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The Root Zone of the DNS Revisited 
 
The DNS is a remarkably simple system. You send it queries and you get back answers. Within the system 
you see exactly the same simplicity: The DNS resolver that receives your query may not know the answer, 
so it, in turn, will send queries deeper into the system and collects the answers. The query/response 
process is the same, applied recursively. Simple.  
 
However, the DNS is simple in the same way that Chess or Go are simple. They are all constrained 
environments governed by a small set of rigid rules, but they all possess astonishing complexity. 
 

Simple systems can have very deep complexity. This is a major theme in 
the study of Formal Systems. 
 
The study of mathematics in the 19th century moved into to dizzying 
heights of self-reflection. The question they were trying to answer was: 
What are the formal assumptions upon which the entire superstructure 
of mathematics was constructed? The Peano Axioms for natural numbers 
are a good example here. If you took these axioms and only applied 
operations from a constrained and well-defined set, then was it possible 
to derive every known truth (provably correct) statement in maths? This 
question motivated Whitehead and Russell to labour on the landmark 
three volume work Principia Mathematica in the early 20th century, that 
was intended to build the entire edifice of mathematics using only first 
principles and symbolic logic. Their work was in part brought about by 
an interest in logicism, the view on which all mathematical truths are 
logical truths. Mathematics was seen as a “pure” form of philosophical 
study, whose truths were independent of any observer or any natural 
system. This study led to work by Kurt Gödel that probed the limits of 
this approach. His Incompleteness Theorems are two theorems of 
mathematical logic that demonstrate the inherent limitations of every 
formal axiomatic system capable of modelling basic arithmetic. These 
results are important both in mathematical logic and in the philosophy 
of mathematics. The first incompleteness theorem states that no 
consistent system of axioms whose theorems can be listed by an effective 
procedure is capable of proving all truths about the arithmetic of natural 
numbers. For any such consistent formal system, there will always be 
statements about natural numbers that are true, but that are unprovable 
within the system. The second incompleteness theorem, an extension of 
the first, shows that the system cannot demonstrate its own consistency.  
 
With all our faith in rule-based automated systems that largely operate 
today’s digital world its sobering to realize that the limitations of such a 
world view were clearly stated by Kurt Gödel 1931.  
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Why am I talking about this? Well, the informal expression of Gödel’s 
work is that any formal system that is powerful enough to be useful is 
also powerful enough to express paradoxes. Or more informally, any 
constrained simple system that is sufficiently useful to express 
compound concepts is also capable of impenetrable complexity. And 
this is where the DNS comes in! 

 

The Root Zone 
The DNS is not a dictionary of any natural language, although these days when we use DNS names in 
our spoken language, we might be excused from getting the two concepts confused! The DNS is a 
hierarchical name space. Individual domain names are constructed using an ordered sequence of labels. 
This ordered sequence of labels serves a number of functions, but perhaps most usefully it can be used 
as an implicit procedure to translate a domain name into an associated attribute value through the DNS 
name resolution protocol.  
 

For example, I operate a web server that is accessed using the DNS name 
www.potaroo.net. If you direct your browser to load the contents of this 
DNS name then your system firstly needs to resolve this DNS name to 
an IP address, so that your browser knows where to send the IP packets 
to perform a transaction with my server. This is where the structure of 
the name is used. In this case the DNS system will query a root server 
to translate this name to a corresponding IP address and the response 
from any root server to such a query will be the set of resolvers that are 
authoritative for the .net zone. Ask any of these .net servers for this same 
name and the response will be the servers that are authoritative for the 
potaroo.net zone. Ask any of these potaroo.net servers for the same name 
and you will get back the IP address you are looking for. Every DNS 
name can be decomposed in the same way. The name itself defines the 
order of name resolution processing. 

 
There is one starting point for every DNS resolution operation: the root zone. 
 
