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RSA vs ECDSA for DNSSEC 
 
It has often been said of technology standards that the good thing is that there are just so many to pick from! 
The same is true, to perhaps a more limited extent, in the world of cryptography. The choices may not be 
quite so diverse, but there are still many crypto algorithms to choose from.  
 

There are several reasons for this variation. One justification for this variation is that 
knowledge of the weakness in a cryptographic algorithm is very often a closely guarded secret 
itself, in an effort to encourage others to unwittingly use an algorithm where the ciphertext 
can be deciphered. There are crypto algorithms promoted by national communities in the 
view that use of a “home grown” algorithm is better in some sense (such as GOST, 
developed in the 1970’s in the USSR as a Soviet alternative to the US-developed DES). Some 
algorithms are seen as being harder to decrypt than others. Some are seen as being more 
resistant to decryption using quantum-computing techniques. Some impose more work on 
the encryptor to generate the cyphertext. 
 
Standards bodies have responded to this situation by avoiding, where possible, specifying any 
single crypto algorithm in their specifications, making the choice of algorithm a decision 
made by the entity performing the encryption, or more often the result of a decision made 
by a software developer.  

 
The implication of this choice of crypto algorithms is that the parties performing decryption need to perform 
a dialogue with the encryptor to agree to use an algorithm that both entities support and is acceptable to both. 
This real-time dialogue between the communicating parties is not always an option, and the RPKI (Resource 
Public Key Infrastructure) is a good case in point. In the RPKI a user of the system needs to support all crypto 
algorithms that could be used by the various parties that are signing data. A similar constraint applies in 
DNSSEC, where the validating resolver must support all crypto algorithms used by signers.  
 
This poses some logistical challenges when attempting to introduce a new crypto algorithm into these 
common spaces, such as DNSSEC. There is little benefit in using an algorithm to generate a digital signature 
if no one can validate it, and equally there is little point in adding support for an algorithm into a validator if 
no one is using it to sign anything. Neither signers nor clients are motivated to move first. The result is that 
without a specific prompt, such as knowledge of some form of algorithm weakness, the process of adoption 
tends to be a protracted one. 
 
This appears to be the case with the introduction of Elliptical Curve crypto algorithms in DNSSEC. When 
we first looked at this topic with a measurement study of the level of support for the elliptical curve algorithm 
ECDSA P-256 in 2014 (https://www.potaroo.net/ispcol/2014-10/ecdsa.html), the study concluded that ECDSA 
was not a viable crypto algorithm for use in DNSSEC at that time. There were too few DNSSEC validators 
who could validate data signed with this algorithm, as the user-based measurement indicated that some 25% 
of users who validated with RSA were not validating with ECDSA. Some four years later, in 2018, we returned 
to this measurement (https://www.potaroo.net/ispcol/2018-08/ecdsafin.html), and this time the gap between 
support of RSA and ECDSA had narrowed to some 3% of the user base. The conclusion at that time was 
that ECDSA P-256 was indeed ready for use. 
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Has this picture changed in the three years since that study? 

ECDSA Cryptography 
ECDSA is a digital signature algorithm that is based on Elliptical Curve Cryptography (ECC). This form of 
cryptography is based on the algebraic structure of elliptic curves over finite fields.  
 
The security of ECC depends on the ability to compute an elliptic curve point multiplication and the inability to 
compute the multiplicand given the original and product points. This is phrased as a discrete logarithm problem, 
solving the equation bk = g for an integer k when b and g are members of a finite group. Computing a solution 
for certain discrete logarithm problems is believed to be difficult, to the extent that no efficient general method 
for computing discrete logarithms on conventional computers is known (outside of potential approaches using 
quantum computing of course). The size of the elliptic curve determines the difficulty of the problem. 
 
The major attraction of ECDSA is not necessarily in terms of any claims of superior robustness of the 
algorithm as compared to RSA, but in the observation that Elliptic Curve Cryptography allows for comparably 
difficult problems to be represented by considerably shorter key lengths. If the length of the keys being used 
is a problem, then maybe ECC is a possible solution. 
 

