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The DNS Operations, Analysis, and Research Center (DNS-OARC) brings together DNS service operators, 
DNS software implementors, and researchers together to share concerns, information and learn together about 
the operation and evolution of the DNS. They meet between two to three times a year in a workshops format. 
The most recent workshop was held in Charlotte, North Carolina in early February 2024. Here are my thoughts 
on the material that was presented and discussed at this workshop. 
 

DELEG and Delegation 
In brief, the proposed DELEG Resource Record (https://datatracker.ietf.org/doc/draft-dnsop-deleg/) is a 
parent-side record that combines the semantics of specifying a zone cut (delegation) and the names of the 
delegated zone's nameservers (NS records) with their IP addresses (Glue records) with the additional capability 
to add a DNS transport identity, port address and a relative priority associated with each listed name server.  
 
The DELEG record can also allow the nameserver name to use alias records, which allows redirection of the 
resolver client to some other name target (a function that NS records cannot do, as, according to the DNS 
specifications, CNAMES cannot be used as the target of NS names). Unlike NS records, the DELEG record 
is authoritative in the parent zone, and can be signed by the parent zone's DNSSEC key, if the parent zone is 
DNSSEC-signed. DELEG is intended to sit side-by-side with NS and Glue records, so a resolver that is not 
explicitly aware of how to handle a DELEG record still has conventional delegation information in a referral 
response. My description of the DELEG record (and some personal opinions thrown in for free!) can be found 
at https://www.potaroo.net/ispcol/2024-02/deleg.html. 
 
The "how" of doing this augmented form of DNS delegation is underway within the IETF standards process, 
and while there may be more in the way of IETF ruminations in the coming months, I would hazard the 
opinion that there is little that will substantively change from the basic structure already provided in the initial 
proposal.  
 
While the broad mechanics of “how” have been well described, the “why”, or the nature of the motivations to 
augment one of the core elements of the DNS, is not so well understood, at least not by myself in any case! 
 
Firstly, the copy of the name server (NS) records held by the parent, and passed to a client in a referral response 
are not authoritative for the parent. The delegated child zone is the authority point for these records. When 
this consideration is applied to NS records, then the child will DNSSEC-sign to NS records in the child zone, 
with the child zone’s key. The parent cannot sign its copy of these NS records with the parent zone’s key. The 
NS records in the parent are therefore unsigned. DELEG is proposed as a record for which the parent zone is 
authoritative, and the DELEG record is signed by the parent zone key. In this manner, such delegations now 
are signed parts of the parent zone. This signing of the delegation points is intended to counter attempts to 
attack this aspect of DNS resolution, by enabling a validating client to detect unauthorised efforts to substitute 
a redirection within the delegation function.  
 
But does this ability to validate a delegation make any sense in the context of DNSSEC?  DNSSEC is defined 
to allow a client to validate the currency and authenticity of a DNS response that they receive. It does not 
matter how that response was obtained. If DNSSEC validation fails, then the response should not be used by 

https://datatracker.ietf.org/doc/draft-dnsop-deleg/
https://datatracker.ietf.org/doc/draft-dnsop-deleg/
https://www.potaroo.net/ispcol/2024-02/deleg.html
https://datatracker.ietf.org/doc/draft-dnsop-deleg/
https://datatracker.ietf.org/doc/draft-dnsop-deleg/
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a client. If the response is not DNSSEC-signed, and the client is able to determine that the zone is unsigned, 
then the client cannot determine whether the response is authentic or not. Even if all the delegation points 
along the path from the root zone to the answer were DNSSEC signed in some manner, and each delegation 
point were to be validated (incurring some penalty in the performance of resolution), then an unsigned response 
from an unsigned end child zone is still subject to the potential for substitution attacks and the response is still 
not inherently trustable. If you really want such a level of assurance about the authenticity of DNS responses, 
then there really is no alternative to DNSSEC-signing of the response that is drawn from the end child zone. 
Signing the individual delegations in the top-down delegation path used to reach that response neither adds nor 
detracts from the outcome of validation of the response itself. Validation of DELEG records from a verifiability 
stance appears to add cost without corresponding benefit. 
 
Secondly, if the objective is to allow the recursive resolver to query the authoritative server using an encrypted 
transport, then there are two questions that would need to be answered. In the general case, where is the privacy 
benefit in protecting this channel? The original end user is not identified by this recursive-to-authoritative query 
(RFC 7871, Client Subnet, is indeed a hideous privacy mistake!) so the privacy aspect is somewhat marginal in 
the general case. Secondly, the characteristics of the interaction between a recursive resolver and an individual 
authoritative server are almost the opposite of that of the stub resolver-to-recursive. In the latter case the 
overheads of setting up an encrypted channel can be amortised over the anticipated volume of subsequent 
queries between the two parties, and the privacy aspects of not exposing the stub resolver identity in the query 
stream are readily apparent. Neither is necessarily the case in the recursive-to-authoritative situation. The high 
setup cost is simply an added cost to the DNS resolution transaction without any readily apparent change in 
the privacy posture of such transactions. 
 
Finally, the one aspect of this DELEG proposal which appears to have some attraction is the ability to perform 
an alias translation of nameserver names. NS names cannot be CNAMES, and this has been a source of some 
frustration in the DNS service environment. The ideal situation would be for a nameserver name in the parent 
to be the name if an alias target in the DNS operator's name space, which could be further aliased to a specific 
name (or names) to optimise the name resolution for the client, in a manner analogous to the use of CNAMES 
in content hosting. With aliases this can be achieved without any further reference to either the parent or child 
zone operators. This property is behind the enthusiastic adoption of CNAME records by the content hosting 
sector. While this may sound compelling as a rationale, the issue is how would the parent and child also publish 
NS records for backward compatibility with non-DELEG aware resolvers? if the desire of the DELEG alias is 
to allow the DNS some independence (and flexibility) as to how they map the nameserver name to an IP service 
destination, the requirement to maintain a concurrent legacy NS record which is not an alias would appear to 
frustrate this desire. 
 
