
The ISP Column
A column on things Internet

November 2024

Geoff Huston

DNS OARC 43
The DNS Operations, Analysis, and Research Center (DNS-OARC) brings together DNS service
operators, DNS software implementors, and researchers together to share concerns, information and
learn together about the operation and evolution of the DNS. They meet between two to three times a
year in a workshops format. The most recent workshop was held in Prague, October 2024, and all the
presentations from the workshop can be found here. Here are my thoughts on some of the material that
was presented and discussed at this workshop.

DNS as an Attack Platform
Akamai's Richard Meeus provided the somewhat disturbing statistic that some 65% of the DDOS
(Distributed Denial of Service) attacks seen in Q3 of 2024 leveraged the DNS, either as DNS resource
exhaustion attacks or as DNS reflection attacks. Neither of these techniques are novel attack vectors.
The resource exhaustion attack attempts to exhaust the resources of either a DNS recursive resolver or
an authoritative DNS server through a high volume of queries that take some time, or server resources,
to formulate a response (such as CNAME chains, or missing glue record chains in referral responses), or
the key trap scenario where DNSSEC validation consumers significant resources on the part of the
validator. DNS reflection attacks are very much old school these days. They exploit the observation that
in the DNS it’s possible to generate a response that is significantly larger than the query. By using the IP
address of the intended victim as the source address of attack traffic DNS servers can be coopted into
sending high volumes of traffic to the victim.

The trends in such attacks show increasing packet intensity over longer periods of time with increasing
frequency (Figure 1).

Figure 1 – Profile of recent DDOS Attacks, Richard Meeus, Akamai (OARC 43 Presentation)

There are no novel responses here. The old fallback is to build enough capacity in the server infrastructure
such that is extremely challenging to generate a query load that will exhaust the server capacity. Of course
this generates escalation pressure in the attack/defence process. Higher capacity defences motivate more
intense attacks, which in turn motivates higher capacity defences, and so on. As the stakes escalate,
effective defence becomes a more challenging proposition that only the largest platform operators can

https://indico.dns-oarc.net/event/51/

 Page 2

provide, and the side effect of this escalation is yet another factor that motivates further centralisation in
the provision of DNS infrastructure.

Somewhat disturbingly, it appears that to some extent the promulgation
of novel attacks can be attributed to academic security researchers whose
supposed role is to defend against such attacks. It appears that their self-
justification is that in order to improve security, then a deep
understanding of the problem at hand is required and this level of
understanding entails finding a way to weaponize it, so that it then
becomes an attack. Their rationale appears to be that a simple
description of threats and vulnerabilities is typically inadequate to
generate a corrective response from vendors, and it is only when a
method to exploit such a vulnerability and turn it into a major attack that
vendors take it seriously!

Yes, there is an argument that security by obscurity is no defence, but
the extent to which the discovery of vulnerabilities and their exploitation
as disruptive attacks has become a path for funding of research activities
is morphed this research activity into one that has crossed the line from
defence into attack many years ago! We are no longer working on making
a “safer” space, but diligently working on making far more insecure, and
far more unsafe! These days, we appear to be our own worst enemy!

In a similar vein, there was a presentation of the DNSBomb attack, concentrating a low-rate query traffic
into a high-rate response by pulsing these responses in time. Key Trap is an instance of a toxic zone
configuration designed to force a recursive resolve into consuming resources to the extent that would
impair its normal function and is again an instance of the same class of researcher-lead attack vectors.
There is also NRDelegation, CacheFlush, CAMP, NXNSAttack and simple non-existent name queries. It
seems to me that the blindingly obvious response for a resolver against all of these resource exhaustion
attacks is to impose limits on the effort associated with resolving a name and stopping resolution once
any such limit is exceeded. It is a characteristic of DNS transactions that the information-bearing
response will inevitably be larger than a DNS query. Equally, it’s a weakness of DNS UDP-based
transactions that the responder is placed in the position of having to respond to a query where neither
party authenticates each other.

