The ISP Column

A colummn on things Internet

October 2024
Geoff Huston

The Size of Packets

We’ve now been running packet-switched networks for many decades, and these days it’s packets and
not virtual circuits lie behind most of the world's digital communications service. But some very
fundamental questions remain unanswered in this packet-switched world. Perhaps the most basic
question is: “How big should a packet be?” And, surprisingly enough, there is no clear answer!

The pragmatic default Internet answer these days is that an Internet packet is between 20 and 1,500 bytes
in size. Any bigger and the packet is likely to encounter packet fragmentation with its attendant issues
of heightened risk of packet discard. Any smaller and the IP packet header is fatally truncated. Most hosts
and applications stick inside the lanes and send packets within this size range.

We are going to be looking at bifs and bytes here, so a quick word about terminology.
I have always used the term byfe to refer to an 8-bit grouping. Strictly speaking a
byte is a unit of memory size, and while it is usually 8 bits in size, some computer
architectures have used different grouping size. To resolve any potential ambiguity,
maybe I should use the term oczer to refer to 8-bit groupings, but I've tended by
life-long habit to just use by in the sense of an 8-bit word, as I have done here.

See the Wikipedia page on the subject “Byte” for a longer treatment of this topic
if you are interested.

This was not always the case. In September 1981 RFC 791, the Internet Protocol Specification, was
published. This specification had the advice that IP hosts must be prepared to accept IP packets of up
to 576 bytes (whether they arrive whole or in fragments). Packets larger than 576 bytes were to be used
only if the sending host had some assurance that the destination (and all the active network elements
along the packet’s forwarding path) were prepared to accept datagrams larger than 576 bytes. The
document explains the rationale for this choice: “The number 576 is selected to allow a reasonable sized
data block to be transmitted in addition to the required header information. For example, this size allows
a data block of 512 octets plus 64 header octets to fit in a datagram. The maximal [IPv4] internet header
is 60 octets, and a typical internet header is 20 octets, allowing a margin for headers of higher level
protocols.”

Enter Ethernet

The original work on a radically different form of high speed networking for local area networks occurred
in the mid 1970’s, and the original published description, “Ethernet: distributed packet switching for local
computer networks” dates from 1976.

Ethernet gathered momentum as the network technology of choice for local area computer networks as
it was a simple and cost-effective high speed network solution over medium distances (of a couple of
kilometres in size). The main advantage of Ethernet was its simplicity of decentralised design. In its
simplest form, the network itself was a length of coaxial cable. Up to three such lengths could be joined
by simple signal repeaters. There was no master controller, and each host managed its own data clocking
and performed its own contention resolution. It was a common channel broadcast network, where every


https://en.wikipedia.org/wiki/Byte
https://www.rfc-editor.org/rfc/rfc791
https://dl.acm.org/doi/10.1145/360248.360253
https://dl.acm.org/doi/10.1145/360248.360253

attached host could see every packet. Ethernet was an ideal match to the networking requirements of the
emerging personal computer and workstation environment found in many computing environments as
the industry moved away from the single central mainframe computer to a more distributed and diverse
model of information processing

For 10Mbps Ethernet, frame (or packet) payloads were between 46 and 1,500 bytes in size, and the
Ethernet framing format added a further 18 bytes (12 bytes of MAC addresses, 2 bytes of frame length
and 4 bytes of CRC). These frame size numbers were the result of a trade-off between data timing and
network utilization.

There is an ingenious relationship between the minimum Ethernet packet size and the original common
bus (CSMA/CD) Ethernet collision sensing algorithm. The one thing Ethernet attempted to maintain
was the property that a transmitter was always aware if another transmitter was active on the common
wire at the same time, so that both transmitters could abort their transmission, back off and try again
later. Hence, an Ethernet frame must be big enough that the leading bit of the packet must be able to
propagate to the other end of the Ethernet network, and the collision with the leading edge of another
transmitter must propagate back to the original transmitter before the frame's transmission ceases. That
implies that the total end-to-end length of the LAN must be no longer than one half the minimum frame
size.

For the maximum packet size, Ethernet opted to head down the path of maximising carriage efficiency
rather than sacrificing speed and capacity for the sake of preserving implicit data timing integrity. In
retrospect, it proved to be an astute design decision.

You could make the minimum Ethernet frame size smaller, but the maximal diameter of the LAN itself
must shrink, or you can support physically longer LANs, but there is the consequent risk of undetected
frame collisions for small frames, which will require a correction from an upper-level transport protocol.

The Speed of Light

These considerations relate to the speed of electromagnetic propagation over a
coppet conductor, which in turn relates to the speed to light in a vacuum.