 “Current estimates are that ECDSA with curve P-256 has an approximate equivalent strength to RSA 
with 3072-bit keys.  Using ECDSA with curve P-256 in DNSSEC has some advantages and 
disadvantages relative to using RSA with SHA-256 and with 3072-bit keys.  ECDSA keys are   much 
shorter than RSA keys; at this size, the difference is 256 versus 3072 bits.   Similarly, ECDSA 
signatures are much shorter than RSA signatures.  This is relevant because DNSSEC stores and 
transmits both keys and signatures.” 
 
RFC 6605, “Elliptic Curve Digital Signature Algorithm (DSA) for DNSSEC”, P. Hoffman, 
W.C.A. Wijngaards, April 2012 

 
We are probably justified in being concerned over ever-expanding key sizes in RSA, and the associated 
implications of the consequent forced use of UDP fragments for the DNS when packing those longer key 
values into DNSSEC-signed responses. If UDP fragmentation in the DNS is unpalatable, then TCP for the 
DNS may not be much better, given that we have no clear idea of the scalability issues in replacing the stateless 
datagram transaction model of the DNS with that of a session state associated with each and every DNS 
query. The combination of these factors makes the shorter key sizes in ECDSA an attractive cryptographic 
algorithm for use in DNSSEC.  

Crypto Algorithms and DNSSEC 
To help understand the relative strength of cryptographic algorithms and keys there is the concept of a security 
level which is the log base 2 of the number of operations to solve a cryptographic challenge. In other words, a 
security level of n implies that it will take 2n operations to solve the cryptographic challenge 
 
Using larger keys in crypto has several implications when we are talking about the DNS. Larger keys mean 
larger DNS signatures and larger payloads, particularly for the DNSKEY records. A comparison of DNSSEC 
signature record sizes for RSA with a number of different key sizes and both Elliptical and Edwards curve 
algorithms is shown in Table 1. 
 

Algorithm Private Key Public Key Signature Security Level (bits) 
RSA-1024 1,102 438 259 80 
RSA-2048 1,776 620 403 112 
RSA-4096 3,312 967 744 140 
ECDSA P-256 187 353 146 128 
Ed25519 179 300 146 128 

 
Table 1 – Crypto Sizes (Bytes) 
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ECDSA permits all of the DNSSEC resource records, namely RRSIG, NSEC(3), DNSKEY and DS records 
to all be under 512 bytes in length in most circumstances (the DNSKEY record during a keyroll is the 
exceptional case here). 
 
Larger keys are not only a problem in the DNS transport area, but these larger keys also imply that it takes 
more time to both sign and validate signatures (https://www.potaroo.net/ispcol/2021-10/rsa.html).  
 
However, it should be noted that the security level given in Table 1 relates to conventional non-quantum 
computers and algorithms. Our current thinking about quantum computing capabilities is that some 
algorithms appear to be more resilient than others to quantum-based decryption efforts, and specifically RSA 
with larger keys may be more resilient than an equivalent strength ECDSA profile in this anticipated quantum 
computing environment. 
 
While we are listing caveats to the interpretations of the data in Table 1, it is also useful to bear in mind the 
issue of security lifetime. When a piece of information is encrypted, it is vulnerable to attack over the period 
when the information remains valid. DNSSEC is not used to encrypt DNS data. From the perspective of 
DNSSEC, DNS data is public data and DNSSEC does not help at all to protect its secrecy. There are other 
mechanisms to provide channel security for DNS queries and responses (DNS over TLS, DNS over QUIC, 
and DNS over HTTPS) and other mechanisms to pull apart the association of who is making what DNS 
query (oblivious DNS). DNSSEC is specifically limited to protecting the data against tampering and a more 
limited protection against replay of stale DNS data. 
 
This consideration implies that secure lifetime of a data item secured by a DNSSEC signature is based on the 
lifetime of the key that signs the data. The more frequently a zone admin rolls the keys, and the shorter the 
signature validity periods, then the shorter the time window available for an attacker to crack the algorithm 
and manufacture bogus DNS records that appear to be validly signed. 
 