Is the issue here a lack of fine-grained detail in the standard specification of DNS resolver and server
implementations. Should we generate more RFCs to codify aspects of DNS behaviour that have been
leveraged to form and attack vector? Or is the problem in the lack of clear specification in the content
of the DNS database elements, in the zone configuration files? For example, how many name servers for
a domain is too many? And does the answer to this question change if there are no glue records, forcing
the resolver to resolve each of these name server names. Similarly, what if the name server name is served
from a zone that itself does not contain glue records, and so on? How many stacked referral queries is
too many, and should a resolver stop at a certain length of a chained referral sequence? Efforts to address
these issues in standards-based specifications don’t seem to be gaining sufficient traction.

Should we try to maintain a list of past and current attack vectors and a matching set of specifications
for DNS resolvers and authoritative server, as well as specifications for the content of DNS zone files?
This could represent a significant amount of effort (not to mention a continuous sequence of DNS-
related RFCs to add to the few hundred RFCs that have already been published).

There is an underlying tension here between a resolver being diligent in attempting to resolve a name by
exploring every available option until the name is resolved, against the resolver deliberately stopping its

https://blog.apnic.net/2024/03/12/keytrap
https://blog.apnic.net/2024/03/12/keytrap
https://emaillab.jp/docs/dns/RFC-DNS.pdf

 Page 3

resolution process at some set of threshold points to defend itself against against resource exhaustion
attacks. Do we try to codify all such possible attacks and potential responses? Or should we ask resolver
implementations to simply exercise common sense? I suspect that the temptation to over-think this
prescriptive style of approach is a constant issue, and increasing the volume of specification documents
does not necessarily lead to more robust implementations.

I had thought that the 1987 advice from RFC 1035, section 7.1, was still perfectly adequate here:

“The amount of work which a resolver will do in response to a client request must be limited to
guard against errors in the database, such as circular CNAME references, and operational
problems, such as network partition which prevents the resolver from accessing the name servers
it needs. While local limits on the number of times a resolver will retransmit a particular query to
a particular name server address are essential, the resolver should have a global per-request
counter to limit work on a single request. The counter should be set to some initial value and
decremented whenever the resolver performs any action (retransmission timeout, retransmission,
etc.) If the counter passes zero, the request is terminated with a temporary error.”

RFC 1035, “Domain Names – Implementation and Specification”, Paul Mockapetris, 1987

The root cause, as far as I can see, is that these strictures described RFC1035 are often harder to
implement at scale than they might look, but it we want to get past chasing our tail with an ever-expanding
set of specific responses intended to address specific behaviours, then the more generic advice of the
need to resolver to perform self-protection needs to be given more serious implementation attention
than it appears to have garnered so far.

This topic was a panel discussion at OARC 43, and the slides can be found here.

DNS Privacy and Anonymity
The DNS is placed in an invidious position with respect to privacy. If you consider that almost every
network transaction with a remote service starts with a call to the DNS to resolve a service name into a
set of service parameters, including the IP address of course, then a user's DNS data stream is in effect a
log of the user’s activity.

However, the DNS is so much more than this. The DNS is a ubiquitous signalling system and has been
used for decades as a command-and-control channel for all kinds of distributed systems, many of which
have turns out to be malicious in various ways. Looking at a DNS query stream can identify such instances
of malware and the systems that have been compromised by such malware.

The industry does not have a consistent response to this. Some operators of DNS infrastructure operate
on the principle that all DNS log data generated by user activity is strictly private, and the DNS query
data is not just never divulged, its rapidly destroyed. Others operators have tried to provide some level
of visibility of DNS query data, and they attempt to obscure who is performing the queries by performing
some form of hashing of the client's IP address. Such obfuscation is not all that effective, and if my IP
address always hashes to the same has code point then the collection of my queries in the query log are
still identified as a distinct query set, which does not say much about the level of obscurity of such
supposedly anonymised data.

As an open DNS resolver that is co-funded by the EU, the DNS4EU project has been caught up in this
dilemma. They obviously wish to maintain the privacy of those users who elect to use this server as their
DNS resolver, but at the same time provide a useful stream of available data to inform the efforts to
bring to light aspects of large pool of totally toxic activity which is interweaved into DNS queries and
responses.

https://www.rfc-editor.org/rfc/rfc1035
https://indico.dns-oarc.net/event/51/contributions/1109/attachments/1074/2176/panel1.pdf

 Page 4

The current efforts in DNS4EU, presented by Whalebone’s Robert Šefr, are to look at more sophisticated
forms of querier IP address anonymisation, mapping all IP addresses in a IPv6 pseudo address for use
on generated logs.