The speed of light in a vacuum, or the physical sciences constant ¢, is probably the
most researched constant in all of science. According to electromagnetic theory,
its value, when measured in a vacuum, should not depend on the wavelength of
the radiation. According to Einstein's prediction about the speed of propagation
of light within the general theory of relativity, the measured speed of light does not
depend on the obsetvet's frame of reference; the speed of light in a vacuum is a
universal constant.

Estimates of the value of ¢ have been undergoing refinement since 1638, when
Galileo's estimate of: “If not instantaneous, it is extraordinarily rapid” was
published in “T'wo New Sciences”. The currently accepted value is 299,792.458
kilomettes per second.

The speed of propagation of electrical charge through a conductor is a related
value; it, too, has been the subject of intense experimentation. Perhaps the most
bizarre experiment was conducted in Paris, in April 1746, by Jean-Antoine Nollet.
Using a snaking line of some 200 monks, connected by a mile-long iron wire, Nollet
obsetved their reactions when he administered a powerful electric current through
the wire. The simultaneous screams of the monks demonstrated that, as fat as
Nollet could tell, voltage was transmitted through a conductor “instantancously’.

Page 2



The speed of light in glass or fibre-optic cable is significantly slower, at
approximately 194,865 kilometres per second. The speed of voltage propagation
in coppert is slightly faster, at 224,844 kilometres per second.

Relating this value back to the design of Ethernet, a 10Mbps system running over copper wire will carry
bits at 0.75 the speed of light in a vacuum, or at 224,844 kilometres per second. This means that 64 bytes
at 10Mbps will be contained in 11.51 km of copper cable, or a “up and back” signal propagation length
of 5.75km of conductor. The original Ethernet design specifications allowed for a total of sequence of
three 500m runs of coaxial copper cable, plus allowance for 2 repeaters, and a generous overhead to
tolerate various physical misconfigurations!

The maximal packet rate on a 10Mbps Ethernet was some 15,000 small packets per second, or a packet
every 65 microseconds. With silicon processing clocking in the low MHz frequencies in the late 1980's
then there is an approximate match between transmission performance and silicon switching capabilities.

What about the maximal Ethernet frame size of 1,518 bytes? The trade-off here is that longer maximal
frame sizes allow for greater carriage efficiency, as the 18-byte frame overhead is amortised over a greater
data payload, while shorter maximal packets reduce the average wait time where there is contention
between multiple transmitters. A binary argument would propose either 1,024 or 2,048 bytes as a maximal
payload size, and the 1,500 value feels like some form of compromise between these two values.

This would not be the first time that such compromises have appeared
in networking technology. The design of the 48-byte ATM payload was
apparently the outcome of a committee compromise between advocates
of a 32-byte payload, intended to reduce potential jitter in ATM
networks, and advocates of a 64-byte payload, intended to improve data
carriage efficiency.

FDDI

For a short period of time in the early 1990's it looked as it the next generation of local networks would
use a 100Mbps token-ring architecture, called FDDI (Fiber Distributed Data Interface). The network
itself offered a payload range of zero (just the FDDI headers) to a maximally sized frame payload of up
to 4,478 bytes.

In retrospect, its apparent that FDDI never really picked up a critical momentum of deployment. It was
used in scenarios where aggregate network capacity in excess of 10Mbps was necessary. In many cases it
did not replace 10Mbps Ethernets but acted as a common core that supported multiple 10Mbps edge
Ethernets. At the time 10Mbps Ethernet adapters for hosts were far cheaper than FDDI, so individual
hosts continued to use 10Mbps LAN connections while common servers may have used FDDI
connections. However, mapping between Ethernet and FDDI is not a simple matter of reframing and
passing the packet onward. The bit order on FDDI is “big-endian” while Ethernet uses “little-endian”
bit order (I have no idea why these two LAN technologies diverged at such a fundamental level, but it
mirrored the divergence in bit-order storage models in processors that has lingered through to today).
More importantly than bit twiddling, the maximum IP packet size on a FDDI network is larger than that
of Ethernet, and a simple FDDI-to-Ethernet bridge unit would be forced to discard large FDDI packets.

Such hybrid FDDI/Ethernet deployments commonly used a router to petform the mapping between
the two LAN technologies, and in the case of IPv4 large packets, they would be fragmented when passing
a packet from a FDDI on to an Ethernet interface. Such a routing solution to interconnect “feeder”
Ethernets to a FDDI “core” is by no means optimal and the overheads of router fragmentation and host

Page 3



reassembly eat into the underlying performance gains of the underlying 100Mbps FDDI system, and
more importantly add to the cost of such hybrid LAN:S.