This then gives zone administrators a trade-off in terms of anticipated secure lifetimes for their choice of 
crypto algorithm profiles. More secure keys have a longer anticipated secure lifetime, but the larger DNS 
records may cause DNS failures within the transport issues in handling large DNS payloads. If the keys are 
rolled regularly, then the window of opportunity for attack is shortened, and the secure lifetime need only be 
of the same order of length as key lifetimes specified in the zone. This would allow the continued use of key 
profiles that have a secure lifetime much shorter than 10 years. In this latter scenario the choice of a shorter 
key also places an obligation on the zone administrator to perform regular keyrolls within the selected design 
parameters, ensuring that an attacker does not have sufficient time to break the encryption profile for each 
iteration of the key value. 

Every DNSSEC Validator Supports RSA 
While it is up to the DNSSEC validator to determine what crypto algorithms it supports, there is one aspect 
of DNSSEC where there is no real choice, and that is the algorithm used to sign the root zone. If the validator 
does not support RSA, then it cannot complete the construction of the interlocking signatures that connect 
the trust anchor, namely the root zone’s Key-Signing Key, to the DNSSEC signature being validated. 
 
The implication from this observation is simple: Every DNSSEC validator must support the RSA algorithm. 
 
So, when we look at a comparison between validation support for RSA and ECDSA in the DNS then the 
question is in fact a question about the level of support for ECDSA. 
 
With that in mind let’s proceed. 

The ECDSA Measurement 
The question posed here is: what proportion of the Internet’s end users use security-aware DNS resolvers 
that are capable of handling objects signed using the ECDSA protocol, as compared to the level of support 
for the RSA protocol? 
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At APNIC Labs, we’ve been continuously measuring the extent of deployment of DNSSEC for a couple of 
years now. The measurement is undertaken using an online advertising network to pass the user’s browser a 
very small set of tasks to perform in the background that are phrased as the retrieval of simple URLs of 
invisible web “blots”. The DNS names loaded up in each ad impression are unique, so that DNS caches do 
not mask out client DNS requests from the authoritative name servers, and the subsequent URL fetch 
(assuming that the DNS name resolution was successful) is also a uniquely named URL so it will be served 
from the associated named web server and not from some intermediate web proxy. 
 
Our DNSSEC test uses three URLs:  

- a control URL using an unsigned DNS name,  
- a positive URL, which uses a DNSSEC-signed DNS name, and  
- a negative URL that uses a deliberately invalidly-signed DNS name.  

 
A user who exclusively uses DNSSEC validating resolvers will fetch the first two URLs but not the third (as 
the DNS name for the third cannot be successfully resolved by DNSSEC-validating resolvers, due to its 
corrupted digital signature).  
 

The negative test exposes an interesting side effect of DNS name resolution. There is no 
DNSSEC signature verification failure signal in the DNS, and the DNSSEC designers chose to 
adopt an existing error code to be backward compatible with existing DNS behaviors. The 
code chosen for DNSSEC validation failure is Response Code 2 (RCODE 2), otherwise 
known as SERVFAIL. In other DNS scenarios a SERVFAIL response means “the server 
you have selected is unable to answer you” which client resolvers interpret as a signal to 
resend the query to another server. Given that the validation failure will happen for all 
DNSSEC-enabled queries, the client stub resolver should iterate through all configured 
recursive resolvers while it attempts to resolve the name. If any of the resolvers is not 
performing DNSSEC validation the client will be able to resolve the name. So only users 
who exclusively use DNSSEC validating resolvers will fail to resolve this negative DNS name. 

 
The authoritative name servers for these DNS names will see queries for the DNSSEC RRs (in particular, 
DNSKEY and DS) for the latter two URLs, assuming of course that the DNS name is unique and therefore 
is not held in any DNS resolver cache). 
 
To test the extent to which ECDSA P-256 is supported we added two further tests to this set, so that we now 
have five tests: 

- a control URL using an unsigned DNS name,  
- a positive URL, which uses a DNSSEC-signed DNS name, signed with ECDSA P-256, 
- a negative URL that uses a deliberately invalidly signed DNS name, signed with ECDSA P-256, 
- a positive URL, which uses a DNSSEC-signed DNS name, signed with RSA-1024, 
- a negative URL that uses a deliberately invalidly signed DNS, name signed with RSA-1024. 

 
What do security-aware DNS resolvers do when they are confronted with a DNSSEC-signed zone whose 
signing algorithm is one they don't recognize? RFC 4035 provides the answer this this question: 
 

If the resolver does not support any of the algorithms listed in an authenticated DS RRset, then the 
resolver will not be able to verify the authentication path to the child zone.  In this case, the resolver 
SHOULD treat the child zone as if it were unsigned. 
 
