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OARC held a 2-day meeting in September in Danang, Vietnam, with a set of 
presentations on various DNS topics. Here’s some observations that I picked 
up from the presentations that were made that meeting. 

 

Deploying ZONEMD in the Root Zone 
As a distributed database, the DNS works through the piecemeal distribution of data in a just in time 
methodology. The DNS name resolution protocol answers specific queries, and the answers contain 
information pertinent to the query and nothing more. The DNS tries not to overshare. But if that was all 
it did, then it would not still be running today. If every query started with a query to the root zone for 
the name servers for the relevant top-level domain, and then a sequence of queries as the querier traversed 
down through the delegation hierarchy, then each DNS resolution operation would take an impossibly 
long time and the query load at the servers of the apex of the DNS tree would be unsupportable. The 
DNS resolution protocol is implemented as a hybrid of on-demand response generation and just in case 
caching.  As data is passed through the network of intermediaries (recursive resolvers), it is cached on an 
opportunistic basis. When successive queries are processed by these recursive resolves, the cache is 
consulted to see if the response can be provided directly. It is this caching that has allowed the DNS to 
scale. 
 
Even so, the twin factors of the growth of the Internet and the concentration of queries at the upper 
parts of the name hierarchy has meant that the scaling pressures are felt most acutely at the apex of the 
DNS, the root zone. 
 
Our response to these scaling pressures has been to exploit anycast to increase the number and capacity 
of servers that serve the root zone. There are currently some 1,754 distinct instances of root servers on 
the Internet (https://root-servers.org), serving in aggregate some 100 billion queries per day 
(https://rssac002.root-servers.org). 
 
The growth of the network is not going to slow down anytime soon, so the question is: How do we 
continue to scale this system? Do we just keep on adding more and more root instances to the anycast 
clouds with no clear end in sight? Or can change course and enlist some help from DNS intermediaries, 
namely the millions of recursive resolvers out there? This latter approach is described in RFC7706, 
"Decreasing Access Time to Root Servers by Running One on Loopback". Rather than have the recursive 
resolver cache the responses to individual queries to the root zone, the resolver is configured to fetch the 
entire root zone and load this into the local cache. The true utility of this local cache of the entire root 
zone lies in the treatment of queries for non-existent domain names. There are infinitely many names 
that do not exist in a zone, and if an on-demand caching resolver receives a series of queries for non-
existent names then the on-demand cache will not be useful, whereas a local cache of the entire root zone 
will equally serve queries for existing and non-existent names in the zone. 
 

https://root-servers.org/
https://rssac002.root-servers.org/
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When applied to the approach of using resolvers to serve the root zone, this approach requires the 
resolver to fetch a copy of the entire root zone. The suggested method is to use the DNS AXFR 
command, which will transfer the zone in its entirety (dig . AXFR @f.root-servers.net, for example). The 
local resolver is then configured to serve this zone as an authoritative server. As long as the resolver is 
careful to manage the root zone in a restricted view that is only accessible to the resolver itself then the 
result is that the resolver behaves as if it was an authoritative for the entire root zone to its served client 
base. 
 
But how can a recursive resolver be assured that this local copy of the root zone is a genuine copy of the 
most up-to-date version of the root zone? While each entry in the root zone is DNSSEC-signed, the 
AXFR command is unprotected, and the root zone itself is unsigned it its entirety. It would be useful if 
the entire root zone was signed with a digest, as described in RFC 8976. This would allow the resolver 
to check that the zone it has just transferred is the genuine zone.  
 
Verisign's Duane Wessels presented to OARC the schedule of actions to introduce this ZONEMD 
record to the root zone. On 22 September the ZONEMD record was first seen in the root zone: 
 
. 86400 IN ZONEMD 2023092502 1 241 4227BDE7C956255A3564A4D98F25D60DF3285F9FAA16100CC623B2E3BEC6593F 
                                   1BF33B261A7C1CA7258813C695AF42EF 
 
. 86400 IN RRSIG ZONEMD 8 0 86400 20231008210000 20230925200000 11019 . ps2qM5vIC8dlmzR+VyxPqrtm/R6YgK 
                                   hPPFqcBx+0wzpFkr9F2CqxzrxDCBw4vUp2jkFL/pMGmBHGhWUngn5cXAVxNFGWmN 
                                   UHbmxp9h6S4qiPSOEunhgtfTHc10cFHh31THEwyW1bgOIrFVijuQlsXUCLHq1zUs 
                                   Xn4fZkoaAXZSeuk1dE2/g8ORRtDdaAGGNFrzyQZjiP4g/mt+Z0N3dgPp/TjXId6+ 
                                   1H14R78HCsZMqdLsT7+f2hU6cWUUEKLXdDs7tbbb5L7q2JEEjFpbrEPw06YiSPRG 
                                   ikB+oyvCXXLdAMijwzF85R898POGcdNm8zyT0h3whUaiGKl7TY39PrGQ== 

 
This is a false record, which is deliberately unverifiable, using a private-use hash algorithm. The intention 
here is to ensure that those clients that make use of a full root zone file are not disrupted by the 
appearance of a new resource record type in the root zone file. Given that this is the first introduction 
of a new record type into the root zone in 13 years there is some understandable caution associated with 
this change. 
 
