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It is common folklore in the Domain Name System that a delegated domain name must be served by 2 
or more nameservers. The logic for this is based in a desire for service resilience. If one server is 
unreachable then hopefully the other is not, and recursive resolvers when presented with a list two or 
more nameservers for a domain will work through this list until it queries a nameserver that is responsive. 
 
This simple description raises a couple of questions. Firstly, when presented with a list of nameservers 
for a domain how do recursive resolvers respond? Do they send queries to all of the nameservers at 
once? Or do they serialise their actions in looking for a responsive nameserver? Secondly, if these queries 
are serialised, then how can a domain administrator organise the zone’s nameservers to maximise both 
DNS resolution performance and service resilience?  

Recent Work 
To assist with answering out questions there are a couple of recent(ish) papers that address parts of this 
topic. The first paper dates from 2017, “Recursives in the wild: Engineering Authoritative DNS Servers”, 
by a group of researchers at SIDN Lans and USC’s Information Sciences Institute 
(https://ant.isi.edu/~johnh/PAPERS/Mueller17b.pdf). They motivate their study by observing that 
“To meet their goals of minimizing latency and balancing load across NSes and anycast, operators need 
to know how recursive resolvers select an NS, and how that interacts with their NS deployments.” By 
the time that this work was undertaken the use of anycast in the DNS was well-established operational 
practice, and the conclusion from the paper is that: “all name servers in a DNS service for a zone need 
to be consistently provisioned (with reasonable anycast) to provide consistent low latency to users.” 
 
There is a current Internet Draft document, “Secure Nameserver Selection Algorithm for DNS 
Resolvers” by researchers from Tsinghua University, Alibaba Cloud and Salesforce that focuses on the 
behaviour of recursive resolvers (https://datatracker.ietf.org/doc/draft-zhang-dnsop-ns-selection/). 
This draft provides a description of the nameserver selection algorithms used in a number of commonly 
used recursive resolvers (Bind 9, Unbound, Knot, PowerDNS, Microsoft DNS). This document also 
notes that: “Nameserver selection algorithms employed by DNS resolvers are not currently standardized 
in the DNS protocol”. 
 
This is the case. The only reference to nameserver selection int he RFC series is in RFC 1034, which has 
the advice that “The sorting [of nameservers] … may involve statistics from past events, such as previous 
response times and batting averages.” (RFC 1034, “Domain Names – Concepts and Facilities, Paul 
Mockapetris, 1987). Yes, the term “batting average” is used here, without further elucidation. Presumably 
it means some record of responsiveness to respond to queries, although other interpretations are equally 
possible! 

Some Simple Tests of Resilient Resolver Behaviour  
How do recursive resolvers behave where attempting to resolve a domain name served by multiple 
nameservers where none of the nameservers are responsive? Table 1 shows the behaviour of the Bind 9 
resolver when presented with a variable collection of IPv4-only nameservers. 
 

https://ant.isi.edu/~johnh/PAPERS/Mueller17b.pdf
https://datatracker.ietf.org/doc/draft-zhang-dnsop-ns-selection/
https://www.rfc-editor.org/rfc/rfc1034
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Servers Queries Duration 

(secs) 
Servers 

Queried 
1 3 7.2 1 
2 6 8.1 2 
3 8 10.0 3 
4 7 10.0 4 
5 7 8.8 5 
6 8 9.6 6 
7 7 8.8 6 
8 7 8.8 6 
9 7 8.8 6 
10 7 8.8 6 
11 8 9.6 6 
12 7 9.2 6 
13 8 10.0 7 

 
Table 1 - Bind 9 Query behaviour with unresponsive IPv4-only nameservers 

 
In the case of a single non-responsive nameserver, the resolver will halt after 3 queries, taking a total of 
7.2 seconds. For more servers the resolver appears to bring resolution to a halt after some 9 - 10 seconds. 
The resolver appears to query 6 nameservers, except for the case when there were 13 nameservers, when 
7 nameservers were queried. In each case the resolver was “cold started” with a clear cache.  
 