RFC4035, “Protocol Modifications for the DNS Security Extensions”, R. Arends, et al, 
March 2005. 

 



  Page 5 

A DNSSEC-validating DNS resolver that does not recognize the ECDSA algorithm should function as if the 
name was unsigned and return the resolution response. We should expect to see a user who uses such DNS 
resolvers to fetch the web objects for both the positive and negative URLs. 

Missing ECDSA Support by Economy 
We conducted a measurement in the first 10 days of October, comparing the level of support for RSA-1024 
(where we do not anticipate issues with UDP fragmentation or DNS truncation) with ECDSA P-256. 
 
The overall measurement was conducted across 94 million endpoints. The sample data was weighted by 
estimated national user populations in an effort to mitigate sampling bias inherent in the sampling system that 
underlies this measurement system. 
 
The results were similar to the picture we obtained in 2018. DNSSEC validation is supported by the resolvers 
used by 29.8% of users. These users appear not to be able to resolve a DNS name if it is invalidly signed and 
are seen to launch queries consistent with the DNSSEC validation function. This figure drops to 26.8% of 
users when ECDSA P-256 is used as the singing algorithm. This 3.0% variation in the user population is 
consistent with the 3% variation that was observed three years ago, so it appears that very little has changed 
in this respect over the last three years. 
 
When viewed at a level of national communities there were 70 economies where the variance in ECDSA 
support by users within that economy was greater than 1% of the user population in that economy. This is 
perhaps too fine a filter level as the noise factors in this experiment given an uncertainty factor of a roughly 
estimated 5%. Using this 5% of users as a threshold filter, then the number drops to 38 such economies.  
Table 2 lists those 25 economies with the greatest level of variation of support between these two algorithms. 
 

CC Difference RSA-1024 ECDSA Raw Samples Name 
OM 34% 37% 3% 6,974 Oman 
UZ 31% 51% 20% 5,095 Uzbekistan 
JO 25% 28% 2% 18,241 Jordan 
PT 24% 68% 44% 102,570 Portugal 
BT 22% 96% 74% 1,143 Bhutan 
ZA 21% 54% 32% 39,552 South Africa 
FJ 20% 90% 70% 1,960 Fiji 
SG 19% 71% 52% 12,897 Singapore 
IT 18% 33% 14% 72,002 Italy 
HK 18% 68% 50% 21,215 Hong Kong 
YE 16% 59% 43% 7,509 Yemen 
IQ 15% 74% 58% 158,902 Iraq 
QA 15% 20% 4% 7,434 Qatar 
BD 15% 57% 42% 344,653 Bangladesh 
NZ 15% 85% 69% 2,295 New Zealand 
MV 13% 47% 34% 2,794 Maldives 
KH 13% 47% 34% 20,409 Cambodia 
AZ 12% 51% 38% 31,634 Azerbaijan 
GE 12% 50% 37% 16,649 Georgia 
CL 11% 19% 7% 4,986 Chile 
CH 11% 74% 62% 7,657 Switzerland 
BH 10% 27% 16% 5,665 Bahrain 
PS 10% 40% 30% 15,837 Palestine 
SK 10% 25% 15% 31,003 Slovakia 
 
Table 2 – Variation in support between RSA-1024 and ECDSA P-256 between economies 

 
As well as looking at this table in a tabular form, we can weight these numbers by using the estimated national 
user population. This 3.0% of users corresponds to an estimated pool of 147M users. The cumulative 
distribution of where these users are located is shown in Figure 1. The largest such pool of users (14% of the 
entire pool) is in India. 
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Figure 1 – Distribution of national user populations who use DNSSEC-validating resolvers without support for ECDSA P-256 

Missing ECDSA Support by Network 
We can take these measurements to a further level of detail by looking at each access network. Using an 
estimate of the number of users served by each network and then calculating the number of users within each 
network where DNSSEC validation is performed using RSA but not when using ECDSA we can rank these 
networks according to the estimated size of these user populations (Table 3) 
 

AS Users 
(est) 