There is a school of thought that decries any exceptional treatment given to the root zone of the DNS. 
It's just another zone, like any other. It’s a set of authoritative servers that receive queries and answer 
them, like any other zone. There's no magic in the root zone and all this attention on the root zone as 
special is entirely unwarranted. 
 
However, I think this view understates the importance of the root zone in the DNS. The DNS is a 
massive distributed database. Indeed, it’s so massive that there is no single static map that identifies every 
authoritative source of information and the collection of data points about which it is authoritative. 
Instead we use a process of dynamic discovery where the resolution of a DNS name firstly is directed to 
locating the authoritative server that has the data relating to the name we want resolved, and then 
querying this server for the data. The beauty of this system is that these discovery queries and the ultimate 
query are precisely the same query in every case. 
 
But everyone has to start somewhere. A DNS recursive resolver does not know all the DNS authoritative 
servers in advance and never will. But it does know one thing. It knows the IP address of at least one of 
the root servers. From this starting point everything can be constructed on the fly. The resolver can ask 
a root server for the names and IP addresses of all other root servers (the so-called priming query), and it 
can store that answer in a local cache. When the resolver is given a name to resolve it can then start with 
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a query to a root server to find the next point in the name delegation hierarchy and go on from there in 
a recursive manner. 
 
If this was how the DNS actually worked, then it’s pretty obvious that the DNS system would’ve melted 
down years ago. What makes this approach viable is local caching. A DNS resolver will store the answers 
in a local cache and use this locally held information to answer subsequent queries for the life of the 
cached entry. So perhaps a more refined statement of the role of the root servers is that every DNS 
resolution operation starts with a query to the cached state of the root zone. If the query cannot be 
answered from the local cache, then a root server is queried. 
 
However, behind this statement lurks an uncomfortable observation. If all of the root servers are 
inaccessible, then the entire DNS ceases to function. This is perhaps a dramatic overstatement in some 
respects, as there would be no sudden collapse of the DNS and the Internet along with it. In the 
hypothetical situation where all the instances of the root servers were inaccessible then DNS resolvers 
would continue to work using locally cached information. However, as these cached entries time out, 
they would be discarded from these local resolvers (as they could not be refreshed by re-querying the 
root servers). The light of the DNS would fade to black bit by bit as these cached entries time out and 
are removed. The DNS root zone is the master lookup for every other zone. That’s why it deserves 
particular attention. For that reason, the DNS root zone is uniquely different from every other zone. 
 
Due to local caching, root zone servers are not used for every DNS lookup. The theory is that the root 
servers will only see queries as a result of cache misses. With a relatively small root zone and a relatively 
small set of DNS recursive resolvers, then the root zone query load should be small. Even as the Internet 
expands its user base the query load at the root servers does not necessarily rise in direct proportion. It's 
the number of DNS resolvers that supposedly determines root server query load if we believe in this 
model of the root’s function in the DNS. 
 
However, the model may not hold up under operational experience. The total volume of queries per day 
recorded by the eroot servers is shown in Figure 1. 
 

 
Figure 1 – Total Root Servers Queries per Day (RSSAC002 data) 

 
Over the period from 2016 to 2020 the volume of queries seen by the collection of root servers has 
tripled. Happily, the root zone query volume has come down in 2021 and stabilised over 2022. It is likely 
that changes to the behaviour of the Chrome browser may explain this. Chrome used to probe the local 
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DNS environment by making a sequence of queries to non-existent names upon startup and because the 
query names referred to undelegated top-level domains, these queries were a significant component of 
the queries seen at the root servers. Changing this behaviour in Chrome t the end of 2020 appears to 
have resulted in a dramatic change to the DNS query profile as seen by the root servers. However, the 
relative stability of query volumes at the root servers that has been observed over the past two years may 
not be sustained indefinitely. 
 
What are we doing in response to this? How are we ensuring that the root zone service can continue to 
grow in capacity in response to a resumption in the growth of query rates? 

