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A Look at QUIC Use 
 
Quick UDP Internet Connection (QUIC) is a network protocol initially developed and deployed by Google, 
and recently (May 2021) standardized in the Internet Engineering Task Force (IETF) (RFC 9000). In this 
article we’ll take a quick tour of QUIC and then look at the extent to which QUIC is being used on 
today’s Internet. 
  
QUIC is not exactly a recent protocol, as the protocol was developed by Google a decade ago in 2012, 
and initial public releases of this protocol were included in Chromium version 29, released in August 
2013. QUIC is an attempt to refine the basic operation of IP’s Transmission Control Protocol (TCP), not by 
fundamentally changing the flow control procedures and stream management per se, but by changing 
where the transport function is implemented within the end host and, consequently, who has change 
control over this function. 
 
IP’s TCP protocol has been implemented as an operating system function, and applications interact with 
TCP by an interface that implements the basic I/O functions of open/close and read/write. The details 
of stream data integrity and flow control are largely hidden from the application. This certainly makes for 
simpler applications, but this simplicity comes with its own attendant issues. TCP has its problems, 
particularly so in relation to web-based services. These days most web pages are not simple monolithic 
objects. They typically contain many separate components, including images, scripts, customized frames, 
style sheets and similar. Each of these is a separate object and if you are using a browser that is equipped 
the original implementation of HTTP each object will be loaded in a new TCP session, even if they are 
served from the same IP address. The overheads of setting up both a new TCP session and a new 
Transport Layer Security (TLS) session for each distinct web object within a compound web resource can 
become quite significant, and the temptations to re-use an already established TLS session for multiple 
fetches from the same server are close to overwhelming. But this approach of multiplexing a number of 
data streams within a single TCP session also has its issues. Multiplexing multiple logical data flows across 
a single session can generate unwanted inter-dependencies between the flow processors and may lead to 
head of line blocking situations, where a stall in the transfer of the currently active stream blocks all queued 
fetch streams in the same TCP session. While it makes some sense to share a single end-to-end security 
association and a single rate-controlled data flow state across a network across multiple logical data flows, 
TCP represents a rather poor way of achieving this outcome. The conclusion is that if we want to improve 
the efficiency of such compound transactions by introducing parallel behaviors into the protocol, then 
we need to look beyond current behaviours of TCP. 
 
Of course, this sounds a whole lot easier than it actually is. Some classes of applications (and services) 
who would like to see some changes in TCP’s behaviour, but it’s up to the maintainers of operating 
systems platforms to implement such changes. This displacement of cost and benefit can often result in 
an impasse where such changes are inadequately motivated for those who need to make such changes. A 
more direct outcome can be achieved by allowing the application to exercise direct control over how it 
wants its transport service to behave.  
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This is where the UDP protocol comes into play. UDP is a narrow “shim” protocol that exposes the 
application to the basic datagram behaviour of IP. An application could implement its own 
implementation of an end-to-end transport protocol and load the control structures of this transport 
protocol, together with the payload itself and load the combination of the two as the UDP payload. At 
this point the application has complete control over the transport protocol and can customize the 
transport protocol behaviour as it wishes without waiting for any third party.  

A Brief Summary of QUIC 
QUIC is an implementation of an end-to-end transport protocol implemented as an overlay on a UDP 
datagram flow (Figure 1). 
 

 
 
Figure 1 – Comparison of TCP and QUIC within the HTTP architecture 
 

QUIC takes the combinations of TCP’s stream integrity and flow control functions, combines it with the 
session encryption functions of TLS, adds a more flexible version of multi-stream handling, and also 
adds better support for address agility to tolerate a broad variety of NAT address translation behaviours.  

QUIC Connection Identifiers 
For flexible NAT traversal QUIC uses the concept of connection identifiers (connection IDs). Each endpoint 
generates connection IDs that will allow received packets with that connection ID to be routed to the 
process that is using that connection ID. During QUIC version negotiation these connection IDs are 
exchanged, and thereafter each sent QUIC packet includes the current connection ID of the remote 
party.  
 
This form of semantic distinction between the identity of a connection to an endpoint and the current 
IP address and port number that is used by QUIC is similar to the Host Identity Protocol (HIP). QUIC’S 
constant endpoint identifier allows a session to survive changes in the endpoint IP addresses and ports. 
An incoming QUIC packet can be recognized as part of an existing stream if it uses the same connection 
ID, even if the source IP address and UDP port numbers may have changed. 

QUIC Multi-Stream Support 
A single QUIC session can support multiple streams profiles. Bidirectional streams place the client and 
server transactions into a matched context, as is required for the conventional request/response 
transactions of HTTP/1, for example. A client would be expected to open a bidirectional stream with a 
server and then issue a request in a stream which would generate a matching response from the server. 
It is possible for a server to initiate a bidirectional push stream to a client, which contains a response 
without an initial request. Control information is supported using unidirectional control streams, where one 
side can pass a message to the other as soon as they are able. An underlying unidirectional stream interface, 
used to support control streams, is also exposed to the application. 
 