On the 6th December 2023 it is planned to change the hash algorithm to SHA-384, which will then be 
an accurate hash of the current copy of the root zone file. 
 
There is also the issue of currency. Those resolvers that use such a cloned copy of the root zone are not 
notified when changes are made to the root zone, so they need to regularly perform a consistency check 
against a root server to ensure that they are serving the current zone contents. However, it is noted that 
the signed SOA record in the root zone changes every 24 hours: 
 
./20/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023091903 1800 900 604800 86400 
./21/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092002 1800 900 604800 86400 
./22/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092103 1800 900 604800 86400 
./23/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092203 1800 900 604800 86400 
./24/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092301 1800 900 604800 86400 
./25/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092401 1800 900 604800 86400 
./26/root:. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023092502 1800 900 604800 86400 

 
A resolver client can use this SOA data to provide some assurance that the zone file they are using it is 
using is a recent one. 

DNSSEC and Cryptography 
The addition of cryptographic information to the DNS to allow DNS clients to gain some additional 
assurance that the response that they have received is authentic, complete, and current, namely DNSSEC, 
is becoming a protracted story of proportions similar to that of IPv6 adoption. While the adoption of 
DNSSEC validation has been proceeding with some visible impetus over the years, the uptake of zone 
signing is a mixed story. (I explored this topic in a recent article, https://www.potaroo.net/ispcol/2023-
09/dnssec-queries.html, so I won't repeat myself here!) 
 

https://www.potaroo.net/ispcol/2023-09/dnssec-queries.html
https://www.potaroo.net/ispcol/2023-09/dnssec-queries.html
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There are a number of reasons for the reluctance to sign DNS names, and part of this lies in the arcane 
area of cryptography. A very common cryptographic algorithm is RSA (named after the surnames of the 
original authors of the 1978 paper that described the algorithm, Ron Rivest, Adi Shamir and Leonard 
Adelman). RSA is a cryptographic algorithm that does both encryption and decryption using a variable 
key length. A shorter key is more efficient in terms of encryption and decryption but is not as robust. 
Longer keys are more expensive to use but offer greater robustness against efforts to break encoded data. 
 
RSA is based on prime number operations using modular exponentiation. A basic principle behind RSA 
is the observation that it is practical to find three very large positive integers e, d, and n, such that with 
modular exponentiation for all integers m (with 0 ≤ m < n): (me)d ≡ m mod n. Even if you know the 
values of e and n, and even m, it can be extremely difficult to find the value of d. 
 
The underlying premise here is that prime number factorisation of a very large composite integer can be 
hard, and if the number is the product of two very large prime numbers, then that task can be 
exceptionally hard. We've not devised (as yet) any better approach other than brute force enumeration.  
 
For example, the workload to factor a composite number that is the product of two prime numbers that 
are 512 bits long in binary notation was estimated in 1995 to take around 30,000 years using a 1 MIP 
(millions of instructions per second) computer. At that time, this scale of an infeasible challenge was a 
good match for that computing environment. (This threshold of feasibility was still considered reasonable 
some 8 years later, as I have a security practices publication from 2002 that observed that RSA using 512-
bit keys was a practical profile for all but the most extreme security applications of 2002.) If you increase 
the computational capacity to 10 billion instructions per second then the problem is a 3-year 
computational problem. Obviously, this is a feasible task in today's computing environment. 
 
To help understand the relative strength of cryptographic algorithms and keys there is the concept of a 
security level which the log base 2 of the number of operations to solve a cryptographic challenge. In 
other words, a security level of n implies that it will take 2n operations to solve the cryptographic 
challenge. Table 1 shows the security level for various RSA key lengths. 
 

Security Level RSA Key Length (bits) 
80 1,024 
112 2,048 
128 3,072 
140 4,096 
192 7,680 

Table 1 – Security level of various RSA key sizes 
 
Things change in this space, and these days estimates of a minimal acceptable security strength that will 
provide protection across the coming decade points to the use of SHA-256 in conjunction with RSA 
with 2,048-bit keys, or a security level of 112 bits. However, if we want to encrypt data today with a 
protected secure lifetime of greater than 10 years then it looks like we may be looking at SHA-384 and 
RSA with 4,096-bit keys, or in other words a security level of more than 128 bits.  
 
