending rate. Variants of TCP 
use different controls to manage this slow increase and rapid drop behavior and may also use different 
network-derived signals to control this data flow, including measurements of end-to-end delay, 
inter-packet jitter or packet loss, or explicit signals in the IP and TCP packets headers (ECN). All 
of these protocol variants still manage to fit with the broad parameters of we collectively call 
“TCP”. 
 
It is also useful to understand that most of these rate control variants of TCP need only be 
implemented on the data sender (the server in a client/server environment). The common 
assumption of all TCP implementations is that clients will send a TCP ACK packet on both 
successful receipt of in-sequence data and on receipt of out-of-sequence data. It is left to the 
server’s TCP engine to determine how the received ACK stream will be applied to refine the 
sending TCP’s internal model of network capability and how it will modify its subsequent sending 
rate accordingly. This implies that deployment of new variants of TCP flow control can be 
achieved by deployment within service delivery platforms and does not necessarily imply changing 
the TCP implementations in all the billions of client-side implementations of TCP. This factor of 
server-side control of TCP behavior also contributes to the viability of TCP evolution. 
 
But despite this considerable flexibility, TCP has its problems, particularly with web-based services. 
These days most web pages are not simple monolithic objects. They typically contain many 
separate components, including images, scripts, customized frames, style sheets and similar. Each 
of these is a separate web “object” and if you are using a browser that is equipped the original 
implementation of HTTP each object will be loaded in a new TCP session, even if they are served 
from the same IP address. The overheads of setting up both a new TCP session and a new Transport 
Layer Security (TLS) session for each distinct web object within a compound web resource can 
become quite significant, and the temptations to re-use an already established TLS session for 
multiple fetches from the same server are close to overwhelming. But this approach of 
multiplexing a number of data streams within a single TCP session also has its attendant issues. 
Multiplexing multiple logical data flows across a single session can generate unwanted inter-
dependencies between the flow processors and may lead to head of line blocking situations, where a 
stall in the transfer of one stream blocks all other fetch streams. It appears that while it makes 
some logical sense to share a single end-to-end security association and a single rate-controlled 
data flow state across a network across multiple logical data flows, TCP represents a rather poor 
way of achieving this outcome. The conclusion is that if we want to improve the efficiency of such 
compound transactions by introducing parallel behaviors into the protocol, we need to look 
beyond the existing control profile of TCP. 
 
Why not just start afresh and define a new transport protocol that addresses these shortcomings 
of TCP? The problem is that there is a significant pool of deployed devices within the network 
that peek into the transport protocol headers of IP packets in flight. Such devices include load 
balancers, NATs of various forms, packet “shapers”, and security firewalls. In many cases, a 
common reaction to an unrecognised transport protocol in an IP packet is to simply drop the 
packet. This mode of behaviour acts as a point of ossification in the network, effectively freezing 
the generally available protocol set to just TCP and UDP. 

https://www.rfc-editor.org/rfc/rfc3168.html
https://www.rfc-editor.org/rfc/rfc8446.html
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If the aim is to deploy a new transport protocol but not trigger active network elements that are 
expecting to see a conventional TCP or UDP header, then how can this be achieved? This was 
the challenge faced by the developers of QUIC.  
 
The solution chosen by QUIC was a UDP-based approach.  
 
UDP is a minimal framing protocol that allows an application to access the basic datagram services 
offered by IP. Apart from the source and destination port numbers, the UDP header adds a length 
header and a checksum that covers the UDP header and UDP payload. It essentially an abstraction 
of the underlying datagram IP model with just enough additional information to allow an IP 
protocol stack to direct an incoming packet to an application that has bound itself to a nominated 
UDP port address. If TCP is an overlay across the underlying IP datagram service, then it's a small 
step to think about positioning TCP as an overlay on top of an underlying UDP datagram service. 
 
Using our standard Internet protocol model QUIC is, strictly speaking, a datagram transport 
application. An application that uses the QUIC protocol sends and receives packets using UDP 
port 443.  
 
