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The DNS Operations, Analysis, and Research Center (DNS-OARC) brings together DNS service 
operators, DNS software implementors, and researchers together to share concerns, information and 
learn together about the operation and evolution of the DNS. They meet between two or three times a 
year in a workshops format. The most recent workshop was held in Atlanta, in February 2025. Here are 
my thoughts on some of the material that was presented and discussed at this workshop, where too much 
DNS is barely enough! 

DNS Traceroute 
The two goto tools in identifying unusual network forwarding behaviour are ping and traceroute. It’s not just 
in exposing packet forwarding paths that traceroute can be useful, but it has its uses in the DNS as well, as 
Davey Song from Alibaba Cloud described. 
 
Conventional traceroute uses a technique of sending a sequence of ICMP Ping packets with increasing Time 
To Live (TTL) values in the IP header. Each time a packet is processed by a router, the TTL value in the 
IP header is decreased. When the packet’s TTL reaches a value of zero, the router will stop forwarding 
the packet and generate an ICMP Time Exceeded message and pass it back to the originator. By sending 
packets with TTL values of 1, 2, 3 and so on, and looking at the addresses of the routers who are 
responding with these ICMP Time Exceeded messages it’s possible to construct a hop-by-hop path to a 
given IP destination. 
 
This technique can be applied to any form of IP packet, including TCP and UDP packets. Indeed, the 
payload can be a UDP packet containing a well-formed DNS query. This is particularly relevant to 
detection of various forms of on-path DNS blocking, where an intermediate system responds to a DNS 
query with either a synthetic NXDOMAIN response, or responds with a substituted response. 
 
It's helpful to start with an ICMP traceroute to the intended server or resolver being queried, which 
provides the number of hops from the test point to destination IP address and the path to the destination. 
Then a sequence of DNS queries with an increasing TTL can be sent used to the same destination. If 
there is a case of an active intermediary performing selecting query blocking or substitution, then this 
test will reveal a DNS response coming back from a query with a lower TTL than is otherwise required 
to reach the destination, assuming that the queried name is a name that is being blocked by the 
intermediate system. 
 
A convenient way to construct such DNS packets is by using scapy (https://scapy.net/) to construct the 
DNS traceroute packets. 
 
This DNS traceroute approach can detect instances of DNS interception but cannot prevent it. If you are 
looking for tools that provide greater levels of protection against such forms of interception then 
encryption and authentication techniques, such as DNS over TLS, DNS over HTTPS and Obfuscated 
DNS, can hide the DNS traffic from the network (and from any intercepting intermediaries) and 
authenticate the identity of the remote nameserver. 
 

https://indico.dns-oarc.net/event/52/overview
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Presentation: Who Forged my DNS Answers? 

DNS Servers: Virtual vs Bare Metal 
At the upper levels of the DNS namespace hierarchy there is an increasing use of anycast as a means of 
supporting a set of nameservers. But how should you set up this constellation of anycast servers?  One 
approach is to use Virtual Servers where multiple nameserver processes run within their own container 
in a shared host platform. There is also a “Bare Metal” approach where multiple nameserver processes 
run within mutually isolated filesystems on a dedicated platform. A presentation by .DE's Benjamin 
Schönbach looked at the performance implications of this choice of platforms. 
 
Virtual systems can be set up extremely efficiently, administered with ease, and are highly portable. Bare 
metal hosts have superior performance and scalability, but this comes at a cost of a higher administrative 
effort and limited portability (Figure 1). While the presentation did not extend into pricing, I suspect that 
pricing reflects relative levels of demand and virtualised cloud-based servers are the mainstream of the 
cloud environment and are priced highly competitively in most markets. Bare metal services are provided 
as a more specialised service, and this may have a price premium associated with it. A summary of these 
relative trade-offs is shown in Figure 1. 
 

 
 
Figure 1 – Relative merits of Bare Metal va Virtual server platforms from “DNS Anycast Stack” at OARC 44 

 
Presentation: DNS Anycast Stack 

The Answer is "NO" 
There are a number of ways that the DNS can respond to indicate that queried name, or a queried record 
type, does not exist. For non-existent names, the normal response is a NXDOMAIN response code 
(RCODE). Where the record type does not exist, the DNS returns an empty Answer Section and a 
NOERROR RCODE. This is referred to as a NODATA pseudo-RCODE. There are two other 
DNSSEC-signed responses where there is a wildcard match for the queried name and type, and no closer 
match than the wildcard (Wildcard), and where this is a wildcard, but the queried type does not exist 
(Wildcard NODATA). If the zone is not DNSSEC-signed there is no indication provided to the querier 
that the response has been generated due to the presence of a match to the wildcard entry in the zone. 
 