Is this response to potential privacy concerns good enough? If it’s the combination of who is asking? and
what question they are asking?, then it seems to me that double layer obfuscation, and the cooperation of
trusted network agents would be the minimum level that would be needed to preserve privacy. It’s not
just a case of post-processing the logs of DNS queries, but withholding this information from the DNS
in the first place.

We appear to be working between extremes here. The earlier open trusting culture of the Internet was
so comprehensive abused by all kinds of private and public entities that any residual user confidence on
the fidelity and privacy of their transactions on the Internet was completely eroded. There is no going
back to these days. But at the same time a blanket model of comprehensive obscurity, where all deeds,
good or bad, go by unnoticed, has its own perils. If bad deeds can occur with impunity, then bad deeds
will inevitably proliferate and overwhelm the entire online environment. I am not convinced that these
measures used by DNS4EU to anonymise their data is the best answer we can ever come up with, but
they have thought through these issues with care and attention, and it certainly appears to be a positive
step in balancing these conflicting demands.

Presentation: DNS4EU for public anonymization

Authoritative Server Performance
Over the years much effort has gone into studying the performance of the root server system for the
root of the DNS, yet the next level down, that of the performance of the nameservers that serve the top-
level domains has received far less attention.

There are currently 1,445 top level domains in the root zone, and on average each TLD has 5.31 name
servers. There are 4,656 unique IPv4 addresses and 4.353 unique IPv6 addresses.

What is the “right” number of name servers? There is no single answer here, and in looking at the TLDs
opinions differ. 93 TLDs have 2 or 3 nameservers, and 173 TLDs have more than 6 nameservers (none
have more than 13). At either extreme we see:

IP addresses for nameservers TLD
2 et kp pf sl
24 arpa
26 com edu in md mg mr mx net

A small collection of nameservers appears to offer little in the way of resilience, even if these name servers
are configured using anycast service constellations, so the four TLDs with just 23 nameserver addresses
seems to be operationally fragile. On the other hand, using 13 dual stack name servers, combined with
anycast services would be heading to the other extreme. DNS clients are just not that patient to perform
failover 25 times to arrive at an answer. The complete distribution of TLD nameservers by IP address is
shown in Figure 2.

 Page 5

 Figure 2 – Distribution of nameservers per TLD by IP Address

What can this tell us about the expectations of performance for serving TLDs?

If performance means resilience, then it appears that most TLDs use either 4 or 6 dual stack nameservers,
and this would imply there is some provision for client failover in the case of one or two unresponsive
nameservers.

However, it we equate performance to responsiveness then this is not so obvious. If all of these name servers
were deployed on single server unicast platforms then the relative locations of these platforms in relation
to the querier is the determining factor in the responsiveness of the service. One might assume that if
TLD was served by multiple nameservers then if would query the nameserver that is the fastest to
respond. If that were so, then using many servers that are distributed across the network would try and
optimise the responsiveness for all queriers. However, the querier has no a priori knowledge as to which
nameserver is the fastest to respond. The list of nameservers in a referral response is randomly ordered
for each query, and the client will normally work though this list in a serial fashion until it gets an answer.
Normally this would be the first server on the list, all other factors being equal.

There are no standards that govern this nameserver selection procedure.
RFC 1034 suggests that resolvers should “find the best server to ask”
but there is no further specification of what best means in this context
now how such a selection is to take place. Recursive resolvers have made
their own decisions here.

BIND9 selects the nameserver with the lowest statistical latency,
through the maintenance of the Smoothed Round Trip Time (SRTT) to
each nameserver. It updates a nameserver’s SRTT after each query based
on the latency experienced for the query, using an Exponentially
Weighted Moving Average. Bind selects the nameserver with the lowest
SRTT for query assignment. Those nameservers that have not yet been
queried are assigned a random SRTT value ranging from 1 to 32
milliseconds, causing BIND to be biased to query all nameserver early,
and then latch onto the nameserver that is fastest to respond. This
algorithm treats all nameservers as IP addresses, so a dual-stacked
nameserver counts as two distinct nameservers in this process.

PowerDNS uses a name based nameserver selection algorithm.
Unqueried nameservers have an initial SRTT of zero, and the SRTT
decays over time to ensure all nameservers are periodically queried to
refresh their SRTT values.