So, I am left wondering why is DELEG evidently so attractive to many DNS folk? What are their reasons for 
giving this proposal far more attention than their predecessors, such as  

• the work on the REFER RR type (https://datatracker.ietf.org/doc/html/draft-jabley-dnsop-refer-00),  
• ns-revalidation (https://datatracker.ietf.org/doc/html/draft-ietf-dnsop-ns-revalidation-00), or   
• the proposed delegation information signer (https://datatracker.ietf.org/doc/html/draft-fujiwara-

dnsop-delegation-information-signer-00)? 
 
Presentation: DELEGate the Modern Way by David Lawrence 

https://indico.dns-oarc.net/event/48/contributions/1041/attachments/1006/1926/DNS-OARC 42 
DELEGations++ (1).pdf 

 

DNS Resilience 
If there is one aspect of the DNS that stands out it's the way in which the DNS has incorporated resilience into 
its core design. The DNS resolution protocol was built upon simple stateless transactions using UDP as the 
preferred transport. This approach can be extremely efficient, cheap and fast. But UDP is not a reliable 
transport and the design of both the infrastructure and the protocol takes this inherent unreliability into 
account. A zone is served by multiple named nameservers. If one nameserver is unresponsive, a querier can 

https://www.rfc-editor.org/rfc/rfc7871
ns-revalidation
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always re-query using a different nameserver. It’s just UDP, and stateless queries are simple and have little in 
the way of overhead. Therefore, zones are served by multiple named nameservers. This is also passed to the 
next level, as a nameserver may have multiple IP addresses, not only to incorporate dual stack functionality, 
but also to allow a logical nameserver to have multiple points of connection to the network. If one IP address 
is unresponsive to a query, then a client can always use another IP address.  
 
Adding multiple nameservers does not always ensure improved resilience. The story of the Facebook DNS 
outage of October 2021 shows that even with multiple DNS servers, clustering them in a single fate-shared 
BGP routing state can still bring everything down (https://engineering.fb.com/2021/10/05/networking-
traffic/outage-details/). Then there was the DYN outage of October 2016 where a, single DNS provider, DYN, 
was overwhelmed by an exceptionally large denial of service attack 
(https://en.wikipedia.org/wiki/DDoS_attacks_on_Dyn). 
 
Perhaps resilience is not just about multiple name servers with multiple addresses, but also using multiple 
providers with multiple points of presence in the routing system. In theory, multiple providers should avoid a 
single point of vulnerability and potential failure and allow client recursive resolvers to work around the failure 
of nameservers. 
 
How well does this work? 
 
Shane Kerr, from IBM's NS1 service, set up an experiment using an unsigned zone served by both NS1 and 
Amazon's Route 53. The zone contained a single wildcard short TTL TXT record, with a different response 
when served by each provider. The queries were made by RIPE Atlas using regular DNS queries. 
 
The experiment was to take one provider's service offline and observe the time taken to resolve the DNS name 
before, during and after this service outage from one provider. The expectation is that with the onset of the 
outage a number of clients would experience a DNS timeout if they queried the now-unresponsive server, but 
they would still be able to resolve the name once they queried the servers from the other provider. During the 
outage the resolver clients should "latch" onto the available name servers and DNS resolution performance 
should return to the original state before the outage. The subsequent restoration of the service should not affect 
observed DNS resolution performance. 
 
What was observed was that some resolver families (open DNS resolvers operated by a single provider, or 
recursive resolvers operated by a single ISP) behaved as described here, but for others there was no noticeable 
change in DNS resolver performance at all, while in others the slower resolution times were noted across the 
entire period of the outage. Such resolvers apparently were persistent in querying the unavailable server and did 
not cache the server's unavailability. 
 
Multiple providers can certainly increase in overall availability of a service, but failure modes can still impair 
resolution service. These issues relate to the behaviour of the recursive resolvers rather than the authoritative 
servers, and the diversity of behaviours in this impaired service environment points to diverse code bases for 
recursive resolvers. 
 
The DNS remains surprising. Using multiple DNS services for a DNS service can improve service resilience, 
but also introduces sone unanticipated instabilities. 
 
Presentation: Using Multiple Authoritative Vendors May Not Work Like You Thought by Shane Kerr 

https://indico.dns-oarc.net/event/48/contributions/1035/attachments/1001/1951/Using Multiple 
Authoritative Vendors Does Not Work.pdf 

 

UDP, Truncation and TCP 
I've been told by someone who was there at the time that the original design decision to base the DNS design 
on a maximum UDP payload of 512 octets corresponded to the size of a sector read from a disk drive. In any 

https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/
https://en.wikipedia.org/wiki/DDoS_attacks_on_Dyn
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case, this maximum size of a DNS payload was a match to the largest IP packet that a host was assured to 
reassemble, namely 576 octets, once you take IP headers into account.  
 
All this has changed since then, but not by much. Ethernet raised the defacto IP packet size to 1,500 octets (or 
thereabouts) and the IPv6 specification defined a minimum unfragmented packet size of 1,280 octets. We 
operate the network now with three somewhat informal bands of packet sizes: any packet of size 1,280 or 
smaller is highly likely to be passed through the network without requiring fragmentation, and any packet larger 
than 1,500 octets is equally likely to require fragmentation and any packet in between is in the grey zone any 
may require fragmentation. 
 