Root Zone Scaling 
The original model of authoritative servers in the DNS was based on the concept of unicast routing. A 
server name had a single IP address, and this single server was located at a single point in the network. 
Augmenting server capacity entailed using a larger server and adding network capacity. However, such a 
model does not address the issues of a single point of vulnerability, nor does it provide an optimal service 
for distant clients. 
 
The DNS approach to this is to use multiple name server records. A DNS resolver was expected to retry 
its query with a different server if its original query did not elicit a response. That way, a collection of 
servers could provide a framework of mutual backup. To address the model of optimal choice, DNS 
resolvers were expected to maintain a record of the query/response delay for each of the root servers 
and prefer to direct their queries to the fastest server. 
 

Why not use multiple address records for a single common server name? 
The two approaches (multiple server names and multiple address 
records for a name) look similar, but typical DNS resolver behaviour 
apparently differs between these two cases. 
 
A DNS resolver is expected to prefer to use a particular server name 
based on query delay. On the other hand, a DNS resolver is expected to 
rotate its queries in round-robin order across all IP addresses for the 
same server name. 
 
I must admit that I’m not overly happy this this explanation, as it seems 
to be somewhat of an artifice. In the original model of IP, hosts with 
multiple network interfaces have multiple IP addresses as the IP address 
of a host is the address of its point of attachment to the network, and 
not the host itself. So, the situation of multiple addresses for a server is 
interpreted as a collection of addresses that represent some form of path 
diversity to reach the same unique host. Multiple names were supposedly 
used to denote different servers, I guess. But such scenarios do not seem 
to match today’s experience, where single platforms may have multiple 
names and IP addresses, and multiple platforms may share a single name 
and a single IP address. The implication of this observation is that once 
a resolver has assembled a collection of IP addresses that represent the 
nameservers for a domain, then it seems to me that a resolver could be 
justified for treating the list of IP addresses consistently irrespective of 
whether the list was assembled from multiple IP addresses associated 
with a single name, or from multiple names. 
 
So why do we have multiple server names that each have one IPv4 
address and one IPv6 address for the root zone? I’m not sure I have a 
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good explanation, other than: “That’s the way we’ve always enumerated 
the servers for the root zone.”  

 
The scaling issue with multiple servers is the question of completeness and the size of the name server 
response to the priming query. The question here is: If a resolver asks for the name servers of the root 
zone, should the resolver necessarily be informed of all such servers in the response? The size of the 
response will increase with the number of servers, and the size of the response may exceed the default 
maximal DNS over UDP payload size of 512 bytes. The choice of the number of server names for the 
root zone, 13, was based on the calculation that this was the largest list of a server list that could fit into 
a DNS response that was under 512 bytes in size. This assumed that only the IPv4 address records were 
being used in the response, and with the addition of the IPv6 AAAA records the response size has 
expanded. The size of the priming response for the root zone with 13 dual stack authoritative servers is 823 
bytes, or 1,097 bytes if the DNSSEC signature is included, and slightly larger if DNS cookies are added. 
In today’s DNS environment, if the query does not include an EDNS(0) indication that they can accept 
a DNS response over UDP larger than 512 bytes, then the root servers will provide a partial response in 
any case, generally listing all 13 names, but truncating the list addresses of these services in the Additional 
Section to fit with a 512 byte payload. 
 
If we can’t, or don’t want to, just keep on adding more root servers to name server set in the root zone, 
then what are the other scaling options for serving the root zone? 
 
The first set of responses to these scaling issues was in building root servers that have greater network 
capacity and greater processing throughput. But with just 13 servers to work with, then this was never 
going to scale at the pace of the Internet. We needed something more.  The next scaling step has been 
in the conversion from unicast to anycast services. There may be 26 unique IP addresses for root servers 
(13 in IPv4 and 13 in IPv6) but each of these service operators now use anycast to replicate the root 
service in different locations. The current number of root server sites is described at root-servers.org 
(Table 1). Now the routing system is used to optimise the choice of the “closest” location for each root 
server. 
 