 Page 6

Knot has a couple of unique features, in that it has a bias to use IPv6
addresses over IPv4, and the server selection algorithm will select the
fastest nameserver in around 95% of cases but will randomly select any
one of the nameservers in the other 5% of cases.

Unbound will assign untested nameservers an initial SRTT of 376ms.
The selection of a nameserver is a random selection from all host
nameservers that are no slower than 400ms more than the fastest
nameserver.

What this means is that the observed performance of the nameservers for a TLD not only depends on
the number and distribution of nameservers for that domain, but the resolver software that is being used
to make the specific nameserver selection.

There are two further factors that should be considered here as well. The first is the use of anycast
nameservers. Anycast systems leverage the routing system to make the selection of which instance of a
nameserver is the “closest” to the resolver client. The resultant performance of the anycast service
depends on the density of the anycast service constellation and the relative distance from the client to
the closest instance of the anycast service. The numbers given in Figure 2 do not identify where servers
are anycast, nor do they attempt to quantify the anycast constellation density. Secondly, the DNS makes
extensive use of caching, and the longer the cache times the longer the zone’s records can reside in a
recursive resolver’s local cache the better the average response times for clients of the recursive resolver.
The intent of the DNS is, to the maximal extent possible for each domain, push the domain information
into the recursive resolvers and serve the data from the resolver. Domains with a short TTL will trigger
more frequent cache expiry and consequent refresh from the authoritative nameservers, at the cost of
query performance.

All of which brings me to the presentation by Cloudflare’s Wouter de Vries on authoritative nameserver
performance of TLDs. This approach used Cloudflare’s own anycast recursive resolver platform and
looked at the response times per TLD and grouped these response times into percentiles on an hourly
basis per TLD and per nameserver IP address.

Frankly, I’m not sure what to make of the results of this measurement exercise. Obviously TLDs with a
small number of unicast nameservers had a poor average performance relative to a TLD that used a
dense anycast constellation, and a TLD with a long TTL will produce better average response times than
one with a short TTL due to caching.

A more thorough, but older (2017), study of the interaction between recursive resolvers and authoritative
nameservers was published in the paper “Recursives in the Wild: Engineer Authoritative DNS Servers”
and if you are interested in this topic then this paper is a good starting point.

Presentation: Authoritative Nameserver Performance of TLDs

AI and the DNS
These days its fashionable to include at least one AI presentation in a workshop program. This
presentation compared the responses from Chat BGP and Meta AI on relatively simple DNS questions
to the base DNS specifications. This included questions such as the possibility of CNAMEs at the zone
apex (not allowed in the standards) and the label depth of wildcards in the DNS (unbounded).
Unsurprisingly some generated answers correlated well with standard specifications, some did not.

Of course, the real issue here is that all of the answers, whether they were complete fabrications or not,
all sounded totally plausible.

https://ant.isi.edu/~johnh/PAPERS/Mueller17b.pdf

 Page 7

There are two kinds of responses to this observation. One response is “Don’t be lazy!” Not everything
a generative AI tool spits out is true, and you need to do the work yourself to validate these responses.
Another response is to propose yet another AI tool that combines a large language model with DNS-
specific RFCs, as proposed by Salesforce's Pallavi Aras. Personally, I’m pretty cynical about the latter
option, but I’m also pretty clearly on the cynical side of AI ever getting beyond mindless pattern matching
and demonstrating non-trivial inductive reasoning!

Presentation: Generative AI and the DNS

CNAMES in the Wild
There is a granularity mismatch in the DNS between the protocol model and operational practice. The
assumption in the DNS was that entire zones would be delegated when you wanted to hand operational
control over to another party. For example, if you wanted to pass www.example.com to a CDN then the
DNS model is to make the www label a delegation point and use the CDN’s nameservers for the
delegated domain. Operational practice has simplified this using CNAME records so that individual
labels in a zone can be passed over the CDN’s control without delegating the entire name. In our example
the label www would be a CNAME record to domain within the CDN. But what if the CDN operator
wanted to change the target name withinb the CDN sphere? Getting the original domain administrator
to make the change is operationally expensive. Its far easier to start “CNAME chaining” and make the
original target of the CNAME a CDN entry point and then CNAME this name to the CDN service
point, creating a CNAME chain of length 2.