When designing the addition of DNSSEC to the DNS, there was the challenge of how to provide an 
authenticated response to indicate that a name or a record type does not exist. The chosen response 
(eventually) was to use "spanning records", or NSEC records. All the zone's labels are sorted into a 
canonical order and each label entry has an NSEC record that enumerates the defined record types for 
the name and the next name in the zone (in canonical order). That way the DNSSEC credentials for the 
NXDOMAIN response can be generated in advance without knowing what non-existent name is being 
queried. 
 
For example, given a zone file with the following records: 
 

black.example.com. 6400 IN A    192.0.2.1 
   6400 IN RRSIG  A 13 2 6400 (…) 

         6400 IN NSEC   blue.example.com A RRSIG NSEC 
   6400 IN RRSIG  NSEC 13 2 6400 (…) 

https://indico.dns-oarc.net/event/52/contributions/1140/attachments/1086/2220/OARC44_DNS_ANYCAST.pdf
https://indico.dns-oarc.net/event/52/contributions/1140/attachments/1086/2220/OARC44_DNS_ANYCAST.pdf
https://indico.dns-oarc.net/event/52/contributions/1140/attachments/1086/2220/OARC44_DNS_ANYCAST.pdf
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     ` blue.example.com. 6400 IN A    192.0.2.2 

   6400 IN RRSIG  A 13 2 6400 (…) 
    
 
then a query for the non-existent name blot.example.com (and any name that falls between the labels 
“black” and “blue”) will have the following response: 
 

$ dig +dnssec blot.example.com 
 

… 
;; AUTHORITY SECTION: 
example.com.      6400 IN  SOA   example.com. admin.example.com. 2025010101 … 
example.com.      6400 IN  RRSIG SOA 15 3 6400 … 
example.com.      6400 IN  NSEC  acme.example.com. NS SOA RRSIG NSEC DNSKEY 
example.com.      6400 IN  RRSIG NSEC SOA 15 3 6400 … 
black.example.com 6400 IN  NSEC  blue.example.com A RRSIG NSEC  
black.example.com 6400 IN  RRSIG NSEC 13 2 6400 … 
… 

 
This response has two parts. The first four records (the SOA, an NSEC record and two signature records) 
provide an authenticatable account that there is no wildcard record in the zone. The remaining two 
records (NSEC and a signature) provide an authenticatable account that there is no name in the zone 
between “black” and “blue”. 
 
The intention in this design is to allow DNSSEC responses for non-existent names and record types to 
be prepared in advance, and the nameservers for a zone can generate answers from essentially a static 
zone file. The authentication "hooks" are based on the labels and record types that are defined in the 
zone and the NSEC record spans are used to match all non-existent names. 
 
There are a couple of limitations in this approach. The first is that it is easy to enumerate a zone's contents 
by striding the NSEC records. For some zone operators this was (and is) a significant problem. The 
adopted solution was to order the hashes of the labels in the zone, rather than the labels themselves. 
While the SHA-1 hashes of the zone can be decoded, it's not a completely trivial exercise. This approach 
was termed "NSEC3". The issue now is that any changes to the zone require a pass to generate an ordered 
collection of hashes, which can be an imposition for very large sparsely-signed zones. NSEC3 also 
introduced an Opt-Out flag to reduce this span calculation overhead. Addition or removal of insecure 
delegations does not require a recalculation of the NSEC3 chains for the entire zone when using Opt-
Out. 
 
There was a proposal for NSEC5 in 2017 that was provably secure against zone enumeration, but it was 
sufficiently complex and costly to correctly deploy and use that it gathered no momentum in the IETF 
at the time. 
 