Root Anycast 
Sites 

A 58 
B 6 
C 12 
D 181 
E 254 
F 336 
G 6 
H 12 
I 68 
J 163 
K 97 
L 192 
M 11 

Total 1,396 
 

Table 1 – Anycast Site Counts for Root Servers, January 2023 
 
The root server system has enthusiastically embraced anycast. That's a total of 1,396 sites where there are 
instances of root servers. Some 28 months earlier, in September 2020, the root server site count was 
1,098, so that's a 30% increase in the number of sites in a little over two years! 
 
The number of authoritative server engines is larger than that count of the number of sites, as its common 
these days to use multiple server engines within a site and use some form of query distribution front-end 
to distribute the incoming query load across multiple back-end engines at each site. 
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However even this form of expanding the distributed service may not be enough. If the growth profile 
of 2016-2020 resumes, then in two years from now we may need double the root service capacity from 
the current levels, and in a further two years we’d need to double it again. And again, and again, and 
again. Exponential growth is a very harsh master. Can this anycast model of replicated root servers 
expand indefinitely? Or should we look elsewhere for scaling solutions? To attempt to answer this 
question we should look at the root service in a little more detail. 
 
There have been many studies of the root service and the behavior of the DNS over the past few decades. 
If the root servers were simply meant to collect the cache misses of DNS resolvers, then whatever is 
happening at the root is not entirely consistent with a model of resolver cache misses. Indeed, it’s not 
clear what going on at the root! 
 
It has been reported that the majority of queries to the root servers result in NXDOMAIN responses. 
In looking at the published response code data, it appears that some 55% of root zone queries result in 
NXDOMAIN responses (Figure 2). The NXDOMAIN response rate was as high as 75% in 2020, and 
dropped presumably when the default behaviour of the Chrome browser changed. In theory these queries 
are all cache misses at the recursive resolver level, so the issue is that the DNS is not all that effective in 
handling cases where the name itself does not exist. 
 

 
 

Figure 2 – Proportion of Root Zone NXDOMAIN responses per Day (RSSAC002 data) 
 

Query Deflection 
If we want to reduce the query pressure on the root servers it appears that we need to handle the case of 
queries for non-existent names, and in particular names where top-level label in the name is not delegated 
in the root zone. How else can we deflect these queries away from the root server system? 
 
There are two approaches that may help. 

NSEC Caching 
The first is described in RFC8198, aggressive NSEC caching. When a top level label does not exist in a 
DNSSEC-signed zone, and the query has the DNSSEC EDNS(0) flag enabled, the NXDOMAIN 
response from a root server includes a signed NSEC record that gives the two labels that exist in the root 
zone that “surround” the non-existent label. NSEC records say more than “this label is not in this zone”. 
It says that every label that is lexicographically between these two labels does not exist. If the recursive 
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resolver caches this NSEC record it can use this same cached record to respond to all subsequent queries 
for names in this label range, in the same way that it conventionally uses “positive” cache records. 
 

$ dig +dnssec this.is.not.a.tld @a.root-servers.net 
 
; <<>> DiG 9.18.10 <<>> +dnssec this.is.not.a.tld @a.root-servers.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 18390 
;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 1 
;; WARNING: recursion requested but not available 
 
;; OPT PSEUDOSECTION: 
; EDNS: version: 0, flags: do; udp: 4096 
;; QUESTION SECTION: 
;this.is.not.a.tld. IN A 
 
;; AUTHORITY SECTION: 
. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023020601 1800 900 604800 86400 
. 86400 IN RRSIG SOA 8 0 86400 20230219170000 20230206160000 951 . wkTq6wKu2J5w […] STwcw== 
tl. 86400 IN NSEC tm. NS DS RRSIG NSEC 
tl. 86400 IN RRSIG NSEC 8 1 86400 20230219170000 20230206160000 951 . kgQXGN5Vo […] vQHw== 
. 86400 IN NSEC aaa. NS SOA RRSIG NSEC DNSKEY 
. 86400 IN RRSIG NSEC 8 0 86400 20230219170000 20230206160000 951 . LVRI […] DiIQ== 
 