Using larger keys in crypto has several implications when we are talking about the DNS. Larger keys 
mean larger DNS signatures and larger payloads, particularly for the DNSKEY records. A comparison 
of key sizes and DNSSEC signature record sizes is shown in Table 2. 
 

Algorithm Private Key Public Key Signature Security Level 
RSA-1024 1,102 438 259 80 
RSA-2048 1,776 620 403 112 
RSA-4096 3,312 967 744 140 

Table 2 – Crypto Sizes (Bytes) 
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Larger key sizes also imply that it takes more time to both sign and validate signatures. Table 3 shows the 
elapsed time taken to sign a zone with 500K entries, using OpenSSL 1.1.1k libraries on a FreeBSD 12.2 
host with the DNSSEC toolset supplied with Bind 9.16.16. Validation time is elapsed time for completing 
50K queries with DNSSEC validation, and for comparison I’ve included the time taken for the same set 
of queries into an unsigned zone. The absolute time intervals are not that important here, but the relative 
differences in time when using the different crypto algorithms and key sizes is important. RSA adds to 
the signing time at a rate that rises at a higher rate than the key size (i.e. double the key size in RSA takes 
more than double the time). (Table 3). 
 

Algorithm Signing Time 
(secs) 

Validation Time 
(secs) 

Unsigned  905 
RSA-1024 52 1,168 
RSA-2048 126 1,173 
RSA-4096 830 1,176 
 Table 3 – DNSSEC timings (seconds) 

 
Using RSA with 4,096-bit keys implies taking more time to sign and validate these signatures (although 
the other overheads associated with fetching the validation records tend to swamp the crypto processing 
time in this simple experiment). It also implies that DNS responses will be larger. Larger DNS records 
in UDP means dancing around the issues of IP fragmentation, UDP buffer size settings, truncation of 
responses and fallback requests via TCP, all of which create a far slower DNS resolution operation. 
 
An obvious answer is to avoid using large RSA keys. In this case RSA with 4,096-bit keys encounters a 
visible level of resolution failure, due to the inconsistent handling of the larger DNS responses for the 
DNSKEY record, and the current practice appears to point to the use of 2,048-bit keys as a suitable 
security choice for the moment. The problem is that the crypto environment is a moving target and over 
time smaller RSA keys will be more vulnerable as we develop more capable computers. Another answer 
is to use a “denser” crypto algorithm that has a high security level with a far smaller key size than RSA. 
Here the Elliptical Curve algorithm, ECDSA P-256, is an obvious contender. 
 
Briefly, ECDSA is a digital signing algorithm that is based on a form of cryptography termed “Elliptical 
Curve Cryptography”. This form of cryptography is based on the algebraic structure of elliptic curves 
over finite fields. The security of ECC depends on the ability to compute a point multiplication and the 
inability to compute the multiplicand given the original and product points. This is phrased as a discrete 
logarithm problem, solving the equation bk = g for an integer k when b and g are members of a finite 
group. Computing a solution for certain discrete logarithm problems is believed to be difficult, to the 
extent that no efficient general method for computing discrete logarithms on conventional computers is 
known. The size of the elliptic curve determines the difficulty of the problem. 
 
Both .com and .net zones are signed with a 2048-bit Key-Signing Key (KSK) and a 1280-bit Zone-
Signing Key (ZSK). Shifting to ECDSA P-256 will reduce the signature size in the signed records, which 
will help both in fitting signed responses into UDP messages and reducing the memory footprint of 
cached signed responses. At the same time the security level of ECDSA P-256 is the equivalent of a 3072-
bit RSA key. 
 

Algorithm Private Key Public Key Signature Security Level 
RSA-2048 1,776 620 403 112 

ECDSA P-256 187 353 146 128 
Table 4 – ECDSA Crypto Sizes (Bytes) 

 
Transitioning DNSSEC algorithms can be challenging. The approach being following by Verisign here 
is a conservative one, using a dual-algorithm approach (as distinct from an abrupt cutover). Their plan is 
to populate the domain with a second set of RRSIG records that are generated using the ECDSA ZSK 
value, then adding the ECDSA ZSK and KSK records to the zone DNSKEY set.  The root zone then 
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published as new DS record, which is the hash of the ECDSA KSK value. The old RSA DNSKEY values 
can then be removed, followed by removal of the RSA-signed RRSIG records. 
 
The timetable is shown in Table 5. 
 