Does the picture change when using unresponsive dual stacked nameservers? Table 2 shows the outcome 
of this test, and the results are largely the same. 
 

Servers V4 Queries V6 Queries Queries Duration 
(secs) 

Servers 
Queried 

1 3 3 6 8.0 1 
2 4 3 7 8.1 2 
3 4 4 8 9.6 3 
4 5 3 8 9.7 4 
5 3 4 7 8.8 5 
6 3 5 8 9.6 6 
7 3 6 9 8.8 5 
8 2 6 8 8.8 5 
9 3 4 7 8.8 6 
10 4 5 9 10.0 6 
11 3 4 7 8.8 6 
12 4 4 8 9.6 6 
13 5 7 12 10.0 7 

 
Table 2 - Bind 9 Query behaviour with unresponsive Dual Stack nameservers 

 
The conclusion to be drawn from this measurement is that there is little to be gained in terms of resilience 
in using more than 6 nameservers when using Bind 9 as a recursive resolver. 
 
Each recursive resolver implementation has chosen to implement failover and resilience in a different 
manner. Tables 3 and 4 show the results of the same experiment with unresponsive nameservers, using 
the Unbound recursive resolver. 
 

Servers Queries Duration 
(secs) 

Servers  
Queried 

1 11 46.6 1 
2 21 55.4 2 
3 37 331.7 3 
4 52 327.7 4 
5 65 428.4 5 
6 72 360.0 6 
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7 21 131.6 2 
8 63 534.5 6 
9 107 533.5 9 
10 110 230.4 10 
11 109 395.6 11 
12 135 541.6 12 
13 124 188.8 13 

 
Table 3 - unbound Query behaviour with unresponsive IPv4-only nameservers 

 
Servers V4 Queries V6 Queries Queries Duration 

(secs) 
Servers 

Queried 
1 10 11 21 84.2 1 
2 13 11 24 229.1 2 
3 33 12 45 336.4 3 
4 28 16 44 391.2 4 
5 61 51 112 735.5 5 
6 57 61 118 585.3 6 
7 63 43 106 258.5 6 
8 71 78 149 1,577.0 7 
9 67 47 114 177.5 8 
10 66 48 114 717.8 8 
11 79 58 137 203.6 9 
12 67 62 129 223.1 8 
13 67 62 129 246.5 9 

 
Table 4 - unbound Query behaviour with unresponsive Dual Stack nameservers 

 
Clearly unbound is a far more persistent algorithm, spacing out its queries in increasing intervals 
(increasing in doubling steps with 3, 6, 12 and 24 second between queries) for a period of some minutes. 
In general, stub resolvers typically stop waiting for a response from a recursive resolver after 10 seconds, 
so it is not exactly clear of the incremental benefit in having the recursive resolver persist for many more 
minutes. It strikes me as a measure that has little, if any, positive features. The original querier has given 
up after 10 seconds, so no client is waiting for a response, and the additional queries to unresponsive 
nameservers appear to simply add to the level of DNS background noise. 
 
There is also the additional worrisome issue of DOS amplification where a single query from a stub 
resolver to an unbound recursive resolver can generate over 100 queries. Is this age of acute sensitivity 
to various forms of denial-of-service vulnerabilities, this behaviour pattern appears to be far more of a 
harmful liability than a sign of virtuous persistence! I have no idea why the Unbound support folk still 
have this behaviour in their implementation. Bind 9’s approach of abandoning a resolution process after 
some 9 seconds appears to match stub resolver behaviour and shows an adequate level of persistence in 
attempting to deal with unresponsive nameservers.  