;; Query time: 127 msec 
;; SERVER: 198.41.0.4#53(a.root-servers.net) (UDP) 
;; WHEN: Tue Feb 07 10:12:17 AEDT 2023 
;; MSG SIZE  rcvd: 1031 

 
Figure 3 – A NXDOMAIN response from a root server 

 
In the example in Figure 3, a DNSSEC-enabled query for the name this.is.not.a.tld elicits a 
response which includes a signed NSEC record that asserts there are no delegated TLDs between .tl 
and .tm, and any query for a name that lies between these two labels would elicit exactly the same 
response. If a recursive resolver cached both the 1,481 top level delegated labels and the 1,481 NSEC 
records in the root zone, then the resolver would not need to pass any queries to a root server for the 
lifetime of the cached entries. If all recursive resolvers performed this form of NSEC caching of the root 
zone, then the query volumes seen at the root from recursive resolvers would fall significantly for non-
existent labels. 
 

How many TLDS are in the Root Zone? 
 
There are 1,481 top level domains in the root zone of the DNS in 
February 2023. It has not always been this size. The root zone started 
with a small set of generic labels, and in the late 1980’s expanded to 
include the set of two-letter country codes. There were some tentative 
steps to augment the number of generic top level domain names, and 
then in the 2010’s ICANN embarked on a larger program of generic 
TLD expansion. Figure 4 shows the daily count of TLDs in the root 
zone since 2014. 
 

 
 Figure 4 Daily count of root zone TLDs 
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What was surprising to me when I generated this data set was that top 
level domains are not necessarily permanent. The largest TLD count 
occurred in August 2017 with 1,547 TLDs, and since then the number 
of TLDs have been gently declining. 

  
 
NSEC caching in recursive resolvers could play a valuable role in scaling the root zone. Bind supports 
this as of release 9.12. Unbound supports this as of release 1.7.0. Knot resolver supports this as of 2.0.0. 
But the queries at the root zone keep growing. 
 
However, NSEC caching is a tactical response to root zone scaling concerns, as distinct from a strategic 
response. It’s still dependent on the root server infrastructure and uses a query-based method of 
promulgating the contents of the root zone. Nothing really changes in the root service model. What 
NSEC caching does is allow the resolver to make full use of the information in the NSEC response. 
Nothing else changes. 

Local Root and ZONEMD 
Another option is to jump out of the query/response model of learning the contents of the root zone 
and simply load the entire root zone into recursive resolvers. The idea is that if a recursive resolver is 
loaded with a copy of the root zone then it can operate autonomously with respect to the root servers 
for the period of validity of the local copy of the root zone contents. It will send no further queries to 
the root servers. The procedures to follow to load a local root zone are well documented in RFC8806, 
and I should also note here the existence of the LocalRoot service (https://localroot.isi.edu/) that offers 
DNS NOTIFY messages when the root zone changes. 
 
The root zone is not a big data set. A signed, uncompressed plain text copy of the root zone as at the 
start of February 2023 is 2,258,235 bytes in size. 
 
However, this approach has its drawbacks. How do you know that the zone you might have received via 
some form of zone transfer or otherwise is the current genuine root zone? Yes, the zone is signed, but 
not every element in the zone is signed (NS records for delegated zones are unsigned). The client is left 
with the task of performing a validation of every digital signature in the zone, and at present there are 
some 2,847 RRSIG records in the root zone. Even then the client cannot confirm that its local copy of 
the root zone is complete and authentic, because of these unsigned NS delegation records. 
 