Zone start roll end 
Edu 6 Sep 12-15 Sep 22 Sep 
Net 25 Oct 31 Oct - 3 Nov 10 Nov 
Com 29 Nov 5-8 Dec 15 Dec 
Table 5 – Schedule for Algorithm Rool for .edu, .net and .com 

 
At the time of writing this article, the .edu algorithm roll has completed. 
 
Of course, these estimates of algorithm strength don’t factor in the impact of any future use of quantum 
computing. If one views the onset of quantum as a "when", rather than an "if" question then if would be 
prudent to prepare our cryptographic tools for a world that includes quantum computing. A number of 
groups are working one this, including the US through the PQC project at NIST's Computer Security 
Resource Centre (https://csrc.nist.gov/projects/post-quantum-cryptography). 

A better form of Client Subnet? 
The DNS is used extensively as a replacement for BGP to perform content steering (see DNS is the new 
BGP for a longer description of this). The problem is that DNS-based content steering assumes that an 
end user is located close to the recursive resolver that handlers their DNS queries, and when this is not 
the case (such as with the use of open recursive resolvers) then the content steering can make some pretty 
sub-optimal decisions. 
 
The answer that the resolver and content folk can up with was to attach the IP address of the client to 
the query, so that when the recursive resolver made the query to the authoritative server the client’s 
identity was attached to the query. From a privacy perspective this is a horrifying breach of user privacy. 
The specification made some attempt to mitigate the potential problems by using a subnet rather than 
the cull client address, but this is a relatively poor mitigation. The RFC describing this procedure, EDNS 
Client Subnet (ECS), RFC 7871, has some disparaging commentary on this process: "We recommend 
that the feature be turned off by default in all nameserver software." Pretty stern stuff for a technical 
specification!   
 
The presentation by AdGuard’s Andrey Meshkov proposes a different approach to what is encoded in a 
DNS query’s Client Subnet field that is intended to improve the privacy position of this signalling 
mechanism while still providing the authoritative service with sufficient information to perform content 
steering via the DNS. 
 
Despite the obvious privacy concerns with the use of Client Subnet in DNS queries, AdGuard report 
that about two thirds of the queries received on AdGuard’s open resolver are for domains that support 
ECS. 
 
How can a recursive resolver still provide some geolocation information to the authoritative DNS server 
for domain names that wish to receive such information to inform optimal content steering outcomes, 
but not reveal the querier’s network? 
 
The folk at NextDNS come up with an innovative idea back in 2019. They adopted a solution to these 
ECS issues by substituting client’s subnet with another subnet that would be shared by all clients from 
the same approximate location and ISP. That way they were not providing any data that was related to 
the querier but did provide the same geolocation information. They also observed that many of the 
domain names that use ECS are in fact providing exactly the same response no matter what ECS data is 
provided, which serves no purpose in terms of content steering but cripples the resolver’s cache 

https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.potaroo.net/ispcol/2023-09/service-routing.html
https://www.potaroo.net/ispcol/2023-09/service-routing.html
https://www.rfc-editor.org/info/rfc7871
https://medium.com/nextdns/how-we-made-dns-both-fast-and-private-with-ecs-4970d70401e5
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performance. In this case they determined to drop the ECS data for domains that did not use it. They 
noted that these efforts achieved an outcome of a 75% cache hit rate for their resolver service. 
 
AdGuard are using a similar approach in their resolver. In their case they use the BGP routing table to 
map the client IP address to the origin AS, and then selecting a subnet from all the address prefixes 
originated from that origin AS as being representative of all such users. This approach restored a cache 
hit rate of around 76%, but the cache itself was some 5 times larger than a non-ECS cache. 
 
The next refinement was to group together the geolocation data for the same country and use a single 
subnet for all users in that country. AdGuard struck the same issue as the earlier NextDNS effort where 
of the 1,000 most popularly queried domains 50% indicates support for ECS, but 15% returned an 
invariant response irrespective of the ECS information provided in the query. 
 
The interim approach AdGuard are using at the moment is to apply a finer-granularity of subdivision for 
the most populous countries, and use a country level granularity for all others. This gives then a good 
cache efficiency, a contained cache size and an equivalent content steering outcome. 

The DNS TTL Field 
The DNS depends on extensive caching of DNS responses for good performance. Every DNS zone 
administrator sets a TTL value for each record in the zone, which guides a caching resolver as to how 
long a DNS response should be held in the resolver’s local cache. There are a number of conflicting 
requirements as to what value to use for a cache lifetime. Extended TTL values offload the name 
resolution workload to the recursive resolvers, making name resolution faster, while shorter TTL values 
assist in the agility of configuration and reduce the time to repair a zone configuration problem. 
 