The next area of consideration was that of the use of pre-computed signatures as compared to the 
emerging practice of online signing on-demand. Pre-computed signatures are more secure, and the 
signing keys can be stored offline. A signed zone generated in this manner can then be treated in the 
same way as an unsigned zone. The downside is that these signed zone data sets are larger and changes 
to the zone (the addition and removal of labels in the zone) require a signing computation across the 
zone to correctly configure the NSEC (or NSEC3 records). Online signing, in contrast, adds the signature 
records as part of the response generation process. Changes to the zone can be handled without and re-
generation of NSEC or NSEC3 records. However, the online signer needs access to the entire zone to 
generate the correct NSEC or NSEC3 records (which is needed for the NXDOMAIN response) and all 
the RRsets for a given label in a zone (needed for the NSEC record used in the NODATA response). 
The challenge was then to reduce the overheads for the online signer for these types of negative 
responses. 
 

https://datatracker.ietf.org/doc/html/draft-vcelak-nsec5-08
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RFC 4470 (and RFC 4471) described an approach that generated synthetic minimally covering NSEC 
records. Rather than consult the zone file to find the two labels in the ordered zone that span the queried 
name, it’s possible to generate predecessor and successor names that lie effectively one byte “before” and 
“after” the queried non-existent name. 
 

This all sounds a bit odd to me. The whole idea behind NSEC and 
NSEC3 records was that if you are pre-computing the signed response 
to queries for, at the time of signing, unknown labels, then it’s not 
possible to generate in advance a signed response of the form “the label 
x does not exist in this zone”. So NSEC generates a signature using as 
hooks labels that exist in the zone and adds signed records to the zone 
that state “all labels between x and y do not exist.”  
 
But if you are using an online signer that has possession of the zone 
signing key then it can generate a direct signed response that simply 
asserts that the queried label does not exist in the zone. However, this 
was a path not taken. Instead, the chosen path was to persist in using a 
spanning record NSEC(3) response, but to use the absolute minimal 
span that encompasses the queried label. 
 
I suspect that because the original concept was developed by Cloudflare 
outside of the IETF, then they were loath to rely on the existence of new 
Resource Records and new behaviours. The minimally spanning NSEC 
records were intended to operate as an authenticable denial of existence 
without requiring any modifications of the DNS standards and 
modifications to DNS validating code in resolvers.  
 
Somewhat ironically, now that this approach has entered into the 
purview of the IETF, new standard specifications are being drafted to 
describe this behaviour! If you are back in the IETF standards process, 
then why not just define a new signed response that cuts to the chase 
and simply asserts that “No, this label is not in this zone (either explicitly 
or as a wildcard match).” 

 
However, the minimally spanning DNSSEC response is still large, with two NSEC records (one for the 
queried label and one to prove that a wildcard does not exist), and three RRSIG records (one for the 
SOA record and two NSEC records).  
 
Large responses are a problem for the DNS. If we use a UDP transport then the large response may 
trigger UDP fragmentation, where lost packet fragments cause extended delays due to the use of timers 
in the absence of reliable explicit lost fragment signalling. Alternatively, if current operational practices 
are followed, the sender will not attempt a large UDP response and instead provide a truncated UDP 
response, triggering a re-query using a TCP transport, which costs delay in terms of the initial UDP 
transaction and the TCP handshake as well as the TCP control overhead in both the client and the server. 
There is no “best” approach here for large DNS responses, other than to try to avoid them! 
 
The question then is: How to make this negative response smaller? The approach being proposed these 
days is called Compact Denial of Existence. This approach answers queries for a non-existent name by 
claiming that the name exists but there is no data associated with the queried record type. Such NODATA 
DNS responses require just one NSEC record and one signature record, which minimizes both message 
size and computational cost. The downside here is the loss of visibility of the NXDOMAIN signal and 
the ambiguity between non-existent names and so-called “empty non-terminal” names (which contain NS 
records but no other, and as the NS record is only authoritative on the child-side of a delegation the 

https://www.rfc-editor.org/rfc/rfc4470.html
https://www.rfc-editor.org/rfc/rfc4471.html
https://datatracker.ietf.org/doc/draft-ietf-dnsop-compact-denial-of-existence/
https://datatracker.ietf.org/doc/draft-ietf-dnsop-compact-denial-of-existence/
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parent asserts that it has no authoritative data for this label). The solution to this was to assert that the 
non-existent name exists in the zone, and has just three resource records: a RRSIG signature, an NSEC 
record and a NXNAME pseudo RRType.  
 

If you think that all this sounds a lot like piling incremental hack upon 
incremental hack, then you would not be alone in having that thought! 

 
The NSEC record is constructed on the fly using a span of one byte beyond the non-existent name. 
 

blot.example.com 3600 IN NSEC \000.blot.example.com RRSIG NSEC NXNAME 
 
This approach is now being standardized in the IETF. 
 