Not only can QUIC support a number of different stream profiles, but QUIC can support different 
stream profiles within a single end-to-end QUIC session. This is not a novel concept of course, and the 
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HTTP/2 protocol is a good example of an application-level protocol adding multiplexing and stream 
framing in order to carry multiple data flows across a single transport data stream. However, a single TCP 
transport stream as used by HTTP/2 may encounter head of line blocking where all overlay data streams 
fate-share across a single TCP session. If one of the streams stalls, then it’s possible that all overlay data 
streams will be affected and may stall as well.  
 
QUIC allows for a slightly different form of multiplexing where each overlay data stream can use its own 
end-to-end flow state, and a pause in one overlay stream does not imply that any other simultaneous 
stream is affected. 
 
Part of the reason to multiplex multiple data flows between the same two endpoints in HTTP/2 was to 
reduce the overhead of setting up a TLS security association for each TCP session. This can be a major 
issue when the individual streams are each sending a small object, and it’s possible to encounter a situation 
where the TCP and TLS handshake component of a compound web object fetch dominates both the 
total download time and the data volume.   
 
QUIC pushes the security association to the end-to-end state that is implemented as a UDP data flow, 
so that individual streams can be started in a very lightweight manner because they essentially reuse the 
established secure session state. 

QUIC Encryption 
As is probably clear from the references to TLS already, QUIC uses end-to-end encryption. This 
encryption is performed on the UDP payload, so once the TLS handshake is complete very little of the 
subsequent QUIC packet exchange is in the clear (Figure 2).  
 
 

 
 

Figure 2 – Comparison of TCP and TLS with QUIC 
 
 
What is exposed in QUIC are the public flags. This initial part of a QUIC packet consists of the connection 
ID, allowing the receiver to associate the packet with an endpoint without decrypting the entire packet. 
The QUIC version is also part of the public flag set. This is used in the initial QUIC session establishment 
and can be omitted thereafter.  
 
The remainder of the QUIC packet are private flags and the payload. These are encrypted and are not 
directly visible to an eavesdropper. This private section includes the packet sequence number. This field 
used to detect duplicate and missing packets. It also includes all the flow control parameters, including 
window advertisements. 
 
This is one of the critical differences between TCP and QUIC. With TCP the control parts of the 
protocol are in the clear, so that a network element would be able to inspect the port addresses (and infer 
the application type), as well as the flow state of the connection. Connection of a sequence of such TCP 
packets, even if only looking at the packets flowing in one direction within the connection would allow 
the network element to infer the round-trip time and the data transmission rate. And, like a NAT, 
manipulation of the receive window in the ACK stream would allow a network element to apply a throttle 
to a connection and reduce the transfer rate in a manner that would be invisible to both endpoints. By 
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placing all of this control information inside the encrypted part of the QUIC packet ensures that no 
network element has direct visibility to this information, and no network element can manipulate the 
connection flow.  
 
One could take the view that QUIC enforces a perspective that was assumed in the 1980’s. This is that 
the end-to-end transport protocol is not shared with the network. All the network ‘sees’ are stateless 
datagrams, and the endpoints can safely assume that the information contained in the end-to-end 
transport control fields is carried over the network in a manner that protects it from third party inspection 
and alteration. 

QUIC and IP Fragmentation 
The short answer is “no!” QUIC packets cannot be fragmented. The way this is achieved is by having 
the QUIC HELLO packet be padded out to the maximal packet size, and not completing the initial 
HELLO exchange if the maximally-sized packet is fragmented. The smallest allowed maximal packet size 
in 1,200 bytes. The endpoints are permitted to use a larger maximal packet size if they have confirmed 
the viability of this setting via some Path MTU Discovery procedure. 

Configuration for Measuring QUIC Use 
Now let’s turn to the task of measuring the use of QUIC (and HTTP/3) in today’s Internet. To achieve 
this, we’ve used APNIC Lab’s Measurement platform where the measurement is embedded in a script 
within an online advertisement. The advertisement script directs the user to perform a number of URL 
fetches, and the servers that serve the referenced objects are instrumented to allow client capabilities and 
behaviours to be inferred from the server’s actions. 
 
In this case the client is directed to load a basic URL object (a minimal 1x1 pixel ‘blot’) where the domain 
name part of the URL is unique to each individual measurement. To set up a QUIC measurement we’ve 
taken the following steps: 

• used the nginx server v1.12.7 with QUIC support included,  
• used a URL domain name with a defined HTTPS RR Type whose value is alpn=”h3”, and 
• used an Alternative Service directive on the content, namely Alt-Svc: h3=”:443”, which is 

intended to direct the client to use HTTP/3 for subsequent retrievals. 
 