The IETF published RFC 8976, the specification of a message digest record for DNS zones, in February 
2021. This RFC defines the ZONEMD record. 
 

What’s a Message Digest? 
 
A message digest is a form a condensed digital signature of a digital artefact. 
If the digital artefact has changed in any way, then the digest will 
necessarily change in value as well. If a receiver of this artefact is given 
the data object and its digest value then the receiver can be assured, to 
some extent, that the contents of the file have been unaltered since the 
digest was generated. 
 
These digital signatures are typically generated using a cryptographic 
hash function. These functions have several useful properties. They are 
normally a fixed length function, so that the function value is a fixed size 
irrespective of the size of the data for which the hash has been generated. 
They are a unidirectional function, in that knowledge of the hash 
function value will not provide any assistance in trying to recreate the 
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original data. They are deterministic, in that the same hash function 
applied to the same data will always product the same hash value. Any 
form of change to the data should generate a different hash value. Hash 
functions do not necessarily produce a unique value for each possible 
data collection, but it should be exhaustively challenging (unfeasible) to 
synthesise or discover a data set that produces a given hash value (pre-
image resistance), and equally challenging to find or generate two 
different data sets that have the same hash function value (collision 
resistance). 
 
This means that an adversary, malicious or otherwise, cannot replace or 
modify the data set without changing its digest value. Thus, if two data 
sets have the same digest, one can be relatively confident that they are 
identical. Second pre-image resistance prevents an attacker from crafting 
a data set with the same hash as a document the attacker cannot control. 
Collision resistance prevents an attacker from creating two distinct 
documents with the same hash. 

 
What if the root zone included a ZONEMD record, signed with the Zone Signing Key of the root zone? 
If a client received such a root zone that included this record, then it could validate the RRSIG of the 
ZONEMD record in the same way that it DNSSEC-validates any other RRSIG entry in the root zone, 
then use the value of this record and compare it with a locally calculated message digest value of the root 
zone. If the digest values match, then the client has a high level of assurance that this is an authentic copy 
of the root zone and has not been altered in any way.  
 
The dates in the DNSSEC signatures can indicate some level of currency of the data, but further 
assurance at a finer level of granularity than the built-in key validity dates that the local copy of the root 
zone data is indeed the current value of the root zone is a little more challenging in this context. DNSSEC 
does not provide any explicit concept of revocation of prior versions of data, so all ‘snapshots’ of the 
root zone within the DNSSEC key validity times are equally valid for a client. The root zone uses a two-
week signature validity period (Figure 5). 
 

. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2023020501 1800 900 604800 86400 

. 86400 IN RRSIG SOA 8 0 86400 20230218170000 20230205160000 951 .  dtm […] SgQ== 

 
Figure 5 – Root Zone SOA signature 

 
Despite this, the approach of a whole-of-zone signature has some real potential in terms of the 
distribution of the root zone to DNS resolvers, and thereby reduce the dependency on the availability 
and responsiveness of the root zone servers. The use of the ZONEMD record would allow any client to 
use a copy of the root zone irrespective on the way in which the zone file was obtained. Within the limits 
of the authenticated currency of the zone file as already noted, any party can redistribute a copy of the 
root zone and clients of such a redistributed zone can answer queries using this data with some level of 
confidence that the responses so generated are authentic. 
 
While a local zone administrator can add a ZONEMD record to the zone or zones they administer at 
any time (assuming that the zone is already DNSSEC-signed), the story is somewhat different for the 
root zone. The risk is that if the inclusion of this new resource record in the root zone causes resolvers 
to reject the zone, then the consequences could be dire if this rejection is widespread. This is not unlike 
the issues with the roll of the KSK, although the likelihood of zone file rejection with the addition of this 
ZONEMD record is apparently considered to be a low-level risk at this stage. In any case the addition 
of a new record to the root zone involves many interested parties, including the IANA Functions 
Operator, the Root Zone Maintainer, and the Root Server Operators. The approach to introduce this 
record into the root zone follows a practice previously used to introduce DNSSEC keys into the zone, 
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starting with a “dummy” record that presents the resource record but in a format that cannot be used to 
validate the data by using a private-use hash algorithm number in the first instance. The second phase of 
the process is then to cut over to a value that can be used to verify the zone data.  
 