Validating NO ECDSA 
Validating 

Validating NO 
ECDSA 

Name 

28573 21,765,251 14,023,996 8,168,094 64% 58% Claro, Brazil 
1267 9,693,464 7,244,741 7,044,984 74% 97% Wind Tre, Italy  
8193 6,569,136 6,270,538 5,732,949 95% 91% BRM, Uzbekistan 
9829 11,410,595 6,342,187 5,518,031 55% 87% BSNL, India 
5713 5,783,117 5,534,273 4,567,567 95% 83% SAIX-NET, South Africa 
50710 21,899,023 20,813,454 4,558,142 95% 22% Earthlink, Iraq 
45727 9,142,086 7,300,558 3,192,278 79% 44% Three, Indonesia 
63949 13,159,486 12,336,200 3,088,150 93% 25% Linode, US 
16135 9,691,417 9,451,412 2,820,485 97% 30% Turkcell, Turkey 
37457 3,329,390 3,251,796 2,779,124 97% 85% Telkom, South Africa 
24389 8,558,208 8,327,046 2,306,545 97% 28% GrameenPhone, Bangladesh 
29465 29,493,220 2,708,701 2,168,074 9% 80% VCG, Nigeria 
2860 2,734,863 2,678,540 1,909,484 97% 71% Nos Communicadoes, Portugal 
34984 7,671,796 7,278,741 1,838,380 95% 25% Tellcom, Turkey 
28885 2,456,308 1,596,600 1,501,488 65% 94% OmanTel, Oman 
30873 8,772,874 5,399,136 1,451,867 61% 27% Yemen Net, Yemen 
26615 5,474,062 2,323,603 1,170,759 42% 50% TIM, Brazil 
39891 13,376,220 13,099,951 1,082,068 97% 8% ALJAWWALSTC, Saudi Arabia 
4804 3,737,097 3,628,318 934,926 97% 26% Microplex, Australia 
35819 6,725,202 6,560,989 864,626 97% 13% Etihad Mobile, Saudi Arabia 
49273 3,182,458 3,072,718 843,065 96% 27% COSCOM, Uzbekistan 
24863 2,410,271 836,623 809,397 34% 97% LINKdotNET, Egypt 
6730 1,561,571 820,486 806,933 52% 98% Sunrise, Switzerland 
9038 1,896,837 797,980 771,508 42% 97% BAT, Jordan 
27651 2,233,262 806,455 700,237 36% 87% ENTEL, Chile 

 
Table 3 - Variation in support between RSA-1024 and ECDSA P-256 between economies 
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In this case some further explanation of the columns is warranted. The estimate of the number of users per 
AS is a highly approximate measurement which divides the national estimate of the number of Internet users 
across the access ISPs according to the distribution of the sampling measurements. The validating column 
applies the measured ratio of samples where the end user is observed to successfully DNSSEC-validate DNS 
responses to the estimate of users per AS. The NO ECDSA Validating column applies the ratio of DNSSEC-
validating users who do not perform validating when the DNS record is signed using ECDSA to the Validating 
user count. These latter two ratios are shown in the next two columns. 
 
Some 15M users who use resolvers that do not support ECDSA (or some 10% of the measured discrepancy) 
are located in the networks operated by Claro in Brazil and Wind Tre in Italy. 

Should we use ECDSA? 
In my view these numbers, which are similar in many respects to the outcomes in 2018, are still saying that 
ECDSA is a usable crypto algorithm for DNSSEC. 
 
It would be good if some of the larger DNS providers who have already taken the steps to add DNSSEC 
validation to their resolvers updated their crypto libraries by adding support for ECDSA P-256, but the 
relatively small pool of users who are affected in this manner are small enough that it is insufficient grounds 
for a signer to delay transitioning from RSA to ECDSA, if that is their intent.  
 
There is an increasing level concern over the continued use of RSA-1024. As the US National Institute of 
Standards and Technology (NIST) recommended in January 2015: "Zones that initially deployed with RSA 
using SHA-1 should migrate to RSA (2048-bit RSA key) using SHA-256." 
(https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf) The alternative of using the 
ECDSA P-256 algorithm for DNSSEC is supported by the observation that this is a far more robust 
encryption algorithm that can carry public keys and DNS RR signatures in smaller DNS payloads.  
 
All other factors being equal, this seems like a clear choice for me! 
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