Large-Scale Measurements of Recursive Resolver Behaviour  
Multiple nameservers are intended to provide both resilience and improved performance. There appears 
to be a general expectation that recursive resolvers have implemented some interpretation of the general 
objectives of nameserver selection and will attempt to prefer querying the recursive resolver with the 
fastest response. The following descriptions of recursive resolver nameserver selection is drawn from a 
current Internet Draft document, “Secure Nameserver Selection Algorithm for DNS Resolvers” by 
researchers from Tsinghua University, Alibaba Cloud and Salesforce 
(https://datatracker.ietf.org/doc/draft-zhang-dnsop-ns-selection/). 
 
Bind 9 uses an estimate of the smoothed Round Trip Time (SRTT) for each nameserver, and selects the 
nameserver with the lowest SRTT for the next query. Nameservers that have not been queried are 
assigned an initial SRTT of between 1 to 32ms. Also, all nameservers that are not selected have their 

https://datatracker.ietf.org/doc/draft-zhang-dnsop-ns-selection/
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SRTT values decreased.  Over time such nameservers will be selected and queried, and the SRTT value 
is reset to the actual query/response time as a result. 
 
Unbound uses a different strategy. The resolver randomly selects from all candidate nameservers, 
excluding a nameserver from this candidate set only when its SRTT exceeds the fastest one by more than 
400ms. 
 
The Knot resolver attempts to balance a strong preference to use the closest nameserver, and a need to 
check on all other nameservers to see if the reachability of any of these nameservers has changed. Some 
95% of cases a Knot resolver will query the lowest latency server and randomly choose from the other 
servers some 5% of cases. 
 
PowerDNS applies a “decay” function to the SRTT of each nameserver during each query, ensuring that 
with more cases the unused nameserver’s SRTT will decay to the point when it is the most preferred/ 
 
Let’s put this theory to the text by using a large-scale measurement of the interaction between recursive 
resolvers and authoritative servers. We will enrol recursive resolvers by using an advertisement-based 
measurement platform, presenting the measurement system with some 20M – 30M individual 
measurement cases per day. The measurement script presents the user’s system with a unique DNS name 
(so that caching cannot influence the results), where the name is drawn from a uniquely-named domain 
that is served by four dual-stack unicast geographically dispersed nameservers. 
 
The locations of each of these nameservers, and the RTT path times between each pair of these servers 
is shown in Figure 1. 
 

 
 
Figure 1 – Placement of unicast nameservers for the resolver measurement 

 
What we expect to see if recursive resolvers behave with a balance of performance and resilience would 
be for the resolver to have a strong “attachment” to the nameserver that has the fastest DNS response 
times, and a regular periodic sweep across the other nameservers to confirm that the selected server 
remains the fastest to respond. A plot of the nameserver selection of this “ideal” recursive resolver is 
shown in Figure 2. The servers labelled in the figure are in for Mumbai, eu for Frankfurt, am for Atlanta 
and ap for Singapore. 
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Figure 2 – Simulation of a recursive resolver under a constant query load with strong attachment behaviour 

 
We can compare this idealised behaviour against a couple of widely used recursive resolver 
implementations. Figure 3 shows the query behaviour of a recursive resolver located in Australia, running 
Bind 9 when querying for names that are served by this measurement rig. Unlike the earlier tests when 
looking at the resilience behaviour of recursive resolvers, in this case the nameservers are always reachable 
and responsive. The test generates unique-named queries at a rate of 1 per second and we are looking at 
the selection of a nameserver used to form the recursive resolver’s response. 

 
Figure 3 – Nameserver selection of a Bind 9 recursive resolver 

 
Unbound, on the other hand, uses a nameserver selection algorithm with a far coarser level of granularity 
of 400ms. This roughly corresponds to the diameter of the public Internet, so in practice the selection 
algorithm corresponds to a random choice with no particular bias to use faster resolvers. Figure 4 shows 
the behaviour of this test using a recursive resolver running Unbound 1.17.1. 
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Figure 4 – Nameserver selection of an Unbound 1.17.1 recursive resolver 
 

In the case of the Unbound resolver, there is no strong signal that the resolver prefers to use the fastest 
nameserver. The RTT times for each of the servers are: 104ms for ap, 170ms for in,  217ms for eu and 
278ms for am.  Why the resolver prefers to use the most distant server, am, in preference to the eu server 
is unclear to me. 
 