Recursive resolvers on the Internet are not impacted by plans to add the ZONEMD record if they 
interact with the root zone and it’s servers via standard query mechanisms. There is no expectation that 
resolvers will issue queries for the ZONEMD record, and there is no harm should they do so in any case. 
 
For those resolvers who elect to use a locally managed copy of the root zone, the zoneMD record, they 
will benefit from a resolver implementation that support ZONEMD and can use it to verify a received 
zone. Resolver implementations that perform this verification include Unbound (from v1.13.23) and 
PowerDNS Recursor (from v4.7.04) and Bind (v9.17.13). 
 
Notification mechanisms that could prompt a resolver to work from a new copy of the root zone are not 
addressed in this framework. To me that’s the last piece of the framework that could promote every 
recursive resolver into a peer root server. We’ve tried a number of approaches to scalable distribution 
mechanisms over the years. There is the structured push mechanism where clients sign up to a distributor 
and the distributor pushes updated copies of the data to clients. Routing protocols use this mechanism. 
There is the pull approach where the client probes its feed point to see if the data has changed and pulls 
a new copy if it has changed. This mechanism has some scaling issues in that aggressive probing by clients 
may overwhelm the distributor, and we’ve also seen hybrid approaches where a change indication signal 
is pushed to the client, and it is up to the client to determine when to pull the new data.  
 
This model of local root zone distribution has the potential to change the nature of the DNS root service, 
unlike NSEC caching. If there is one thing that we’ve learned to do astonishingly well in recent times its 
distribution of content. Indeed, we’ve concentrated on this activity to such an extent that it appears that 
the entire Internet is nothing more than a small set of Content Distribution Networks. If the root zone 
is signed in its entirety with zone signatures that allow a recursive resolver to confirm its validity and 
currency and submitted into these distribution systems as just another digital object, then the CDN 
infrastructure is perfectly capable of feeding this zone to the entire collection of recursive resolvers with 
ease. Perhaps if we changed the management regime of the root zone to generate a new zone file every 
24 hours according to a strict schedule, we could eliminate the entire notification superstructure. Each 
iteration of the root zone contents would be published 2 hours in advance and is valid for precisely 24 
hours, for example. At that point the root zone will be served by millions of recursive resolvers rather 
than the twelve operators we use today. 

Options? Pick them all! 
We operate the root service in its current framework because it's been functionally adequate so far. That 
is to say the predominate query-based approach to root zone distribution hasn't visibly collapsed in a 
screaming heap of broken DNS yet! But we don't have to continue relying only on this query-based 
approach just because it hasn't broken so far. Our need to further scale this function is still a current 
need, and it makes a whole lot of sense to take a broader view of available options. We have some choices 
as to how the root service can evolve and scale.  
 
By deflecting some of the current load to delegation points lower in the domain hierarchy we can make 
a massive change in the current root query load, as we’ve already seen with the changes to the Chrome 
browser. 
 
By having resolvers make better use of signed NSEC records we can stave off some of the more pressing 
immediate issues about further scaling of the root system.  
 
But that’s probably not enough.  We can either wait for the system to collapse and then try and salvage 
the DNS from the broken mess, or perhaps we could explore some alternatives now, and look at how 
we can break out of a query-based root content promulgation model and view the root zone as just 
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another content “blob” in the larger ecosystem of content distribution. If we can cost efficiently load 
every recursive resolver with a current copy of the root zone, and these days that’s not even a remotely 
challenging target, then perhaps we can put aside the issues of how to scale the root server system to 
serve ever greater quantities of “NO!” to ever more demanding clients! 
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