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Resilience in the RPKI 
 
I would like to look at the ways in which the operators of the number Resource Public Key 
Infrastructure (RPKI) have deployed this infrastructure in a way that maximises its available and 
performance and hardens it against potential service interruptions, or in other words, an 
examination of the resilience of the RPKI infrastructure. 
 
For those who came in late, the RPKI is a hierarchically structured set of X.509 public key 
certificates that binds a public key value against an enumerated set of number resources (IPv4 
address prefixes, IPv6 address prefixes and Autonomous System Numbers). It allows a key holder 
to demonstrate their control over a collection of number resources by demonstration through the 
use of a private key, and others to validate such an attestation of control through the verification 
of this via the matching public key certificate. It is being used in the area of routing security by 
adding verifiable digital signatures with the intent of providing some level of assurance of the 
authenticity of certain routing protocol transactions. Because of this application in the global 
routing system there are natural concerns relating to the resilience of the RPKI infrastructure, as 
there is no desire to add to the operational risk profile of the Internet’s global routing system by 
adding a security framework which impairs the resilience of this system. 
 

Just to be pedantic here, the RPKI system is not a single hierarchy, but 
rather uses five such hierarchies, each rooted in a Trust Anchor that is 
published by each of the five Regional Internet Registries (RIRs). 

 
When considering the topic of resilience of the RPKI infrastructure it is important to appreciate 
a number of distinctions between this infrastructure and other distributed data systems used in 
the infrastructure of the Internet, such as the Domain Name System (DNS). 
 

Aside: DNS Operation 
 
The DNS uses on-demand interrogation in providing its service of 
mapping names to associated data, such as IP addresses. Local clients are 
primed with the IP addresses of the name servers that serve the root zone 
of the DNS, and the task of resolution of a DNS name starts with a top-
down discovery process to find the set of authoritative nameservers that 
serve the zone in which the name to be resolved is defined, followed by a 
query to one of these nameservers to retrieve the required data attribute. 
 
Notionally, every name resolution task commences with a query to a root 
zone server as the first query in the discovery process. This is a notional 
concept rather than a coded behaviour because name resolvers normally 
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cache the responses they receive for potential re-use during a specified 
cache lifetime. 
 
Notwithstanding this caching behaviour, it is necessary for all DNS 
resolvers to have access to one of more root nameservers all of the time. If 
such access is prevented (such as when a local DNS resolver is isolated) it 
will continue to function for the duration of the remaining cache residence 
lifetimes in its local cache, but once these records have expired the resolver 
will be unable to resolve names. 
 
For this reason, and for reasons of improved query performance, much 
effort has been placed in operating a global network of root zone 
nameservers, attempting to ensure that root service is available to all DNS 
resolver clients all of the time. 
 
See https://www.potaroo.net/ispcol/2025-03/roots.html for more 
details. 

 

RPKI Operation 
The RPKI does not operate using the on-demand query/response mode as used by the DNS. The 
RPKI uses a mode of pre-provisioning, where local tools assemble and local validated credentials 
into RPKI-secured BGP speakers (routers) in the form of filter lists which are then applied to 
received (and sent) BGP updates. Each network operates one (or potentially more than one) local 
RPKI client instances (to be strictly correct in terminology I’m referring here to “local relying party 
service” instances) than maintains a local cache of all currently valid RPKI certificates and signed 
objects, which allows the client to then assemble a list of authorised address prefixes and associated 
origination AS. This list is converted into a router filter list, and the client service uses a dedicated 
protocol to pass the changes the changes to this filter list to a collection of managed routers. The 
routers can then apply this filter list to all incoming BGP announcements (and potentially to all 
outgoing BGP advertisements as well). 
 
Each RPKI client periodically sweeps across all the RPKI publication points to ensure that its local 
copy of all RPKI objects is complete and current. The IETF standards do not specify how often 
an RPKI client should comb across the collection of published RPKI objects (certificates, 
manifests and signed objects) to detect changes. Many network operators use a client configuration 
that performs such a sweep every 10 minutes. Others use shorter intervals, and some use longer 
intervals. 
 