Normally this last measure, the Alternative Service directive, would be 
largely ineffectual. Each client receives the ad as a single event and the 
script directs each ad to load once, so a client should not be performing 
a second load of the URL. In this case we’ve used a variant of the script 
that directs the client to wait for 2 seconds and then repeat the load of 
this URL. It is assumed that this delayed repeat would be sufficient for 
the client to act on the Alternative Service directive. 
 
We perform this repeated URL fetch one fifth of the time in this 
experiment. 

 

QUIC Measurements 
The QUIC measurement commenced at the start of June 2022. In this measurement we measure both 
the number of users who query for an HTTPS record and the number of users who use HTTP/3 (QUIC) 
to retrieve the URL. The results of this measurement for June 2022 is shown in Figure 3. 
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Figure 3 – QUIC measurements for June 2022 

 
It is interesting that the number of users who query for the HTTPS DNS type is between 10% and 15% 
of users, while the number of users who use HTTP/3 to perform the object retrieval is far lower, at 1.5% 
of users. If the client browser is aware of HTTP/3 to the extent that it is configured to query for this 
DNS record type, then why is the subsequent retrieval using HTTP/3 must lower? We’ll return to this 
question later. 
 
It is also interesting to look at the distribution of the use of HTTP/3 for object retrieval on a per-country 
distribution (Figure 4). 
 

 
 
 

Figure 4 – QUIC use per country 
 
QUIC use is higher in Denmark, Sweden, Norway and Switzerland, while lower in most parts of Asia, 
South America and Africa. (The full report of data on QUIC use can be found at 
https://stats.labs.apnic.net/quic) 

Which Clients use HTTP/3? 
By using the browser string provided in every HTTP retrieval and matching the retrieval to the protocol 
used (HTTP/2 or HTTP/3) we can produce a profile of which platforms and which browsers are using 
HTTP/3 for object retrieval. This is shown in Table 1 for platforms. It should be noted that the browser 
string is not completely reliable as a data source and there is a margin of misattribution here, but the 
larger numbers provide a reasonable indication of which browsers and which platforms are being used 
to perform HTTP/3 retrievals. 
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 HTTP/3 Non-HTTP/3 
Android 47.7% 84.5% 
iOS 44.5% 5.5% 
Win 10.0% 5.5% 
Mac OS X  1.5% 1.0% 
Win7/8  1.0% 1.0% 
Linux   0.3% 0.4% 
 
Table 1 – Platforms vs HTTP/3 use 
 

Table 1 also provides for comparison a distribution of browser use for non-QUIC use. It’s evident that 
the major shift here is the use of HTTP/3 in Apple’s iOS devices (iPhones and iPads) in conjunction 
with HTTP/3 retrievals. 
 
A similar view, this time for browsers, is shown in Table 2. 
 

 HTTP/3 Non-HTTP/3 
Chrome  52.2% 91.7% 
Safari  44.6% 4.3% 
Firefox  2.2% 0.8% 
Edge  0.6% 0.7% 
Opera  0.3% 0.2% 

 
Table 2 – Browsers vs HTTP/3 use 
 

Again, the major variance in Table 2 from the non-QUIC picture is the use of the Safari browser for 
QUIC use, which correlates well with the iOS platform data in Table 1.  
 
At this stage it appears that a little under half of the observed use of HTTP/3 and QUIC in today’s 
Internet is attributable to iOS platforms and the Safari browser. 

QUIC Packet Sizes 
As noted in RFC 9000 “UDP datagrams MUST NOT be fragmented at the IP layer.” The same 
specification also states that “Clients MUST ensure that UDP datagrams containing Initial packets have 
UDP payloads of at least 1200 bytes, adding PADDING frames as necessary.”  This implies that QUIC 
implementations must constrain the maximum packet size to a conservative size that comfortable avoids 
path fragmentation scenarios. 
 
One response to these constraints is to perform some form of Path MTU discovery and use that value. 
The other approach is to select a packet size that has a relatively high level of assurance that it will not 
be fragmented.  
 
To answer the question of what maximum packet sizes are being used for QUIC at present we looked at 
each QUIC session and recorded the maximum packet size. The distribution of observed packet sizes is 
shown in Figure 5. 
 
The most common session packet size was 1,200 bytes, observed in 46% of sessions. The next most 
common sizes were 1,250 bytes (18.5% of sessions) and 1,252 bytes (16.4% of sessions). No session had 
a larger packet than 1,357 bytes in size.  
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Figure 5 – QUIC maximum packet size distribution 

QUIC Connection Reliability 
Every new protocol on the Internet has a potential issue with existing middleware. Many packet filters 
operate within the constraint of a narrow aperture of accepted protocols and ports, and the use of UDP 
port 443 with an encrypted payload is no exception here. It is reasonable to understand the level of 
robustness of the QUIC protocol in the Internet. 
 