The problem is that fragmentation is highly uncertain. A number of attacks rely on efforts to inject false 
fragments into a packet stream and because fragments have no transport header, firewalls are often in a 
quandary as to permit or deny them. Many simply deny them. 
 
The DNS response to this situation is to make use of a maximum UDP buffer size, provided as a DNS 
extension (EDNS), where this size specifies the maximum payload of a DNS response that can be passed using 
UDP. When the response is larger than this size, then the response should be truncated and the truncation bit 
(TC bit) is set in the DNS header to indicate this incomplete state of the response (RFC 2181, Sec. 9). When 
the client receives such a packet it should discard the truncated UDP response and re-query using TCP. 
 
Akamai uses akadns.net in its hosting configuration, and about a year ago decided to make some steps to 
improve its posture in supporting IPv6 by adding IPv6 glue records to its akadns.net referral response. This 
additional data lifted the size of the referral response for this domain from 344 octets up into the grey area of 
1,454 octets. 
 
At this time the .net servers were experiencing bursts of UDP queries that were almost double the baseline 
rate, and a burst of UDP responses with the TC bit set (Figure 1). 
 

 
Figure 1 – Anomalous Traffic seen at .net, from Real World Challenges with Large Responses, Truncation, and TCP , Duane 
Wessels, Ralf Weber, Slide 5 

 
What was anomalous here was that the TCP rate was not changing at all (the blue trace in Figure 1). This 
situation was resolved to a European ISP who was issuing TCP SYN packets to start a TCP session in response 
to the truncated UDP response, but not closing the TCP connection handshake by sending the final ACK of 
the 3-way TCP handshake. It was established that the ISP uses Linux iptables with connection tracking, which 
sometimes become full. The result of these full iptables was that TCP SYN packets were permitted outbound, 
but either the returning SYN+ACK was rejected, or the internal TCP state could not complete, so no 

https://www.rfc-editor.org/rfc/rfc2181
https://www.rfc-editor.org/rfc/rfc2181#section-9
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handshake’s closing ACK was sent. This failure to start a TCP session caused the resolver to retry the query 
over UDP at an accelerated rate. 
 
Between the ISP, Akamai or the .net operator, Versign any one of these parties could’ve resolved this situation. 
The ISP could’ve increased the size of its iptables, Akamai could’ve resolved this by reducing the number of 
IPv6 glue records in its referral response, or Verisign by relaxing its implementation of the requirements for 
including all of the glue records in its referral response. Its implementation of referral responses was strictly 
aligned to the advice in RFC 9471: 
 

"This document clarifies that when a name server generates a referral response, it MUST include all 
available glue records for in-domain name servers in the additional section or MUST set TC=1 if 
constrained by message size." 
RFC 9471 

    
Verisign tested a less strict glue truncation policy on a single site (the anycast site closest to the ISP) during a 
spike event, and aggressive query traffic dropped to zero across all Verisign .net servers within two seconds of 
making the change. Akamai removed some glue records from the referral response which immediately dropped 
the UDP truncation rate. 
 
A year later, and Akamai are using a single IPv6 glue record in their referral response. 
 

$ dig +norecurse akadns.net @a.gtld-servers.net 
; <<>> DiG 9.18.21 <<>> akadns.net @a.gtld-servers.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40597 
;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 10, ADDITIONAL: 7 
;; WARNING: recursion requested but not available 
 
;; OPT PSEUDOSECTION: 
; EDNS: version: 0, flags:; udp: 4096 
;; QUESTION SECTION: 
;akadns.net.   IN A 
 
;; AUTHORITY SECTION: 
akadns.net.  172800 IN NS a3-129.akadns.net. 
akadns.net.  172800 IN NS a7-131.akadns.net. 
akadns.net.  172800 IN NS a11-129.akadns.net. 
akadns.net.  172800 IN NS a1-128.akadns.net. 
akadns.net.  172800 IN NS a9-128.akadns.net. 
akadns.net.  172800 IN NS a5-130.akagtm.org. 
akadns.net.  172800 IN NS a28-129.akagtm.org. 
akadns.net.  172800 IN NS a13-130.akagtm.org. 
akadns.net.  172800 IN NS a18-128.akagtm.org. 
akadns.net.  172800 IN NS a12-131.akagtm.org. 
 
;; ADDITIONAL SECTION: 
a3-129.akadns.net. 172800 IN A 96.7.49.129 
a7-131.akadns.net. 172800 IN A 23.61.199.131 
a11-129.akadns.net. 172800 IN A 84.53.139.129 
a1-128.akadns.net. 172800 IN A 193.108.88.128 
a1-128.akadns.net. 172800 IN AAAA 2600:1403:11::80 
a9-128.akadns.net. 172800 IN A 184.85.248.128 
 
;; Query time: 23 msec 
;; SERVER: 192.5.6.30#53(a.gtld-servers.net) (UDP) 
;; WHEN: Fri Feb 09 06:28:14 EST 2024 
;; MSG SIZE  rcvd: 372   

 
I must admit that I am still scratching my head over Akamai's generous use of nameservers here. While one 
nameserver is too few, ten is probably too many. No resolver client is going to work through all ten nameservers 
before giving up, so the only conclusion is that this is some crude form of DNS-based load balancing across 
the set of nameservers, or some enduring artefact of historical legacy thinking that “If thirteen was a good 
number for the root zone then its good enough for me?”. A more conventional approach these days would be 
to use a smaller set of name server names and use anycast to distribute the load across their network of servers. 
 

https://www.rfc-editor.org/rfc/rfc9471.txt
https://www.rfc-editor.org/rfc/rfc9471.txt
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It's also useful to question the assumptions behind the strict requirement of RFC 9471 when the set of glue 
records starts to bloat. If a referral is causing UDP message truncation then things have gone badly wrong in 
the first place with the design of the zone's nameservers, but to complicate this by forcing the parent to serve 
the referral response by TCP is adding to the fragility of the situation, rather than increasing the resilience of 
the delegation.  
 