Using the same technique, we can look at the two most popular open resolvers, the Google Public DNS 
service operated from 8.8.8.8 and Cloudflare’s 1.1.1.1 service. Both of these resolver services are operated 
as an anycast service, so the test system’s DNS query should reach an instance of the anycast set at a 
location close to the test system, in Australia. Repeated queries would be directed to a resolver located in 
a similar location as the initial resolver which implies that if there is a bias toward maximising 
performance, then the recursive resolver would prefer to query the nearest server. What we observe for 
the Google service is shown in Figure 5 and in Figure 6 for the Cloudflare service. 

 
Figure 5 – Nameserver selection for the Google 8.8.8.8 resolver 
 

It is evident that there is no strong attachment preference in the Google service. The nearest service, the 
ap service in Singapore is queried at a higher rate than the server located in Mumbai, and the servers in 
Frankfurt are queried less frequently, but the bias is not a pronounced one.  
 
This relative preference is also visible in the Cloudflare 1.1.1.1 query profile, where the query volume 
appears to be inversely related to the RTT for each server relative to the original query location in 
Australia. 
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Figure 6 – Nameserver selection for the Cloudflare 1.1.1.1 resolver 

 
The larger scale measurement involved running the measurement over an 8-day period from the 1st to 
the 8th December 2024. We look at the resolvers that query the four nameservers in our measurement, 
and use a similar presentation format as already use above the show the nameserver selection preference 
for each of the recursive resolvers. 
 
The most used resolver is one operated by Bharti Airtel in India, a network that has an estimated 31M 
end users (https://stats.labs.apnic.net/cgi-bin/aspop?c=IN&d=16/12/2024). The query distribution 
for a 60-minute period is shown in Figure 7. 

 
Figure 7 – Nameserver selection for 61.95.227.107, operated by Bharti Airtel, India 

 
At this level of granularity it is evident that the resolver has a preference to direct queries to the Singapore 
server (ap), some 31ms distant by RTT, not to the apparently closer server located in Mumbai, which has 
a RTT of 27ms. The other server used by this resolver in Frankfurt is 145ms distant. Curiously, there 
were no queries sent to the server located in Atlanta over this period. 
 
The summary of the 8-day measurement period for this resolver is shown in Table 5. As the queries are 
not uniformly spread in time, instead of using a query count as an indicator of preference we’ll use a 
matric of an attachment time where the time interval between two successive queries to the same server is 
added to the total attachment time for that server. The Attachment Ratio is the relative amount of time that 
the resolver was attached to this server. 

https://stats.labs.apnic.net/cgi-bin/aspop?c=IN&d=16/12/2024
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Server Queries Attachment Time 

(secs) 
Longest Attachment 

Interval (secs) 
RTT (ms) Attachment 

Ratio 
Atlanta 87 1 0 243 0% 
Singapore 611,992 202,012 725 31 48% 
Frankfurt 581,799 183,051 637 145 44% 
Mumbai 300,751 32,153 580 27 8% 

 
Table 5 – 8-day Query Profile for 61.95.227.107, operated by Bharti Airtel, India 

 
This presentation clearly shows that this resolver, located in India, has an equal preference to query 
servers located in Singapore and Frankfurt. 
 
This per-resolver attachment ratio now gives is an approach to represent the attachment preference for 
the 100 resolvers that had the highest query counts in this measurement. 
 

 
Figure 8 – Attachment Profile for the top 100 resolvers 

 
Each vertical line is the measurement for a single resolver, and the radius of the circles for each server is 
the attachment ratio. The larger the circle, the greater the attachment ratio. Figure 8 clearly shows a 
preference to query the servers located in Frankfurt and Singapore, but it is not clear whether this 
preference is based on the distribution of placement of advertisements or the underlying distribution of 
user populations. 
 