The implication of this behaviour is that all RPKI publication points should be accessible by all 
RPKI clients all of the time, and certainly this is the ideal situation, but the system is more tolerant 
of operational interruption than this informal description might lead you to believe. An RPKI 
signed object is valid for the period of time listed in the date fields of the public key certificate 
whose private key signed this object. Once an object has been loaded and cached by a RPKI client, 
it can be considered as valid until the expiration time. This validity can be negated if the certificate 
is listed in a revocation list, or if the certificate is no longer listed in a publication point manifest. 
The implication for this in terms of system resiliency is that if a RPKI publication point is not 
accessible by a client, then the previously loaded valid objects will continue to be treated as current 
valid objects until they expire. This is roughly equivalent to the DNS cache lifetime directive in 
the DNS and makes the RPKI system somewhat tolerant of short-term interruptions in 
connectivity. 
 

https://www.potaroo.net/ispcol/2025-03/roots.html
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The DNS is effectively a two-state system, where the queried data exists, or it does not exist. The 
RPKI is a tri-state system, where a route object is either accepted as a "valid” prefix, or is a 
candidate for rejection ("invalid"") as existing validated RPKI objects contradict this route object, 
or third state of "unknown" where no valid RPKI objects are relevant to this route object. 
Conventional operational practice is to construct route filters that accept route advertisements for 
"valid" and "unknown" route objects, and discard advertisements for "invalid" routes. If a section 
of the RPKI is inaccessible to a local RPKI client for a protracted period where the RPKI timers 
expire, then the router's behaviour would not materially alter, on so far as previously "valid" objects 
would change to "unknown," but in general would not necessarily change to "invalid." 

Resilience in RPKI Object Publication 
Notwithstanding the tolerance of the RPKI system to interruptions in the availability of public 
RPKI objects, it is still desirable to ensure that the RPKI material, which consists of the Trust 
Anchor Locators (TALs), and the material published in each of the RPKI CA'S publications points 
is managed in a resilient a manner as possible. 

Trust Anchor Locators 
These objects are the notional equivalent of the root zone servers of the DNS, but at that point 
the similarity ends. These TAL objects are not used in the validation of RPKI objects, but are 
pointers to where the trust anchor objects (self-signed certificates) can be found. 
 
These TAL objects are published by each RIR: 

• APNIC: https://www.apnic.net/community/security/resource-certification/tal-archive/ 
• ARIN: https://www.arin.net/resources/manage/rpki/tal/ 
• RIPE NCC: https://tal.rpki.ripe.net/ripe-ncc-rfc8630.tal 
• LACNIC:  https://www.lacnic.net/4984/2/lacnic/rpki-trust-anchors 
• AFRINIC: https://afrinic.net/resource-certification/tal 

 
These URLs are all published using unicast servers, and do not use a Content Distribution 
Network (CDN). Why not go a step further any load these objects into a CDN so that the material 
is published in a replicated manner that is more resilient and faster to collect? 
 
The reasons lie in the observation that this information is not retrieved by RPKI client systems 
when they are validating RPKI-signed objects. This is configuration information, loaded when the 
client system starts up. The information in these TAL objects is sufficiently static that a number 
of package distributors have taken to bundling up these TAL objects themselves, and distributing 
it as part of the RPKI packet suite (for example https://packages.debian.org/sid/rpki-trust-
anchors) and there is no online query being performed in any case. 
 
It would appear that there is little to be gained in terms of operational resilience by any alteration 
of these arrangements. 

RPKI Publication Points 
It's a slightly different story for the information published in the RPKI publication points by RPKI 
publishers. 
 
However, this information, namely the certificates issued by this RPKI CA, all RPKI-signed 
products signed by this CA, and a manifest, is not part of any real time dependency used by routers 
in processing BGP updates or switching packets. The assembly of RPKI signed objects by client 
software, and the construction of filter lists to pass to RPKI-aware routers is a background task 

https://www.apnic.net/community/security/resource-certification/tal-archive/
https://www.arin.net/resources/manage/rpki/tal/
https://tal.rpki.ripe.net/ripe-ncc-rfc8630.tal
https://www.lacnic.net/4984/2/lacnic/rpki-trust-anchors
https://afrinic.net/resource-certification/tal
https://packages.debian.org/sid/rpki-trust-anchors
https://packages.debian.org/sid/rpki-trust-anchors
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that is offloaded to a RPKI engine, and the performance issue of time to retrieve the objects in an 
RPKI publication point is not necessarily a critical performance issue. 
 