Presentation: Real world challenges with large responses, truncation, and TCP, Duane Wessel and Ralf Weber 

https://indico.dns-oarc.net/event/48/contributions/1036/attachments/1004/1920/challenges-truncation-
tcp-combined v2.pdf 

 

Caching of DNS Resolution Failures 
There is a tension between servers and clients in the DNS. Clients are interested in obtaining a positive response 
as quickly as possible, while servers would prefer clients to accept the response that they’ve been given and if 
the answer is not definitively positive or negative, then avoid thrashing about to find out if some other query 
combination might elicit a definitive answer. The issue arises with DNS responses that are neither positive (this 
is the answer to your query) nor negative (there is no such domain or no such resource record). These 
indeterminate responses, such as SERVFAIL, REFUSED, timeouts, and FORMERR, often cause the resolver 
client to seek an alternative name server, an alternative query formulation, or just try again to see if the previous 
condition was transitory. 
 
If a stub resolver has multiple recursive resolvers, then such indeterminate errors will generally trigger the stub 
resolver to re-query using the other configured recursive resolvers. If an authoritative server has multiple name 
servers, then the recursive resolver may re-query using each of the name servers. It’s easy to see that the result 
is a potential combinatorial query burst. If a stub resolver is configured to use 3 recursive resolvers and the 
name in question has 10 name servers (see the above example for akadns.net), and each name server has both 
an IPv4 and an IPv6 address, then an initial indeterminate response may lead to a further 59 queries. 
 
RFC 9520 has some further advice on this behaviour, namely that "A resolver MUST NOT retry a given query 
to a server address over a given DNS transport more than twice (i.e., three queries in total) before considering 
the server address unresponsive over that DNS transport for that query." It’s not clear to me that this advice is 
enough for the quite common case of a potential combinatorial explosion. In our example of a potential 59 
followup queries, no recursive resolver has re-queried a single nameserver address over the same DNS 
transport. So, each individual recursive resolver may be following this guidance, yet the query amplification may 
still occur.   
 
It appears that the admonition about moderating repeat queries in RFC 9250 is reasonable, but perhaps it 
misses a crucial point. When considering the number of name servers to use for a domain, perhaps some advice 
about trying to avoid "too much of a good thing” is also appropriate. It seems unlikely that recursive resolvers 
will temper their search for an answer in the face of indeterminate error responses, so reducing the scope of a 
combinatorial explosion of choices of resolvers may well be helpful.  
 
How many name servers (and name server IP addresses) is the "right" number to balance the demands of 
operational resilience and timeliness with the desire to avoid combinatorial explosion of failure-induced 
followup queries? 
 
What bounds on repeat query pacing strikes a workable balance between rapid recovery when encountering an 
isolated failure condition and avoiding a query race condition that imposes exceptional load states on 
authoritative server infrastructure? 
 
There are both open questions, in so far as we see all kinds of answers in the DNS environment, but little in 
the way of a shared understanding in the DNS world of a convergence to set of commonly shared answers. 
 

https://www.rfc-editor.org/rfc/rfc9471.txt
https://www.rfc-editor.org/rfc/rfc9520.txt
https://www.rfc-editor.org/rfc/rfc9520.txt
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In many ways this is also an aspect of the failure of the economics of the DNS. Queries are free to the querier 
but come at an incremental cost to the responder. Queriers optimise their behaviour by performing repeat 
queries when encountering unexpected conditions, as this happens without cost to the querier. It is quite 
predictable to see responding servers appeal for restraint on the part of queriers, but equally predictable to see 
such appeals to be largely ignored by the querying resolvers! 
 
Presentation: The Impact of Negative Caching and DNS Resolution Failures by Yannis Labrou 

https://indico.dns-oarc.net/event/48/contributions/1045/attachments/996/1947/DNS-
OARC42_Labrou_Thomas_v1_OARC42.pptx 

 

DNSSEC Upgrades 
There are not that many choice points when you DNSSEC-sign your zone. You need to pick an encryption 
algorithm and related key size, and you need to select wether the negative record structure is NSEC, Compact 
NSEC, or NSEC3. Yet even in these choices there is scope for variation and some novel situations to 
encounter. 
 
What if you were administering the .gov signed zone, signed with RSA and using NSEC3 records, and you 
wanted to shift your zone across to a different DNS operator who used ECDSA P-256 with NSEC compact 
denial of existence and an online signer? Conventional wisdom would say: "Drop DNSSEC, then shift the NS 
records to the new operator and then re-sign the zone". But what if you wanted to maintain the zone to be 
DNSSEC-signed across the transition? 
 
The approach taken when shifting .gov from Verisign (RSA/NSEC3, pre-signed zone) to Cloudflare 
(ECDSA/Compact NSEC, front end signer), was to use an RSA front-end signer in Cloudflare and shift the 
zone. This led to a zone that variously had NSEC3 and Compact NSEC records, depending on which server 
provided a signed response (which is an option in RFC 8901, Sec. 5.2). This then allowed the next step of 
having the zone to be exclusively served by the incoming zone operator. The next step is to transition the 
signing algorithm from RSA to ESDSA, which is well traversed territory using a period of dual signing with 
both algorithms before retiring the legacy algorithm from the zone. 
 