Not only does the use of a UDP shim element provide an essential protection of QUIC against 
network middleware’s enforcement of TCP and UDP as the only viable transport protocols, but 
there is also another aspect of QUIC which is equally important in today’s Internet. The internal 
architecture of host systems has changed little from the 1970’s. An operating system provides a 
consistent abstraction of a number of functions for an application. The operation system not only 
looks after scheduling the processor and managing memory, but also manages the local file store, 
and critically for QUIC, provides the networking protocol stack. The operating system contains 
the device drivers that implementation a consistent view of i/o devices and also contains the 
implementations of the network protocol stack up to and including the transport protocol. The 
abstracted interface provided to the application may not be completely identical for all operating 
systems, but its sufficiently similar that with a few cosmetic changes an application can be readily 
ported to any platform with an expectation that not only will the application drive the network as 
expected, but do so in a standard manner such that it will seamlessly interoperate with any other 
application instance that is a standard-compliant implementation of the same function. Operating 
System network libraries not only relieve applications of the need to re-implement the network 
protocol stack but assist in the overall task of ensuring seamless interoperation within a diverse 
environment. However, such consistent functionality comes at a cost, and in this case the cost is 
resistance to change. Adding a new transport protocol to all operating systems, and to all package 
variants of all operating systems is an incredibly daunting task these days. As we have learned from 
the massive efforts to clean up various security vulnerabilities in operating systems, getting the 
installed base of systems to implement change suffers from an incredibly static and resistant tail 
of laggards! 
 
Applications may not completely solve this issue, but they appear to have a far greater level of 
agility to self-apply upgrades. This means that if an application chooses to use its own 
implementation of the end-to-end transport protocol it has a greater level of control over that 
implementation and need not await the upgrade cycle of third-party operating system upgrades to 
apply changes to the code base. Web browser clients are a good example of this, where many 
functions are folded into the application in order to provide the desired behavior. 
 

https://www.rfc-editor.org/rfc/rfc9369.html
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In the case of QUIC the transport protocol code is lifted into the application and executed in user 
space rather than an operating system kernel function. This may not be as efficient as a kernel 
implementation of the function, but the gain lies in greater flexibility and control by the application.  
 
A second major aspect of the QUIC design is the tight integration of the TLS functions of server 
authentication and transport encryption. The entire QUIC payload, including framing, control, 
and signaling functions in addition to the payload, is encrypted. This encryption of the transport 
control fields is one of the critical differences between TCP and QUIC. With TCP the control 
parts of the transport protocol are in the clear, so that a network element would be able to inspect 
the port addresses (and infer the application type), as well as the flow state of the connection. 
Collection of a sequence of such TCP packets, even if only looking at the packets flowing in one 
direction within the connection would allow a network element to infer the round-trip time and 
the data transmission rate. And, like a NAT, manipulation of the receive window in the ACK 
stream would allow a network element to apply a throttle to a connection and reduce the transfer 
rate in a manner that would be invisible to both endpoints. Placing all this control information 
inside the encrypted part of the QUIC packet ensures that no network element has direct visibility 
to this information, and no network element can manipulate QUIC’s connection flow. Also, TLS 
over TCP entails longer connection delays, as the connection sequence entails a TCP handshake 
and then a TLS handshake. A tighter integration of TLS with the transport protocol can remove 
a number of round-trip-time delays in connection establishment. 
 
Another major change is the internal structure of the QUIC connection using the concept of a stream, 
with multiple streams (of various types) supported in a single connection. There are conventional 
bidirectional streams, unidirectional streams and control streams supported within QUIC. Each stream has 
its own flow state, so that the TCP issue of head of line blocking when multiple logical data streams 
are multiplexed into a single TCP stream is avoided. QUIC pushes the security association to the 
end-to-end state that is implementation as a UDP data flow, so that streams can be started in a 
very lightweight manner because they essentially reuse the established secure session state. It also 
uses a single TLS association for the QUIC connection, avoiding the overhead of forming a new 
TLS association for each stream. 
 
So that’s QUIC. 

Invoking QUIC 
A conventional way to deploy this kind of service is to nominate a transport protocol and a 
reserved service port (see the “IANA Service Name and Transport Protocol Port Number 
Registry”) and let applications initiate a connection using the nominated protocol and port if they 
which to access a service using this protocol. If the server is unresponsive, then the application 
can use an alternative protocol and port selection. In the case of QUIC, this would be a QUIC 
connection request made via a UDP packet using destination port 443, and the fallback would be 
a TCP plus TLS connection to destination port 443.  
 
While it’s conventional, this connection process can be slow, particularly if the client does not 
know in advance that the server does not support. In this case the QUIC-enable client would send 
an opening QUIC packet to UDP port 443 but then must wait for a response. As the client is not 
necessarily aware of the round-trip time to the server, the client would normally err on the side of 
caution and wait at this juncture for at least one or two seconds. 
 