If we were able to reliably instrument both ends of the QUIC connection we could look at both the 
reliability of the initial QUIC packet sent from the client to the server, and the responding QUIC packet 
that is sent back from the server. Unfortunately, we are not in a position to instrument the client so we 
can only look at the second class of reliability, namely the response packets that are sent back from the 
server to the client, and whether there is a subsequent packet received from the client. 
 
Table 3 shows the measurements over a 24-hour period for these QUIC response packets. Here we are 
looking at connections at the server where we see the initial connection packet, but no subsequent packet, 
indicating a failed QUIC connection. Given that we cannot see failure in the sending of the initial QUIC 
packet this observed failure rate is a lower bound 
 

Initial QUIC Connections: 19,211,357 
Failed Connections: 46,645 
Failure Rate: 0.24% 

 
Table 3 – QUIC Connection Failure Rate 

Triggering QUIC 
There are two mechanisms that allow a server to signal to a client that it is capable of supporting an 
HTTP/3 session using QUIC, as previous nogtd. To recap these mechanisms are: 

• An Alternative Service directive in the content header, namely: Alt-Svc: h3=”:443” 
• A URL domain name with a defined HTTPS RR Type whose value is: alpn=”h3” 

 
Which one is used by clients? 
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The way we can measure this is to note that the service directive is only used on the second retrieval, 
while the DNS-based capability can be established on first use. In this experiment we use two different 
tests. For one fifth (22%) of the clients who execute the measurement script the client performs two 
fetches, spaced 2 seconds apart, where the second fetch is distinguished only by an additional field added 
to the arguments of the URL retrieval. The remainder of the clients perform a single fetch. The two 
fetches allow the server to inform the client that it can support HTTP/3 in the Alt-Svc header in the first 
retrieval and then to use HTTP/3 in the second retrieval.  
 
Table 4 compares the HTTP/3 retrieval rate using these two triggering processes. If the client does not 
use HTTP/3 in the first retrieval, but changes to use HTTP/3 in the second retrieval we assume it used 
the Alt-Svc. If the client used HTTP/3 in a single retrieval scenario we assume it used the DNS HTTPS 
mechanism. 
 

Used DNS HTTPS Query 1% 
Used Alt-Svc Header 5% 

 
Table 4 – QUIC Connection Trigger Rates 

 
It’s evident that the Alt-Svc trigger mechanism is four times more prevalent than the DNS-based 
mechanism. The reason for this disparity is the use of the DNS in recent releases of the iOS platform 
using the Safari browser, as compared to the use of the Chrome browser’s use of the Alt-Svc directive. 
Given that Chrome is used by some 90% of the observed clients, then the 5% trigger rate across the total 
client base corresponds to a 5.5% trigger rate across Chrome clients. The 1% DNS-based trigger rate 
seen across the entire measurement sample set corresponds to a 20-25% trigger rate across Safari iOS 
clients. 

Is QUIC Faster? 
One of the motivations behind the use of QUIC is that the overheads of setting up a QUIC session are 
lower than the serial delays in setting up a TCP session and then a TLS session. Its useful to ask in the 
observed practice correlates with this theory. 
 
We will compare the client-measured time to load an object (a 1x1 pixel gif over a secured session) using 
HTTP/2 and the same client’s measured time to load the same object using HTTP/3. There are a number 
of variables in the client’s time measurement, including variance relating to the internal task scheduling 
within the browser, but these individual factors should be cancelled out over a large enough sample set. 
 
Figure 6 shows the count of time differences in the centre point of +/- 500ms. 
 

 
Figure 6 – Comparison of retrieval time differences: QUIC vs non-QUIC 
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A cumulative distribution shows that QUIC is faster in 2/3 of the samples (Figure 7) 
 

 
Figure 7 – Cumulative distribution of retrieval time differences: QUIC vs non-QUIC 

 

Summary 
It’s clear that HTTP/3 and QUIC is gathering some visible deployment momentum in today’s Internet, 
due largely to the impact of Apple’s Safari in recent releases of iOS and MAC OS. 
 
QUIC is performing a conservative response to IP packet fragmentation and maximum packet sizes are 
being held within the range of 1,200 – 1,360 octets. 
 
Thanks to the widespread use of the Chrome browser in the Internet the predominant trigger mechanism 
for QUIC remains the Alt-Svc directive, although the DNS HTTPS mechanism is being used by Apple 
clients. 
 
Importantly, HTTP/3 and QUIC is generally faster than TCP and TLS.  
 
We will be continuing this experiment to track the deployment of QUIC over the coming months. The 
reports are available at https://stats.labs.apnic.net/quic. 
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