We might have had experience in DNSSEC-signing algorithm upgrades, but there are two aspects that still instil 
some justified caution. There is rolling the algorithm at the root zone of the DNS and rolling the algorithm in 
extremely large domains. The latter has been undertaken by Verisign, who reported on their experience in 
shifting from RSA to ECDSA for the .com, .net and .edu zones. Verisign followed the conventional double 
signer approach (RFC 6781, sec. 4.1.4), where the key with new algorithm was activated and the entries in the 
zone were progressively double-signed with the new and old zone signing keys. At this point the new keys can 
be added to the zone’s DNSKEY record and the DS record added to the root zone. The RSA keys can then 
be removed, and the RSA-generated signatures removed from the zone and the transition is complete. 
 
The issue where is adding additional signatures to signed responses and additional keys to the DNSKEY record 
inflates the sizes of these records. Here we re-enter the world of large DNS response, UDP, truncation and 
TCP re-queries. The "worst case" in this situation are NXDOMAIN responses, which have four signatures, 
and all such responses were exceed 1500 bytes during the rollover. We would expect these large DNS responses 
to be truncated during this phase of the algorithm transition and the TCP query rate to increase at a 
corresponding rate. This not exactly what occurred. 
 

https://indico.dns-oarc.net/event/48/contributions/1045/attachments/996/1947/DNS-OARC42_Labrou_Thomas_v1_OARC42.pptx
https://indico.dns-oarc.net/event/48/contributions/1045/attachments/996/1947/DNS-OARC42_Labrou_Thomas_v1_OARC42.pptx
https://indico.dns-oarc.net/event/48/contributions/1045/attachments/996/1947/DNS-OARC42_Labrou_Thomas_v1_OARC42.pptx
https://www.rfc-editor.org/rfc/rfc8901.txt
https://www.rfc-editor.org/rfc/rfc6781.txt
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Figure 2 – Truncation Levels during DNSSEC Algorithm Transition, from Verisign’s Transition to ECDSA, Duane Wessels, 
slide 20. 

 
Prior to the transition there was a small rate of truncated UDP and a similar rate of TCP connections, 
presumably relating to queries that were using a very low UDP buffer size of 512 bytes or similar. During the 
initial phase of the transition, when a subset of delegation entries in the zone were double-signed, the UDP 
truncation rate increased, but the TCP connection rate lagged behind at some 60% - 70% of the truncated UDP 
rate. The truncated UDP rate rose to a second level in the second day of this progressive double-signing phase, 
but curiously the TCP connection rate lagged even further. At one point the TCP connection rate was some 
30% of the truncated UDP rate. The same intermediate state occured at the end of the transition (Figure 2). 
 
This data tends to suggest that there are a significant number of resolvers, or possibly a smaller number of 
resolvers with a significant number of clients, that cannot perform a fallback to TCP when presented with a 
truncated UDP response, and an associated supposition that this situation also triggers such resolvers to 
perform a more aggressive search for alternative servers by repeating the UDP query, with the same 
combinatorial query amplification factor that we have already noted. 
 
This may have resulted in some level of query loss, but it was query loss that related to DNS names that did 
not exist in the first place (NXDOMAIN), so it is not clear that such reports about non-answers for non-names 
would ever have been lodged with the zone operator in the first place! 
 
This data points to an on-going issue with the DNS' ability to handle large responses. The current conventional 
approach for the DNS these days is to avoid the pitfalls of fragmentation by performing response truncation 
at relatively conservatively chosen sizes (such as at 1,232 bytes of payload) and rely on the truncation signal to 
direct the resolver to re-query using TCP. This transition data points to a sizeable population of users who are 
behind recursive resolvers that do not behave in this way. 
 
The .NL top level domain performed a similar algorithm transition in July 2023, also from RSA to ECDSA. 
Similarly to the Verisign experience, the largest temporary response size was for NXDOMAIN responses while 
the zone was dual signed, rising to 1,402 bytes in size. Again, they observed an increase in TCP queries in the 
transition, presumably strongly influenced by generating signed NXDOMAIN responses and the interaction 
with the UDP buffer sizes used by both the clients of the service and the authoritative servers. The presentation 
gave no data about the rate of truncated UDP responses, and therefore there was no indication of the 
"conversion rate" from truncated UDP to TCP in this case.  
 

https://indico.dns-oarc.net/event/48/contributions/1043/attachments/1003/1927/wessels-verisign-algrolls.pdf
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Figure 3 – Change in TCP traffic ruing Algorithm Roll from KSK Algorithm Roll for .nl, Stephan Ubbink, slide 18 

 
There were evidently no operational reports of outages in this transition, but as we have already observed, if 
the issues were concentrated in the lack of a received response for queries about names that did not exist in the 
first place, then such a situation may well go unreported! 
 
Presentations:   

GOV multi-signer transition with NSEC/NSEC3 by Christian Elmerot 
https://indico.dns-oarc.net/event/48/contributions/1038/attachments/1005/1948/gov-transition-nsec-
nsec3.pdf 

 
 Verisign's Transition to ECDSA by Duane Wessells 

https://indico.dns-oarc.net/event/48/contributions/1043/attachments/1003/1927/wessels-verisign-
algrolls.pdf 

 
KSK algorithm rollover for .nl by Stefan Ubbink 
https://indico.dns-oarc.net/event/48/contributions/1044/attachments/990/1942/dns-
oarc42_SIDN_KSK_algorithm_rollover_for_.nl.pdf 

 

DNS over IPv6  
Large DNS responses (by "large" I mean any value greater than 1,500 bytes) in the DNS are "tricky". Large 
responses in IPv6 are very much a lost cause. The failure rate of lost responses when a large response is passed 
from an IPv6-only authoritative server is now running at some 51% of individual transactions, which is clearly 
an unacceptable position. If anyone has dreams of an IPv6-only platform for the DNS, or even a more modest 
objective of supporting a dual stack DNS, then we clearly need to change this picture.  
 