QUIC was designed to increase the responsiveness of services over the network, not to introduce 
new sources of delay.  One way to achieve this without paying a time penalty is for the server to 
signal the capability to use QUIC to the client in the first (non-QUIC) connection, allowing the 

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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client to initiate a QUIC session on the second and subsequent connections. This second-use 
approach is defined in an Internet standard for Alternative Services (RFC 7838), which is a means to 
list alternative ways to access the same resources, using the HTTP header fields. 
 
For example, 
 

alt-svc: quic=":443"; ma=2592000; 
 
This indicates that the same material is accessible using QUIC over port 443. The “ma” field is 
the time to keep this information cached in the local client (in seconds), which in this case is 30 
days. 
 
It is not quite as simple as it may sound. The HTTP protocol introduced the concept of session 
persistence in HTTP/1.0 so that the underlying transport session is kept open for some keepalive 
interval, allowing reuse of the TCP and TLS state without the session open overheads. The 
implication for the second-use signaling approach was that the original HTTP session was kept open 
across multiple requests, indefinitely deferring any subsequent connection that would use the 
QUIC transport protocol. This form of triggering the use of QUIC has been bundled into the 
Chrome browser for more than a decade. 
 
When Apple introduced support for QUIC in its Safari browser they used a different trigger, 
namely the DNS. The IETF has introduced the SVCB record in the DNS, allowing a number of 
connection profile items to be stashed in the DNS (RFC 9460). SVCB records facilitate the 
discovery of alternative endpoints for a service, allowing clients to choose the most suitable 
endpoint based on their needs and capabilities. There is the HTTPS DNS record, which is the 
SVCB record for use for HTTPS service connections. Relevant here is the Application-Layer 
Protocol Negotiation (ALPN) field where the token h3 denotes a server capability to support 
QUIC (HTTP/3) (RFC 9114). 
 
Safari browsers that support the use of QUIC will query the DNS for an HTTPS record, and if 
there is an alpn field that specifies h3 in this record, then the browser can proceed with opening 
a QUIC connection to the server. 
 
The current situation is that we have two triggers for the use of QUIC, one as a “second use” in-
band trigger, used by the Chrome browser, and the DNS HTTPS trigger, used by Safari 

Who uses QUIC? 
We are now in a position to provide some answers to this question.  
 
The measurement technique we use for this exercise starts with DNS data for the web object that 
contains A,  AAAA and HTTPS records, and where the HTTPS record data contains an alpn 
field value of h3. The object is a conventional measurement blot, namely a 1x1 image in png format, 
with the HTTP directive of alt-svc h3=":443". The measurement script repeats this fetch a 
further 7 times, at 2 second intervals. The rationale for this repetition is to trigger a connection 
termination and a second connection which would use the alt-svc directive, if the client was 
using this directive. 
 
This measurement has been in operation since mid-2022, and the daily data for the past three years 
is shown in Figure 1. The data shows a percentage of tested end users, and across this period the 
average number of measurement tests numbers between 28M to 35M per day. 

https://www.rfc-editor.org/rfc/rfc7838.html
https://www.ietf.org/archive/id/draft-duke-httpbis-quic-version-alt-svc-03.html
https://www.rfc-editor.org/rfc/rfc9460.html
https://www.rfc-editor.org/rfc/rfc9114.html
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Figure 1 – Use of QUIC (HTTP/3) 

 
Figure 1 shows the relative level of use of QUIC for the initial fetch (blue trace in Figure 1, 15% 
to 20% of users) and the relative level of the use of QUIC during the subsequent fetches (red 
trace, 70% of users). 
 
Figure 2 looks at the geographic distribution of QUIC use. QUIC is widely used (more than 75% 
of users) in most countries across the Internet with the exception of China (15%). There is also 
partial support in Morocco (40%), Iran (40%) and Nigeria (54%). 
 

 

 
 
Figure 2 – Geographic Distribution of QUIC support 

 
We can use the browser’s user agent string to look at QUIC behaviour by browser – the results 
for one day of measurement are shown in Table 1. 
 

 
Table 1 – Browser QUIC Behaviour 

Browser Count HTTPS DNS Query QUIC 1st Fetch QUIC Sub Fetc h NO QUIC
Chrome 9,258,909  174,193                     96,824                  8,139,214             1,022,871  
Safari 5,085,639  4,727,457                 2,761,376           20,246                    2,304,017  
Edge 67,009         47,441                        16,776                  37,957                    12,576         
Firefox 12,989         3,689                           4,783                     5,789                       2,417            
Opera 4,054            2,218                           1,715                     1,544                       795                 
Others 29,540         9,828                           3,427                     15,975                    9,838            
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The Chrome browser does not perform a DNS HTTPS query and relies on the alt-svc directive 
to trigger the use of QUIC on second and subsequent fetches. The Safari browser uses the DNS 
HTTP query. It is interesting to present the measurements for these browsers in percentage terms 
(Table 2). 
 