Faster Ethernet

In 1995 the IEEE 802.3u specification for 100Mbps Ethernet was published (“Fast Ethernet”). The
system dispensed with a passive common bus and replaced it with an active switching hub to which hosts
were attached (the use of Ethernet Switches had already happened in many 10M Ethernet deployments
in any case as a means of improving overall network capacity). The Ethernet framing protocol was
maintained, and the 10Mbps Ethernet packet size ranges were preserved. The potential peak packet rate
lifted by a factor of 10 to 150,000 small (64-byte) packets per second to 823 large (1,518-byte) packets
per second.

Three years later, in 1999, the IEEE 802.3ab was released, specifying 1Gps Ethernet. In another three
years, in 2002, 10Gbps Ethernet was specified. The next factor of 10 speed increase took a little longer,
and in around 2015 100Gbps Ethernet was entering the market. Current efforts are focussed on
completing the Terrabit Ethernet (TbE) specification.

Across this program of speed increases for Ethernet, there is no basic change to the supported frame
sizes. Once Ethernet dispensed with the common bus model and the associated contention detection
and management and turned to what is in effect a collection of point-to-point serial connections using a
packet switching hubs, there was no need to tie Ethernet packet sizes to a particular set of network
constraints, and the desire to support backward compatibility, which supported plug-and-play hybrid
Ethernet networks, far outweighed any marginal advantages in carriage efficiency by changing the base
Ethernet packet size specification.

The result is that Ethernet at Tb speeds imply a peak packet rate of some 1.5B small packets per second,
and 82M large packets per second.

Jumbo Packet Sizes

In 30 years, we've managed to push transmission speeds in local networks up by an astounding 100,000-
fold. At the same time processor clock speeds have increased from some 100Mhz to around 5Ghz, or a
far more modest (but still impressive) 50-fold increase. Today's silicon switching systems can only keep
pace with network transmission systems as long as the majority of the packets are large.

It’s not as if the issues of the increasing disparity between transmission and silicon processing clock
speeds have gone completely unnoticed, particularly in the context of high-density datacentres. For more
than two decades some vendors of Ethernet switches and network interfaces have supported Ethernet
frame sizes larger than the IEEE 802.3 standard 1,518-byte maximum frame size. The scale of this change
is not dramatic, and the common 9,000-byte maximum frame size is these so-called Ethernet jumbo-framses
is just a 6-fold increase in frame size.

There are, however, a number of issues with these jumbo frames, including the inability of the IEEE to
provide a single definitive standard for jumbo frames on 802.3 networks. Some network equipment
supports larger jumbo frames, some smaller. The construction of end-to-end paths that use a variety of
transmission technologies also does not help. Many of these links may use a common Ethernet frame
format, but that does not mean that there is a consistent end-to-end maximum frame size beyond the
1,518-byte 802.3 standard. Hosts could perform a form of path MTU discovery if they so desired, but
this discovery process consumes time. In many scenarios, the fastest approach is to avoid this MTU
discovery step and just work with 1,500-byte packets as the effective MTU.

It is also worth noting that much of the host-based pressure to introduce larger frames was dispelled with
the introduction of network interface cards that perform TCP segmentation offload. The host can send
and receive large frames to the network interface, offloading a high per-packet processing load from the
host processor, as the incremental load of interfacing to the network with smaller packets is handled in

Page 4



the network interface processor. With large send offload for example, a 65,535 byte data bundle, can be
passed from the host to the network interface, which then performs segmentation into 45 1,460-byte
TCP segments which are passed into the network.

The Internet Protocol does not have a clear story when it comes to large packets. IP (both V4 and V06)
supports packets of up to 65,535 bytes in size (due to the 16-bit packet length field in the IP headers for
both protocols), but in practice very large IP packets are not a robust choice for the public Internet. The
problem lies in IP fragmentation. As we’ve already noted the path of greatest assurance without resorting
to incurring the costs of path MTU discovery is to assume a MTU size of around 1,460 bytes. Larger
packets are more likely to require fragmentation to be passed through the network, and issue is that
trailing fragments do not contain the transport headers and present a problem for various forms of
security-related middleware found in networks. The trade-off here is to incur the incremental cost of data
segmentation in the sending host and send packets that have a high probability of not requiring any form
of packet fragmentation, and to avoid this cost and run the risk of session performance degradation when
recovering from silent packet discard.

Transmission vs Silicon

It seems to be somewhat curious that story of the Internet parallels the story of Ethernet, where the large
scale increases in the clocking speed of data, from 10Mbps to 1Tbps, has been achieved within the same
packet size range. The implication is that each increment in network speed comes at a cost of greater
processing intensity, where the overall picture of processor clock speed improvements and memory cycle
times are not increasing at anywhere near the same rates.