How can we improve the situation? The first part of the response is to avoid fragmentation completely. Both 
clients and servers should limit the response size in UDP to avoid fragmentation and should limit the MSS size 
in TCP to a similar setting. But this exposes a second issue. How many resolvers will open a TCP session in 
response to a truncated UDP response? Or to phrase this a slightly different way, what proportion of users are 
behind resolvers that are incapable of performing a followup with TCP when presented with a truncated 
response over UDP? We need to ensure that this proportion of TCP-challenged resolvers and servers is zero! 
 
Presentation: Is the DNS ready for IPv6 by Geoff Huston 

https://indico.dns-oarc.net/event/48/contributions/1047/attachments/993/1904/2024-02-01-dns-oarc.pdf 

https://indico.dns-oarc.net/event/48/contributions/1044/attachments/990/1942/dns-oarc42_SIDN_KSK_algorithm_rollover_for_.nl.pdf
https://indico.dns-oarc.net/event/48/contributions/1038/attachments/1005/1948/gov-transition-nsec-nsec3.pdf
https://indico.dns-oarc.net/event/48/contributions/1038/attachments/1005/1948/gov-transition-nsec-nsec3.pdf
https://indico.dns-oarc.net/event/48/contributions/1038/attachments/1005/1948/gov-transition-nsec-nsec3.pdf
https://indico.dns-oarc.net/event/48/contributions/1043/attachments/1003/1927/wessels-verisign-algrolls.pdf
https://indico.dns-oarc.net/event/48/contributions/1043/attachments/1003/1927/wessels-verisign-algrolls.pdf
https://indico.dns-oarc.net/event/48/contributions/1043/attachments/1003/1927/wessels-verisign-algrolls.pdf
https://indico.dns-oarc.net/event/48/contributions/1044/attachments/990/1942/dns-oarc42_SIDN_KSK_algorithm_rollover_for_.nl.pdf
https://indico.dns-oarc.net/event/48/contributions/1044/attachments/990/1942/dns-oarc42_SIDN_KSK_algorithm_rollover_for_.nl.pdf
https://indico.dns-oarc.net/event/48/contributions/1044/attachments/990/1942/dns-oarc42_SIDN_KSK_algorithm_rollover_for_.nl.pdf
https://indico.dns-oarc.net/event/48/contributions/1047/attachments/993/1904/2024-02-01-dns-oarc.pdf
https://indico.dns-oarc.net/event/48/contributions/1047/attachments/993/1904/2024-02-01-dns-oarc.pdf
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DNS Server Fingerprinting 
In the vein of everything old is new again there is another DNS server fingerprinting tool being developed, this 
time by a group at the Université Grenoble Alpes. There was some work over a decade ago on this topic, using 
the difference between the response of various DNS software versions to identify the DNS server. As well as 
a paper published by a South Korean research group, there was the popular (at the time) tool by Miek Gieben, 
fpdns. 
 
This latest effort works on the same principles as the previous tools. Ask some queries and then match the 
responses against the given templates and the tool may be able to identify the DNS server.  
 
Presentation: DNS Fingerprinting by Yevheniya Nosyk 

https://indico.dns-oarc.net/event/48/contributions/1042/attachments/994/1945/presentation.pdf 

 

Cache Poisoning Attacks 
It was almost 30 years ago when there was a successful cache poisoning attack that involved queries to Alternic 
and the use of bogus resource records in the query response. The basic response at the time was to tighten the 
rules of what was acceptable information in a referral response and discarding all other data. I understand that 
it also led to the DNS adopting the rather quaintly termed concept of "balliwick". The memory of the attack 
may well have faded but the term "in-balliwick" is still a thing in DNS circles! 
 
Some 10 years later, the second such attack was the Kaminsky cache poisoning attack, where an off-path 
attacker attempted to guess the DNS query identifier and inject a response to the querier faster than the ordinary 
DNS. This crafted response contained incorrect glue records, and these were loaded into the resolver's cache. 
The response to this attack was to randomise the querier's source port, changing the number space for the 
attacker to successfully guess from 65,000 to some 4 billion. 
 
A mere five years later we saw a fragmentation attack, enabled by the attacker being able to guess the IP ID 
value. The response was to randomise the querier's IP ID value, reduce the dependence on packet 
fragmentation in the DNS and use case randomisation in query names. 
 
The exploration of these vulnerabilities continued. There was SADDNS, MaginotDNS and now there’s 
TuDoor, each with some escalating complexity in terms of the steps the attacker needs to perform but in each 
case exposing some form of predictable behaviour on the part of the DNS resolver that exposes them to 
crediting a synthetic response as authentic.  
 
I can't help thinking that the entire rationale of DNSSEC was that if everyone signed their DNS zones and if 
every resolver validated the responses they obtained, then this entire guessing game about how to pass off false 
data as authentic would be far more challenging. 
 
On the other hand, misdirection in the DNS need not be catastrophic in any case. If the application uses the 
WebPKI to authenticate that the destination has an authentic claim to represent itself as the named service, 
then the misdirection will result in failed authentication in any case. I suspect that it’s this reasoning that leads 
many service operators not to get overly concerned over these various obscure permutations of attacks on the 
DNS, even if their service name is not DNSSEC-signed. 
 