The TTL value is not a strict value but is intended to act as an upper bound to a caching resolver. 
However, there is conflicting advice to caching resolvers to retain a cached value beyond its TTL lite in 
RFC 8767, “Serving Stale Data to Improve Resiliency”. Experimental observations also show that a 
significant set of recursive resolvers retain cached data beyond the TTL (https://indico.dns-
oarc.net/event/46/contributions/987/attachments/941/1743/oarc40.pdf). Perhaps the most 
surprising observation has been the case when zone administrators have lowered their TTL, anticipating 
a proportionate rise in the query volume, yet no such change was observed (https://ripe84.ripe.net/wp-
content/uploads/presentations/85-RIPE84_DNS_Update_bd.pdf, https://www.root.cz/clanky/jak-
se-projevilo-snizeni-ttl-v-zone-cz/).  
 
These observations support the hypothesis that extended TTL values do not appear to be strictly 
necessary in many cases, and reducing TTL values, such as from 1 hour to 15 minutes may not negatively 
impact the resolution performance of the name, yet the shorter TTL values have a benefit in permitting 
facter recovery from various configuration errors in published zones. 
 
So yes, it still is the case that caching benefits DNS performance, but the relationship between changes 
in cache TTLs and changes in DNS resolution times and query loads are by no means simple in today’s 
DNS. 

Polling does not Scale 
If there is one factor that lies behind every issue, we see on the Internet its scale. The inexorable impact 
of Moore’s Law with the production of silicon chips means that computing continues along a path of 
lower cost and greater capability. We use these devices in ever increasing volume, and this impacts the 
demands we place on the network infrastructure. It means increased pressure on network address 
consumption, increased pressure on the scale of the Internet’s routing system, increased volumes of DNS 
queries, and an increased number of DNS names out there. 
 
The DNS was built at a time where there was considerable focus on resilience and availability in the face 
of unreliable connectivity infrastructure. The DNS reflects this though the use of multiple authoritative 

https://indico.dns-oarc.net/event/46/contributions/987/attachments/941/1743/oarc40.pdf
https://indico.dns-oarc.net/event/46/contributions/987/attachments/941/1743/oarc40.pdf
https://ripe84.ripe.net/wp-content/uploads/presentations/85-RIPE84_DNS_Update_bd.pdf
https://ripe84.ripe.net/wp-content/uploads/presentations/85-RIPE84_DNS_Update_bd.pdf
https://www.root.cz/clanky/jak-se-projevilo-snizeni-ttl-v-zone-cz/
https://www.root.cz/clanky/jak-se-projevilo-snizeni-ttl-v-zone-cz/
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servers and multiple recursive resolvers. But does this scale? This question was asked by nic.at’s Klaus 
Darilion in the context of primary and secondary DNS servers. 
 
Primary and Secondary servers are loosely coupled in the DNS. The secondary is meant to periodically 
query the primary at a regular interval (the maximum interval is defined by the REFRESH value in the 
zone’s SOA record) for the SOA record’s serial value. If the secondary holds a lower SOA value in its 
local copy of the zone, then it initiates a zone transfer (XFR) to get the primary server’s version of the 
zone. This zone refresh can also be triggered if the primary sends a NOTIFY to the secondary. It is left 
to the secondary to ensure that the zone refresh is successful, and the primary never checks to ensure 
that its secondaries are in sync with the primary version. 
 
All this has worked tolerably well for decades, but there are scaling issues lurking here. The scenario 
explored in this presentation is the case where a secondary server is undertaking that role for a million 
zones. If the secondary wants to be moderately responsive to changes in any of the served zones, then it 
might use a 10 second SOA query interval. This is 100,000 queries per second, which is a challenge for a 
single DNS platform. 
 
Some attention is being given to alternative approaches to detecting changes in the primary zones that 
do not rely on SOA polling. A secondary could use the SERIAL property in catalogue zone or add the 
ZONEMD value into the catalogue zone data. 
 
It seems to me that polling is never a scalable solution. Thrashing away at the primary source just to see 
if anything has changed can work at small scale but imposes significant loads at higher scale. If you want 
a responsive system at scale, then you need to head into the world of explicit notification and use a low 
frequency polling mechanism to catch the case of missed notifications. 

OARC 41 
The full workshop program, and all the presentations from the workshop can be found at the OARC 41 
web page. 

 
 
 
 
 
 
 
 
 
 
 
  

https://indico.dns-oarc.net/event/47/timetable/#20230906.detailed
https://indico.dns-oarc.net/event/47/timetable/#20230906.detailed
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