There is a trade-off going on here in terms of the ability of recursive resolvers to deflect random name 
attacks on authoritative nameservers. RFC 8198 describes the use of Aggressive NSEC Caching, where 
a recursive resolver can reuse a cached NSEC (or NSEC3) response and provide this same response for 
a query for any name that falls within this NSEC name span. That way, the recursive resolver effectively 
absorbs the load of a random name attack without passing the query load on to the authoritative 
nameservers. Minimally covering NSEC responses revert to the same properties as an unsigned zone and 
provide no such assistance in absorbing the load of a random name attack on a zone’s authoritative 
servers. 
 
As Salesforce’s Shumon Huque points out, Authenticated Denial of Existence can be complex. There 
are many varieties with differing features and trade-offs, such as NSEC vs NSEC3, Pre-Computed vs 
Online Signing, White Lies, and Compact Denial of Existence. A given authoritative DNS system is likely 
to offer only specific modes of negative responses. It is a murky area if a DNSSEC-signed zone is served 
by multiple authoritative service operators, each of which use a different approach to Authenticated 
Denial of Existence. Online Signing with minimal NSEC records is popular for domains that are below 
the TLDs, while NSEC3 and Opt-Out remains popular in the TLD space.  
 
The trade-offs include trying to keep the response size as small as possible, allowing caching resolvers to 
absorb random name query attacks, reducing the computation load per query on the authoritative servers 
and ensuring that both servers and resolvers share a common understanding of the various RCODES 
used in these negative responses. 
 
Presentation: A Survey of Authenticated Denial of Existence in DNSSEC 

Served Stale 
The DNS is a loosely coupled system. In general, each component cannot necessarily force another party 
to behave in a certain way. They zone publisher (the zone’s “authority”) certainly provides a collection 
of hints, but they are at best hints and are not firm directives. A good example here is that of a resource 
record’s cache lifetime. The domain’s authority can propose a time duration to a recursive resolver to 
hold a resource record in its local cache, but that is more of a guideline than a mandatory direction. The 
purpose of such a cache hold time is to signal to the broader DNS environment about the anticipated 
longevity of the DNS data, or its anticipated longevity. Longer cache times relieve load from authoritative 
servers and provide faster name resolution to clients but hinder the process of making changes to the 
zone. 
 
A resolver is expected to keep a copy of the data records it obtained from a zone’s authoritative 
nameservers, and when subsequent queries are received, then the resolver can simply use the locally 
cached response and not query the authoritative nameserver. This local caching is the essential behaviour 
that makes the DNS viable and has allowed it to scale to the scope of today’s network. Without it the 
DNS would not function in any useful manner. Caching is what allows DNS data to be pushed off to 

https://datatracker.ietf.org/doc/draft-ietf-dnsop-compact-denial-of-existence/
https://www.rfc-editor.org/rfc/rfc8198.html
https://indico.dns-oarc.net/event/52/contributions/1147/attachments/1103/2287/AuthenticatedDenial.pdf
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the edge of the network very close to the user devices making the queries. Looking at the queries seen at 
the root servers, or at authoritative nameservers is only a small part of the picture of DNS activity, as like 
the tip of an iceberg, the bulk of the query volume lies below the surface, absorbed by local caches. 
 
RFC 8767 describes an approach termed serve stale, where a recursive resolver may use “stale” DNS data 
to avoid outages when authoritative nameservers cannot be reached to refresh expired data in the local 
cache. One of the motivations for serve-stale is to make the DNS more resilient to DoS attacks and 
thereby make them less attractive as an attack vector, as the RFC asserts. 
 
In using stale data, the local conditions are that the local cache entry has been held for more than the 
cache retention time interval, and the authoritative nameservers are not providing responses.to the local 
resolver. This still has some vague aspects, such as how long should a resolve retain and use notionally 
expired cached content. Hours? Days? Years? How much effort should a resolver expend in terms of 
time and queries before deciding that the authoritative nameservers are unresponsive and a stale answer 
used instead? Should the resolver retry to contact these unresponsive nameservers upon every query, or 
should the serve-stale state be cached and reused immediately for subsequent queries? What is the 
appropriate retry interval to re-query these unresponsive nameservers? At what point should the resolver 
stop serving stale RRsets. While Extended DNS Errors (RFC 8914) has the option to mark the response 
as “stale” what response code should be used otherwise? If a response is marked as “stale” what should 
the querier do in response, if anything? 
 
There are a number of timers in a recursive resolver that have some relevance to the decision to serve a 
stale cached response.  
 
The first is a client response timer, which determines the maximum amount of time that a resolver will spend 
in trying to assemble a response. When this timer expires should the resolver: 

• Drop the query on the floor unanswered? Probably a poor choice, as the client may well assume 
some form of network loss and re-query in any case. 