Presentation: TuDoor Attack: Systematically Exploring and Exploiting Logic Vulnerabilities in DNS Response 
Pre-processing with Malformed Packets by Qifan Zhang 

https://indico.dns-oarc.net/event/48/contributions/1039/attachments/992/1903/oarc42-tudoor-li.pdf 

https://ieeexplore.ieee.org/abstract/document/6076955
https://miek.nl/2012/january/28/dns-fingerprinting/
https://indico.dns-oarc.net/event/48/contributions/1042/attachments/994/1945/presentation.pdf
https://indico.dns-oarc.net/event/48/contributions/1042/attachments/994/1945/presentation.pdf
https://indico.dns-oarc.net/event/48/contributions/1039/attachments/992/1903/oarc42-tudoor-li.pdf
https://indico.dns-oarc.net/event/48/contributions/1039/attachments/992/1903/oarc42-tudoor-li.pdf
https://indico.dns-oarc.net/event/48/contributions/1039/attachments/992/1903/oarc42-tudoor-li.pdf
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Detecting Vulnerabilities in DNS implementations 
The DNS is a deceptive protocol in that it looks a lot simpler than it turns out to be. The operation of the 
protocol is described in 100's of RFCs and used ubiquitously by applications from user level apps through to 
totally autonomous service environments. There are now many implementations of various components of the 
DNS, and the name ecosystem now contains millions of resolvers, name servers and forwarders. To expect all 
these implementations to behave flawlessly is completely unrealistic. 
 
So how do we detect these cases when the implementations stray into errant behaviour modes? Most of this 
seems to be trial and error, and where cases are detected, and sometimes exploited, CVEs are generated, fixes 
applied, and the cycles repeats itself. Endlessly. 
 
An interesting response to this is the use of "fuzzing", where implementations are systematically checked by 
using test cases that explore query combinations where the range of values in the input fields is generated by 
fuzzing logic, and the divergence in responses between the expected and the actual response is detected.  
 
The research group at UCI fuzz-tested six popular resolver implementations in various modes for recursion, 
forwarding and serving. This exercise was able to expose a number of vulnerabilities. 
 
For decades the software industry has been able to amass some collective immunity from the consequent 
liabilities arising from the use of compromised or defective software. Maybe it's something to do with the 
densely written disclaimers that come with most software these days. Maybe it’s also related to the observation 
that the more complex the task performed by the software, the more likely the case that it will encounter 
unanticipated situations and behave unpredictably. However, in my view that should not mean that they don't 
need to conduct extensive testing and active maintenance of their code in any case. It's great that such fuzzing 
tests exposed some issues with commonly used DNS software. It would be even better if the providers of these 
tools conducted such fuzzing tests themselves, as an integral part of the Q&A processes before each software 
release. 
 
Presentation: ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response 
Fuzzing by by Qifan Zhang 

https://indico.dns-oarc.net/event/48/contributions/1037/attachments/1000/1913/ResolverFuzz-OARC42-
zhang.pdf 

 

NXDOMAIN 
Surprisingly, much of the DNS infrastructure, particularly at the root of the DNS, is devoted to shovelling 
through dross. Some 60% to 70% of queries that are processed by the root zone servers result in NXDOMAIN 
responses.  
 
Interestingly, recursive DNS resolvers see a different picture, In a recent (June 2023) study of queries presented 
to Cloudflare's Open DNS resolver, some 7% of queries refer to non-existent top level domains. This was a 
study of the queries, not a study of the responses, and there is a second category of queries that ask names 
within a delegated top level domain, yet still do not exist.  
 
A study of such responses from a Chinese recursive resolver reveals that some 80% of the NXDOMAIN 
responses from the recursive resolver are generated from valid top level domain names. 
 
The list of invalid top level domain names from this resolver is comparable to other studies, and includes the 
usual suspects of .local, .localdomain, and .lan.  One of the commonly used cases of NXDOMAIN is of the 
form of a two-label string with an end user's UUID and .local appended. This appears to be related to 
WebRTC and video applications. The Chinese study found also two labels in high use that appear to be more 
local in scope, namely .ctc and .cnp. 
 

https://indico.dns-oarc.net/event/48/contributions/1037/attachments/1000/1913/ResolverFuzz-OARC42-zhang.pdf
https://indico.dns-oarc.net/event/48/contributions/1037/attachments/1000/1913/ResolverFuzz-OARC42-zhang.pdf
https://indico.dns-oarc.net/event/48/contributions/1037/attachments/1000/1913/ResolverFuzz-OARC42-zhang.pdf
https://indico.dns-oarc.net/event/48/contributions/1037/attachments/1000/1913/ResolverFuzz-OARC42-zhang.pdf
https://www.potaroo.net/ispcol/2023-07/nxdomain.html


  Page 12 

What I'm still puzzled about is why the root zone attracts such a high level of such NXDOMAIN queries. The 
DNS would be a far better place if such queries were stopped at the recursive resolver. All recursive resolvers 
really should use the "hyperlocal" configuration as set forth in RFC 8806. But after four years of waiting for 
the folk running recursive resolvers to read and implement this measure, perhaps now it's time to reverse this 
situation. All configuration settings for the vendors' recursive resolvers should have hyperlocal for the root 
zone turned on as shipped in the default recursive resolver setting, and it should take an explicit local operator 
configuration change to turn it off! 
 
Presentation: Analysis of NXDOMAIN data from an open resolver perspective in China by Jinghua Bai 

https://indico.dns-oarc.net/event/48/contributions/1049/attachments/995/1934/dns-oarc42_DeepDive 
into NXDOMAIN Data in China.pdf 

 

Performance Considerations for DNS Platforms 
From my own experience in an operational context, when our service's DNS resolver platforms were dropping 
queries, then my first reaction was to try and increase the processor capability, add more memory and add more 
worker platforms into the resolver configuration. It's a brute force response, and perhaps some further subtlety 
in turning the platforms would’ve make a significant impact on the performance at much lower incremental 
cost.  
 