 
Table 2 – Browser QUIC Behaviour in % terms 
 

It is clear from Table 2 that the Chrome browser does not query for the DNS HTTPS record and 
relies on the alt-svc directive to trigger QUIC, and the predominant behaviour of the Safari 
browser is to query for the HTTPS record, any rely on the data in this record and not the alt-
svc directive. Of interest in Table 2 is the 45% rate of Safari clients who do not use QUIC, as 
compared to the 11% rate of Chrome clients who do not use QUIC. Is this variance of behaviour 
between Safari and Chrome browsers an issue with the local network conditions or some issue 
with the behaviour of the Safari browser? 
 
As an example, let’s look at the data collected for users located in the Macao Special Administrative 
Region of China. On this day our measurement system observed 14,328 individual measurements 
using the Chrome browser, where 13,029 used QUIC, and the remainder did not. This is a 9.1% 
failure rate for QUIC. On the same day, we observed 24,700 measurements using the Safari 
browser, of which only 3,411 individual measurements used QUIC, and the remainder failed. This 
is a failure rate of 86.2%. The major retail service provider there is AS 4609, which is registered to 
“Companhia de Telecomunicacoes de Macau SARL”. There were 21,022 Safari users who used 
this provider as their ISP and the QUIC failure rate for these users was 85.2% There were 8,669 
Chrome users of this ISP, with a failure rate of 7.4%. A similar relative failure profile between the 
two browsers is visible for the other two local ISPs “MTel” and “China Telecom Macau”. It seems 
reasonable to conclude that it’s not the network itself that is generating this different failure profile 
between the two browser families. There are many other locales where we observe a similar 
discrepancy in behaviour between Chrome and Safari. A list of such economies where the 
difference in QUIC failure rates for these two browsers is greater than 25% is shown in Table 3. 
 

CC Safari Fail Chrome Fail Difference Name 
SR 89.2% 11.5% 77.7% Suriname 
GY 88.3% 11.1% 77.2% Guyana 
MO 86.2% 9.1% 77.1% Macao, SAR China 
EC 78.2% 6.0% 72.2% Ecuador 
BO 76.7% 6.9% 69.8% Bolivia 
PE 75.3% 6.3% 69.0% Peru 
CL 73.7% 5.8% 67.8% Chile 
VE 72.9% 7.3% 65.7% Venezuela 
CO 71.9% 8.4% 63.5% Colombia 
AR 73.0% 9.6% 63.4% Argentina 
CN 92.5% 29.8% 62.7% China 
BR 68.8% 8.2% 60.6% Brazil 
NG 71.9% 13.2% 58.7% Nigeria 
UY 61.0% 6.0% 55.1% Uruguay 

Browser Count HTTPS DNS Query QUIC 1st Fetch QUIC Sub Fetch NO QUIC
Chrome 9,258,909  1.9% 1.0% 87.9% 11.0%
Safari 5,085,639  93.0% 54.3% 0.4% 45.3%
Edge 67,009         70.8% 25.0% 56.6% 18.8%
Firefox 12,989         28.4% 36.8% 44.6% 18.6%
Opera 4,054            54.7% 42.3% 38.1% 19.6%
Others 29,540         33.3% 11.6% 54.1% 33.3%
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PY 64.0% 12.5% 51.5% Paraguay 
ZM 60.3% 10.7% 49.6% Zambia 
TR 50.9% 7.5% 43.3% Turkey 
NA 48.4% 6.4% 42.0% Namibia 
ID 47.0% 8.8% 38.2% Indonesia 
IN 48.8% 11.6% 37.2% India 
BN 39.1% 3.8% 35.3% Brunei Darussalam 
CU 54.3% 20.3% 34.0% Cuba 
RW 41.2% 8.0% 33.2% Rwanda 
HK 62.4% 32.3% 30.1% Hong Kong, SAR China 
CM 45.1% 16.9% 28.2% Cameroon 
CY 40.1% 12.4% 27.7% Cyprus 
NP 39.5% 11.9% 27.6% Nepal 
PK 37.4% 10.7% 26.7% Pakistan 
SO 39.2% 13.1% 26.2% Somalia 
PA 31.4% 5.5% 25.9% Panama 
SY 40.1% 14.4% 25.7% Syrian Arab Republic 
LB 33.5% 8.2% 25.3% Lebanon 
AO 35.9% 10.6% 25.3% Angola 
 