The processing response has been to make up the difference in increasing levels of parallelism in
processors and load distribution through offloading. So far it appears that processing has been able to
roughly keep pace with the network, but it’s unclear how long this can last.

The pressures on processing speeds would be relieved, to some extent, if there was a shift to supporting
some increase in maximum packet sizes in the network, but it’s not clear if there is a critical mass of
support behind such changes. Path MTU discovery has not been enthusiastically embraced.

I noticed in the Proceedings of the November 1989 IETF Meeting than the MTU
Discovery Working Group was chartered to work in this problem, and anticipated
some form of completion of this work by April 1990!

It appears that for many end-host network implementations the faster approach is to just pick an MTU
with a high assurance of working through most networks and leave Path MTU Discovery as an option
for those applications which could make productive use of the larger packet size even at the incremental
cost of performing the discovery.

In that vein it’s interesting to note that the IEEE 802.11WiFi specification defines an MTU of 2,304
bytes, yet it appears that most host implementations use an MTU value of 1,500 to reduce the potential
packet loss pitfalls when moving from the Wili access network to the next hops in the full path. It is
also interesting to note that the QUIC transport protocol takes this one step further and by default uses
an MTU value of 1,200 bytes. Yes, it is an option for QUIC to use path MTU discovery, but it appears
that the default behaviour is to simple use this option. It’s just quicker and simpler!

While the platforms continue to scale in terms of speed, it appears that the network stacks are reluctant
to take on the agenda of effective and efficient path MTU discovery. Indeed, the current view is to trim
packets down in size to avoid any need for IP level packet fragmentation. It seems odd in an environment
of continually increased transmission speeds, but when packet size is concerned, we appear to be saying
that 1,500 bytes is a pragmatic ceiling for packet sizes, and there are no signs of imminent movement in

Page 5


https://www.ietf.org/proceedings/15.pdf

this position for the larger Internet. I’'m not sure that the original Ethernet designers guessed that their
initial choice of 1,500 bytes was going to be sticky for the ensuing fifty years, and likely longer!

It appears that the engineering consensus in the public Internet the size of packets lies between 20 and
1500 bytes, based on the original 10Mbps Ethernet. But the opening question was: "How big should a
packet be?"

The larger the packet payload, the greater the carriage efficiency. With IPv4 a 1,500 byte is 97% efficient
(payload to total IP packet size) while in IPv6 it is 96% efficient. The use of 802.3 Jumbo packets, at
9,000 bytes is 99.6% efficient (V4) and 99.3% efficient (V6). So bigger is better — right?

On the other hand, the larger the packet the greater the likelihood that noise will add bit errors into the
payload, and if a constant size cyclic redundancy checksum is being used, the larger the packet the greater
the possibility of undetected bit errors. In a single channel media larger packets block access to the media
for all others while the packet is being used which adds jitter to network paths. In an ACK-paced sliding
window protocol, such as TCP, where the sender infers the state of the network path from the implicit
signalling within the ACK stream. Reducing the density of these ACK signals, as is the case with larger
packets, reduces the ability of the sender to adjust its sending behaviour to attempt to match the available
network conditions.

If we accept the design trade-offs of the original 10Mbps Ethernet then the comparable packet size range
for a 1Tbs Ether would be 6.4M bytes to 151M bytes. This seems like an insane volume of padding to
place a 40-byte ACK packet in a 6.4M byte frame! The alternative is to keep the original minimum packet
size of 64 bytes, which implies that the receiver needs to process incoming packet rates of between 823
(large) to 1.5B (small) packets per second.

If we are not willing to change the minimum frame size, what should the maximum frame size be?

If hosts (and applications) are unwilling to perform path MTU discovery due to the time overheads, and
the application is comfortable with the efficiency level provided by a 1,518-byte frame size, then why not
just use this value as the host’s interface MTU? The advantage of this approach is that there is a high
assurance that this frame size will work across the entire spectrum of Ethernet-framed networks. If hosts
(and interface cards) use this size as the default network MTU size, then they will not incur any reliability
issues, nor need to cope with size adaptation issues when the local attached network MTU does not
match the MTU of other path components. Here I am referring specifically to the IPv6 fragmentation
implementation and the robustness issues of signalling fragmentation needs between network and
attached host. All these issues are avoided if the host simply uses a 1,500-byte MTU.

So, how big should a packet be? Today’s answer is the same as the answer given for 10Mbps Ethernet

some 50 years ago. Any size between 46 and 1,500 bytes is a reasonable answer for use within the public
Internet.

Page 6



Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author

Geoff Huston AM, M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region.

www.potaroo.net

Page 7


http://www.potaroo.net/