Similarly, if your task is to undertake performance benchmark tests on various combinations of hardware 
platforms and DNS server implementations, then some specialised advice as to how to get the most out of the 
configuration will help. I won't got into details of the advice given by ISC's Petr Špaček and NS1's Jan Včelák, 
but it’s clear to me that both presentations on performance benchmarking and tuning are well worth studying, 
and any summary I might provide here would not do them justice. Also, ISC's Ray Bellis has also authored a 
very useful fool to display the queues on your NIC card. It’s at https://www.isc.org/blogs/ethq-linux-nic-
monitoring-tool/. 
 
Presentations:  

DNS Benchmarking 101: Essentials and Common Pitfalls by Petr Špaček 
https://indico.dns-oarc.net/event/48/contributions/1033/attachments/991/1943/pspacek.pdf 

 
 DNS Server Performance Tuning in Linux by Jan Včelák 

https://indico.dns-
oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_
draft.pdf 

 

The DNS in 2024 
The DNS OARC workshops have consistently managed to provide a good snapshot of the current topics of 
common interest that are driving the evolution of the DNS. 
 
There is a push to load more service rendezvous information into the DNS, replacing a tedious and often 
inefficient probe exchange to discover the capabilities of service access points and match that with the 
capabilities of each client. Of course, pushing more information into the DNS is great, but trusting the 
authenticity of responses when a client attempts to pull it the data out again remains an unresolved issue. “Just 
use DNSSEC and sign everything” is a possible answer, but DFNSSEC has many moving parts and operators 
continue slip up on the delicate dance that is key management, and the result is all too often a case of self-harm 
when the validation outcomes from DNSSEC fail. 
 
The larger response sizes that are a result of adding these security credentials to responses exacerbate one of 
the enduring weaknesses of the DNS protocol. While a UDP transaction is fast, efficient and very lightweight, 
this picture quickly darkens when the size of the payload enters the area of enforced packet fragmentation, 
packet loss and the overheads of a reliable stream-based protocol, encrypted or not. This would be tolerable if 

https://www.rfc-editor.org/rfc/rfc8806.txt
https://www.isc.org/blogs/ethq-linux-nic-monitoring-tool/
https://www.isc.org/blogs/ethq-linux-nic-monitoring-tool/
https://indico.dns-oarc.net/event/48/contributions/1033/attachments/991/1943/pspacek.pdf
https://indico.dns-oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_draft.pdf
https://indico.dns-oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_draft.pdf
https://indico.dns-oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_draft.pdf
https://indico.dns-oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_draft.pdf
https://indico.dns-oarc.net/event/48/contributions/1050/attachments/1007/1936/dns_server_performance_tuning_on_linux_draft.pdf
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large packets were the rare exception, but when they become commonplace there is the added burden of 
context switching, head of line blocking potential and stream process state maintenance that add to the server 
load. There is some consensus that this is sustainable at the edges in the conversation between endpoint stub 
resolvers and recursive resolvers, but the picture is far murkier when looking at the inner conversation between 
recursive resolvers and the authoritative servers. We have a general consensus that our DNS wish list contains 
further improvements in speed, efficiency, flexibility, verifiability, and resistance to subversive attacks, but when 
it comes down to making choices about priorities and tradeoffs as to where to place the burden of incremental 
workload (and cost) any signs of consensus about next steps quickly dissipate. 
 
As we scale up the DNS it is obvious that we are surviving not thriving, and the DNS living on a knife edge 
when trying to maintain an acceptable universal service and avoiding various outbreaks of local catastrophe. 
Part of the issue we face today is that the DNS appears to be imbalanced. There appears to be far more 
capability to pass queries inward to the DNS infrastructure than there is the capacity to answer all these queries. 
The presentation from Akamai and Verisign over the implications of TCP failure are slightly worrisome in that 
a single ISP’s resolver infrastructure can push the server capacity into a less than ideal position. Do recursive 
resolvers need to be more restrained in their re-query behaviour when encountering server failure? Is the UDP-
influenced philosophy, namely that when encountering service resolution issues, the best response is to increase 
the sending rate of repeat queries in the hope that one of these queries will elicit the desire answer, necessarily 
the right model to use today? Should resolver clients be more willing to terminate their search without a clear 
resolution of the query? Should authoritative servers be more willing to enforcing rate limitation measures and 
rebuff high volumes of UDP querie trains? What does “service resilience” really mean in these circumstances?  
 
This is very much a “work in progress” story, and I am looking forward with interest to the next OARC 
Workshop to see how our thoughts about the DNS develops. 
 
All the presentations from the OARC 42 Workshop can be found here: https://indico.dns-
oarc.net/event/48/timetable/#20240208.detailed. Thanks to the Program Committee for a great program of 
presentations and the OARC staff and volunteers for making this workshop possible. 
 
 
 
 
  

https://indico.dns-oarc.net/event/48/timetable/#20240208.detailed
https://indico.dns-oarc.net/event/48/timetable/#20240208.detailed
https://indico.dns-oarc.net/event/48/timetable/#20240208.detailed


  Page 14 

 

 
Disclaimer 
 

The above views do not necessarily represent the views or positions of the Asia Pacific Network 
Information Centre. 

 
Author 
 

Geoff Huston AM, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving 
the Asia Pacific region.  
 
www.potaroo.net 

 
 

http://www.potaroo.net/