• Respond with a SERVFAIL RCODE? This indicates that the resolver has been unable to 
assemble a response, and hint to the client to try some other resolver if they are desperate for an 
answer. 

• Serve a stale response from the local cache? 
 
The second is the query resolution timer, which bounds the total amount of time that a recursive resolver 
will spend in attempting to assemble a response. An “unresponsive” authoritative nameserver in UDP is 
not sending the resolver an answer of the form: “I’m not going to answer you!” There is simply no answer 
at all in some given time interval which allows the recursive resolver to determine that the server is indeed 
“unresponsive”.  
 
The third is the failure recheck timer, which limits the frequency at which a failed lookup will be attempted 
again, which implies that the stale response will continue to be used for the lifetime of this failure recheck 
timer. 
 
Finally, there is the maximum stale timer, which limits the amount of time that records will be kept past 
their nominal expiration, limiting the total “staleness” of such stale responses. 
 
The presentation from ISC’s Cathy Almond then explained how serve stale can be configured in a number 
of popular open source name server implementations, including Bind, Unbound, Knot and PowerDNS. 
I won’t repeat that material here, as it can be found in her OARC 44 presentation. 
 
The question Cathy poses at the end of her presentation is particularly relevant: “Is the serve stale feature 
genuinely useful?” Are old (and potentially outdated) responses better than no response at all? Or to put 
it another way: Are there reports from operational environments where serve stale has allowed name 
persistence through a period of extended outage of all authoritative nameservers? When a cache entry 

https://www.rfc-editor.org/rfc/rfc8767
https://www.rfc-editor.org/rfc/rfc8914.html
https://www.rfc-editor.org/rfc/rfc8914.html
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has timed out out it is certainly faster to serve a query by returning a stale response and then refresh the 
stale cache entry from the authoritative server in the background, but is this approach just too risky? 
 
The DNS is not a protocol that maintains tight synchronisation. It’s a loosely coupled system where the 
data that is served is “approximately recent” rather than “instantaneously current”. By relaxing this time 
window of loose synchronisation even further by allowing resolvers to serve cache timed-out data are we 
crossing a line between maintaining timely data coherency and trying to further improve aspects of DNS 
resilience? 
 
Presentation: Thinking about serve-stale? 

DNS Packet Sizes 
When dealing with large DNS responses, The DNS steers a careful path between a couple of potential 
problem areas. The first is the handling of large responses using DNS over UDP. Once the response 
packet is greater than 1,500 bytes then IP fragmentation typically occurs, and fragment packet loss is qall 
too common. The DNS response is to use limit the size of DNS over UDP packets to the lesser of the 
EDNS(0) buffer size and around 1,400 octets. If the response is greater than this size, then the responder 
sets the truncated flag in its response. The DNS Answer section is not used in a truncated response, so 
it can be left empty. The querier is supposed to re-query using TCP. 
 
AS IBM’s Shane Kerr points out in his presentation on Packet Sizes, this requery using TCP is not 
universally supported within the Internet, and resolvers who do not use TCP are prone to enter a loop 
of UDP re-queries. Maybe the DNS 2020 Flag Day advice to use a 1,232-octet buffer size is too small 
and is triggering a requery using TCP unnecessarily. 
 
This topic of the inability to perform a requery over TCP after receiving a truncated response was studied 
a year ago by APNIC Labs. Our study found that the TCP failure rate affected some 0.77% of users 
across the Internet. Higher than average TCP failure rates were observed in Bharti Airtel in India, China 
Unicom Guandong, and, interestingly, in a number of ISPs in Chile. There is no clear reason why this 
problem occurs over a number of Chilean ISPs. 
 
Presentation: Kobayashi Maru: Packet Sizes 

HTTPS Queries 
QUIC is one of the more recent additions to the Internet’s set of transport protocols. By “more recent” 
I mean “within the last 15 years or so!” which is not exactly recent. And it’s not exactly a new transport 
protocol, as QUIC uses UDP as its transport protocol. QUIC is in some ways a re-packaging of TCP as 
an encrypted payload within a UDP stream. 
 
How can a web client and server reveal their mutual interest in running QUIC as a session protocol? The 
original approach was to embed the server’s capability to use QUIC via an Alternative Service directive 
embedded in the in the web content header, namely the addition of a content header: Alt-Svc: 
h3=”:443”. The intended response by the client was to cache the association of the object’s URL and 
the server’s identity with the capability to use QUIC, and on the subsequent use of this URL by the client, 
it would use QUIC to perform the access to the server. 
 