Over this 8-day period 166,580 resolver IP addresses were observed to query the domain name. To 
perform this form of query analysis for attachment its necessary, and for this it is helpful to have a 
relatively dense sequence of queries. The top 1,000 resolver IP address that ask the most queries vary 
from 1,494,629 to 36,482 queries, or an average of one query every half a second to one query every 
twenty seconds over the eight-day period. This set of the top 1000 resolver IP addresses account for 27% 
of the total query volume. 
 
If a resolver queries a single server for more than 60% of the time, then we will term this a “strong 
attachment” query behaviour. A total of 616 resolver IP addresses show a strong attachment from this 
set of 1,000 resolvers. If no server has more than 40% of attachment time, then we can term this as “no 
attachment” preference. A total of 53 resolver IP address show no attachment preference. 
 
The next question is how good is this attachment preference? To perform this analysis, we can measure 
the RTT from each server to the resolver, and compare the RTT’s against the attachment result. 
 
For example, the IPv6 address 2a01:e00:ffff:53:2::13 is a recursive resolver operaed by the ISP Free.FR 
in France. The ping RTT measurements for this resolver IP address are: Atlanta – 95.3ms, Singapore - 
307.5ms, Frankfurt - 9.8ms and Mumbai - 241.6ms. If this resolver were to make an accurate selection 
of the closest server, then it would select the server located in Frankfurt. The queries made by this resolver 
show that the server located in Atlanta was used for 70% of the time, which is some 85ms more distant 
than the closest resolver. So the “error” in this resolver’s selection process is 85ms. 
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We can apply this technique to the 661 resolver IP addresses that show a strong attachment preference. 
Of the 661 resolvers, some 498 respond to ping requests. Of these 499 resolvers, 199 had made a strong 
attachment to the server with the lowest ping time (39%). The remaining 299 resolvers have selected a 
more distant resolver. The average error time interval for these resolvers was 142.3ms. The distribution 
of these error values is shown in Figure 9. There is a strong signal of an error time of less than 120ms, 
which is the case for 175 of these resolvers. The highest error value was 434ms. 

 
Figure 9 – Selection mismatch RTT time error distribution for 299 resolvers 

Conclusions 
What us this data telling us? 
 
A domain publisher cannot rely on the server selection algorithm used by today’s recursive resolvers to 
make an optimal selection from a dispersed set of unicast authoritative nameservers. If name resolution 
performance is an important factor, then the domain publisher needs to look to anycast solution, 
preferably with a highly diverse collection of points of presence within the anycast constellation. Anycast 
pushes the responsibility of the nameserver selection process away from the recursive resolver and into 
the routing system. If the anycast distribution is sparse or concentrated in a small region, then the 
relatively coarse BGP route selection algorithm of AS Path Length may not produce optimal outcomes. 
Widely dispersed anycast networks will have a better outcome here. 
 
How many nameservers is enough? If the domain is using anycast as a method to ensure the performance 
of name resolution, the major motivation behind the choice of the number of nameservers is that of 
resilience. Using two or more nameservers from the same anycast service platform achieves little in the 
way of additional resilience. A hybrid approach of using both anycast and unicast nameservers can 
improve resilience, but at the cost of potential compromise in resolution performance through poor 
resolver selection of nameservers. There is a practical limit to the number of nameservers that most 
recursive resolvers will query, so the additional marginal improvement in resilience decreases with each 
additional nameserver when the domain is served by more than two nameservers, unicast or anycast. 
 
This analysis suggests that the optimal approach is for a domain when considering both performance and 
operational resilience is for the domain to be served by two distinct dual-stack diverse anycast 
nameservers. 
 
If the domain being served is DNSSEC-signed using front end-signers, then this advice needs some 
further qualification, as the scenarios related to key management and coordination between the two 
anycast platform providers can quickly become quite complex. But that scenario is perhaps best left to a 
future article!  
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