Table 3 – Economies where the Safari and Chrome browser QUIC failure rates differ by more than 25% 

 
The significant difference between Safari and Chrome failure rates here tends to (largely) absolve 
the network infrastructure from blame (with, potentially the exception of China). If the local 
network infrastructure was blocking UDP port 443, then Safari and Chrome browsers would both 
be blocked from performing QUIC transactions. The difference in behaviour here between the 
browsers lies in the use of this new HTTPS query type by Safari. In this measurement we observe 
the HTTPS query being passed to the authoritative nameservers (As the DNS name contains a 
uniquely generated component each measurement generates an HTTPS query with a unique query 
name, conventional DNS caching is bypassed.) In the manner of the measurement we use here we 
cannot discern if the DNS response is passed all the way back to the querying browser application 
on the user’s device, but in QUIC we are observing a widespread behaviour that is consistent with 
query-type DNS response filtering being performed in some fashion within the local DNS 
resolution environment. The HTTPS response appears not to be getting back to the Safari 
browser. 

DNS Ossification? 
The introduction of new DNS query types into the end user application environment is extremely 
uncommon.  This HTTPS DNS resource record type is perhaps the first new type that is intended 
to be used by end systems for many years. End hosts perform A, AAAA and TXT queries and 
little else. 
 

Yes, I am drawing a distinction here between the query types used in the 
process of name resolution, used by recursive resolvers and query types 
used by the application environment in end systems. From this perspective, 
the DNSSEC validation query types, DS, DNSKEY and SOA, are 
effectively recursive resolver query types, as very few application 
environments perform DNSSEC validation directory. Similarly, NS and 
CNAME queries are used in the name resolution process, but these two 
query types are not “new” types by any means. What’s left are the A, AAAA 
and TXT queries, which are also by no means “new” query types.  
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Safari has taken the step of introducing the HTTPS query type into this environment, and the data 
suggests that on average, about one half of the DNS responses to these HTTPS queries are getting 
back to the Safari application. 
 
It would not be surprising to learn that in the same way that the Internet’s transport infrastructure 
has ossified to just the TCP, UDP transport protocols, the end-application DNS capability set has 
similarly ossified, and these days DNS responses other than A, AAAA and possibly TXT records 
do not necessarily make it back to the querying application.  
 
I have often heard the Internet environment as one that is characterized as enabling permissionless 
innovation. By this it’s intended to describe a space that is not only accepting of change, but one 
that embraces change. The standards that underpin the common technology base that defines a 
single coherent network are generally minimal in nature, allowing a broad scope for 
experimentation in diverse behaviours on the network. If any such changes generate positive 
incentives for broader adoption, then they can be standardized and integrated into the mainstream 
technology base. However, preserving this flexibility in an ever-growing environment is proving 
to be a fundamental challenge these days. The massive numbers involved in deployment at the 
user edge of the Internet, in mobile devices, host computers, consumer premises equipment, 
NATs, security firewalls and other forms of traffic interception, all add to the inertial load of the 
Internet and contribute to ossification of the technology base. 
 
If Apple’s Safari maintainers were to ask me (and why should they!) I’d gently suggest that in 
addition to the HTTPS DNS query, the Safari application should also look for the alt-svc 
directive in web responses, and if this directive includes the signaling of QUIC capability then the 
Safari browser should use it for second and subsequent fetches from this server. 
 
Should the same suggestion apply to Chrome, to use the HTTPS DNS query? I’m not sure. Right 
now, it’s a noisy signal, with this measurement suggesting that up to one half of all HTTPS 
responses apparently don’t make it all the way back to the browser application. Yes, the DNS relies 
on caching to gain performance and scalability but adding an additional query in addition to the A 
and AAAA queries seems to be adding up to a further 50% to the DNS load profile without clearly 
understanding the scale of the benefit that would be derived from this additional load. What 
incremental load are we willing to place on the entire DNS infrastructure to improve the 
performance of the initial fetch of web objects? I can appreciate Chrome’s evident reticence to 
take this step right now. 
 
And what does this data suggest about the state of the DNS right now? Considerable effort has 
been invested in the use of the DNS as a highly efficient service rendezvous tool, allowing a client 
to establish the connection profile for a named service with the use of the SVCB resource record. 
This is a record that is intended for use by the end use application, and it may well be that this will 
not be a widely usable mechanism, despite its advantages in improving the performance and 
flexibility of service access. Maybe all we are left with as a reliable DNS query mechanism for 
applications to use are the limited collection of A, AAAA and TXT queries. 
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