There are two access protocols used by RPKI client tools. The original protocol, RSYNC, is not 
readily amenable to publication platforms that use duplicated instances of the content and anycast 
transport. The alternative, namely the RPKI Repository Delta Protocol (RRDP) uses conventional 
HTTP URI syntax, and can be supported using CDNs and replicated publication that use either 
anycast or DNS steering of clients to the nearest server. 
 
RRDP is designed to scale much better than RSYNC.  In particular, RRDP is designed to allow 
use of an HTTPS caching infrastructure to reduce load on primary Repository Servers and increase 
resilience against denial-of-service attacks on the RPKI publication service. 

RPKI Publishers, Clients and Operational Resilience 
The RPKI environment is a somewhat different security environment that other applications of 
secure validation of the authenticity of information. Typically, clients perform an on-demand 
validation function on a single object, and the upper layer transaction is typically blocked until the 
validation function returns a result. This occurs in the validation of credentials in a TLS handshake, 
or in the validation of a signed DNS response in the case of DNSSEC. 
 
The goal of the routing system is to flood all routing information to all parts of the network at all 
times. The aim of the RPKI framework is to provide an efficient means for all clients to validate 
this routing information using the credentials published by all RPKI publishers. 
 
For a publisher, reslience implies that all RPKI clients need to be able to reliably access the 
information published by all RPKI publishers at all times. Similarly, all RPKI publishers need to 
publish their information in a way that all clients can efficiently access this published information. 
 
In other realms, such as the DNS, or in web content, there has emerged in some realms a push 
for service self-sufficiency at a level of an economy or a region. For example, all DNS nameservers 
for the top level domain of ".xx" should also use names drawn from ".xx", be physically located 
in the geography defined by the domain ".xx". and preferably local copies of the DNS root zone 
would also be located within the same geography. That way were all forms of external connectivity 
to be disrupted, there would still be adequate local service to allow local DNS operations to 
continue to function, or so goes the thinking behind this. 
 
Do the same considerations apply to the RPKI? Not really. In the extreme scenario of 
comprehensive failure of external connectivity, the inability to access various RPKI publication 
points would presumably cause local RPKI client caches to expire, and this, in turn, would cause 
RPKI validation to fail. However, as noted above, such a failure does not cause an RPKI validation 
function to deem routes "invalid". The failure mode of RPKI is a reversion to "unknown", which 
implies that local RPKI-aware routers would continue to accept whatever BGP routes were being 
announced under such circumstances. There is no ulterior goal of self sufficiency or enhanced 
operational resilience to be served in attempting to localise instances of RPKI credentials and trust 
anchors.  

Conclusions 
While the RPKI is an instance of a distributed data framework, the considerations relating to its 
resilience and efficiency of operation are somewhat unique. 
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It appears that best current approach to ensure the broad and continuous availability of published 
RPKI credential material is to use the RPKI Repository Delta Protocol in conjunction with 
content distribution networks and take advantage of their ability to replicate the material across a 
large scale distribution network, and use either anycast or DNS-based steering to steer the client's 
URL retrieval requests to the closest instance of the distribution network. This approach 
maximises the availability of the RPKI material for the diverse set of RPKI client instances. 
 
The design of this system was mandated by a very strong position from vendors of BGP router 
implementations when this system was being designed, that it was to operate as an overlay to the 
existing BGP framework, and BGP functionality was not to be changed. That has implied that the 
RPKI credential system, where publishers need to flood their published information to all clients, 
cannot take advantage of one of the most efficient flooding protocols we know, namely BGP 
itself. Instead, we have had to revert to a less efficient system where clients need to periodically 
poll publishers to detect if the publisher has changed its published material. I suspect that the 
current design and operational practice in RPKI credential distribution has achieved pretty much 
all that it can achieve within the constraints of this overall approach. If we want to state aspirations 
of greater scalability, faster responses and greater operational resilience then I suspect that we will 
need to question this very basic stricture of being unable to use BGP itself to perform this security 
credential flooding function. 
 
So far RRDP and the selective use of CDNs has reached a generally acceptable position with 
respect to these parameters of operational performance and resilience. However, if we change our 
expectations, or impose new roles on this RPKI framework, then doubtless we will need to come 
back and evaluate just how far we can push the current model and when it is worth embarking on 
a completely different approach. 
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