A more recent trigger has been the use of a domain name with a defined HTTPS RR type whose value 
includes the field: alpn=”h3”. If the service can publish its QUIC capabilities in the DNS, then the client 
can query for this HTTPS RR type and if the alpn field includes “h3” then the client can use QUIC at the 
outset.  
 
These days a dual-stacked, QUIC-capable client will launch three DNS queries simultaneously, for the 
A, AAAA and HTTPS RRtypes. For example, in the DNS query record below the three queries are 
launched within 0.108 seconds of each other. The A query is delayed presumably due to the Happy 
Eyeballs behaviour.  

https://www.potaroo.net/ispcol/2024-02/truncation.html
https://www.potaroo.net/ispcol/2024-02/truncation.html
https://www.potaroo.net/ispcol/2019-03/quic.html
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1740355205.111693 client 172.70.x.x#53408: query: 0du-xx-0.ap.dotnxdomain.net. IN AAAA -ED 
1740355205.111896 client 172.70.x.x#29891: query: 0du-xx-0.ap.dotnxdomain.net. IN HTTPS -ED 
1740355205.122545 client 172.70.x.x#19959: query: 0du-xx-0.ap.dotnxdomain.net. IN A -ED 

 
As a result, one way to look at the uptake of QUIC as a client-side capability is to look at the logs of 
DNS queries and look at the occurrence of queries for A, AAAA and HTTPS RRtypes. And this is what 
Akamai’s Ralph Weber reported on (Figure 2). The data shows a steady increase in the number of HTTPS 
queries. In this data set if A queries are 100%, then 32% of these names were also queries for their AAAA 
record and 5.5% of these names were queries for their HTTPS record. 
 

 
Figure 2 – A, AAAA and HTTPS queries, seen by Akamai, from “ECH from a DNS (data) perspective” at OARC 44 

 
The other interesting data table is the use of the fields of this HTTPS record. This is shown in Table 1.  
 

 
 
Table 1 – HTTPS SVCB Parameters used in Tranco top 1M names, from “ECH from a DNS (data) perspective” at OARC 
44 

 
It is interesting to note that the dominant use of the HTTPS record, aside from the primary purpose of 
signalling QUIC capability at the server,  is to provide the ipv4hints and ipv6hints address fields. RFC 
9460 suggests that if A and/or AAAA records are also available, then clients should ignore these hint 
values. It is also interesting to note the prevalent use of the ech field, used to signal the key used to 
encrypt the SNI field in the TLS client hello. It is evident the majority of the use of these fields is related 
to the use of DNS and web hosting services being provided by Cloudflare hosting. 
 

I must admit to being somewhat surprised by the use of three separate 
queries, namely HTTPS, A and AAAA as these A and AAAA queries 
are not necessarily essential queries given the use of the hints fields in 
the HTTPS record. However, the querier has no a priori knowledge of 
the presence of these fields in the HTTPS record. Maybe we could adopt 
a convention that always places the addresses in HTTPS record. Maybe 
we should reverse the relative preference in RFC 9460, with the 
underlying objective that a single DNS query for the HTTPS record 
should suffice in terms of a assembling a preferred connection profile 

SVCB Parameter Count %
mandatory 33 0.00%
apln 75,521,983 99.58%
no-default-alpn 170 0.00%
port 1,806 0.00%
ipv4hint 75,531,330 99.59%
ipv6hint 73,437,342 96.83%
ech 64,966,919 85.66%
dfohpath 9 0.00%

https://indico.dns-oarc.net/event/52/contributions/1155/attachments/1099/2316/WideHTTPSWeber.20250131.pdf
https://indico.dns-oarc.net/event/52/contributions/1155/attachments/1099/2316/WideHTTPSWeber.20250131.pdf
https://indico.dns-oarc.net/event/52/contributions/1155/attachments/1099/2316/WideHTTPSWeber.20250131.pdf
https://www.rfc-editor.org/rfc/rfc9460.html
https://www.rfc-editor.org/rfc/rfc9460.html
https://www.rfc-editor.org/rfc/rfc9460.html
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such that the next packet from the client should be one to initiate a 
connection to the HTTP service! 

 
Presentation: ECH from a DNS (data) perspective 
 
 
 
 
  

https://indico.dns-oarc.net/event/52/contributions/1155/attachments/1099/2316/WideHTTPSWeber.20250131.pdf
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