It was said in Computer Science that there were only 3 useful numbers: 0, 1 and infinity! The same applies
here. If you can have CNAME chains of length 2, then why not of length 3, or 4, and so on. Kazunori
Fujiwara’s presentation on this topic at OARC 43 used the example of www.brother.in:

$ dig www.brother.in

www.brother.in. 600 IN CNAME mc-12265895-control-tm.trafficmanager.net.
mc-12265895-control-tm.trafficmanager.net. 30 IN CNAME mc-12265895-6e1d-4319-8534-7755-cdn-

endpoint.azureedge.net.
mc-12265895-6e1d-4319-8534-7755-cdn-
endpoint.azureedge.net.

1800 IN CNAME mc-12265895-6e1d-4319-8534-7755-cdn-
endpoint.afd.azureedge.net.

mc-12265895-6e1d-4319-8534-7755-cdn-
endpoint.afd.azureedge.net.

60 IN CNAME reserved-g01.afd.azureedge.net.

reserved-g01.afd.azureedge.net. 60 IN CNAME star-t-g.trafficmanager.net.
star-t-g.trafficmanager.net. 60 IN CNAME shed.dual-low.s-part-0003.t-0009.t-msedge.net.
shed.dual-low.s-part-0003.t-0009.t-msedge.net. 17 IN CNAME s-part-0003.t-0009.t-msedge.net.
s-part-0003.t-0009.t-msedge.net. 17 IN A 13.107.246.31

That’s a CNAME chain of length 7, and a lookup of this name entails a total of 78 DNS queries. What
is also interesting is that the last two records have a relatively short TTL (of 17 seconds in this snapshot),
and the other TTLs are variously 30, 60, 600 and 1,800 seconds. Long CNAME chains represent a hidden
load on DNS resolvers where the long chains represent additional queries (and delay) to resolve names.

The extent of the use of CNAMES is shown in a data collection from two weeks at a Japanese university’s
recursive resolution service, spanning some 2.4M query names. The surprising result was that non-
CNAME queries represent only some 41% of the query volume, while the remaining 59% comes from
following CNAME chains (Figure 3)

http://www.example.com/
http://www.brother.in/
http://www.brother.in/

 Page 8

Figure 3 – CNAME Chains in DNS DNS Data Capture (From “CNAMES in the Wild”)

The other somewhat surprising observation was the incidence of long CNAME chains of length 4 or
more. Services that use Microsoft, Amazon, Akamai and Apple’s CDN platforms feature in this long
CNAME set.

CNAME chains represent a compromise between operational flexibility and resolver load. This
presentation by Kazunori Fujiwara of JPRS advocates a universal upper limit on the length of CNAME
chains, rather than leaving it to individual resolver implementations.

Presentation: CNAMES in the Wild

Shuffling Nameservers
It is a common expectation that if you list multiple nameservers for a delegated domain then resolvers
will somehow distribute their queries across all nameservers, and not concentrate upon the first server.
Equally, if a nameserver name has multiple IP address, then the query load will be distributed across
these IP addresses. However, this behaviour does not appear to be standardized.

The question posed by Shane Kerr of IBM’s NS1 is: “Whose role is it to shuffle nameserver records?”
When a nameserver delivers a referral response that lists the nameservers for a domain, or when it is
explicitly queried for NS records, then the nameserver could perform a shuffle of the records in preparing
the response to each query. It is also an option to perform this shuffling of nameservers in the resolver,
shuffling the nameserver set each time the resolver needs to send a query to a nameserver.

The problem here is that if an implementation of an authoritative nameserver relies on resolvers to
perform this shuffling and always lists the nameservers in the order as per the database, and if the resolver
accepts the order as provided by the nameserver, then the query load will favour the first listed
nameserver. A way to correct this is for all authoritative nameservers to shuffle the list of nameserver
provided in referral responses as well as in response to a specific query for NS records.

Presentation: MUST Shuffle Resource Records

https://indico.dns-oarc.net/event/51/contributions/1098/attachments/1058/2144/CNAME-20241023.pdf
https://indico.dns-oarc.net/event/51/contributions/1098/attachments/1058/2144/CNAME-20241023.pdf

 Page 9

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author

Geoff Huston AM, M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region.

www.potaroo.net

http://www.potaroo.net/

