
The ISP Column
A column on various things Internet

November 2021

Geoff Huston

DINR 2021

From the recent writeup of the DNS work at the IETF its clear that there is a large amount of attention
being focussed on the DNS. It’s not just an IETF conversation, or a DNS OARC conversation, but a
conversation that involves a considerable amount of research activity as well. One of the more interesting
events that acts as a showcase into early DNS research is the DNS and Internet Naming Research
Directions (DINR) workshop. This is an interactive workshop with short presentations and much in the
way of discussion of early research work and some significant problems that could benefit from further
investigation. I’d like to review some of the material that was presented at the most recent DINR
workshop, held in November 2021.

Aggressive DNS Resolvers
Can DNS resolvers be considered ‘aggressive’? We’ve seen in our work at APNIC when a recursive
resolver will flip into some aggressive internal loop and latches onto a very small set of queries and sends
repeat queries as fast as it possibly can. Most recursive resolvers sit well inside the Internet infrastructure
so when we talk about “wire speed” of these high-speed repeat queries then one or two thousand queries
per second pre resolver is readily achievable. When we see upward of a billion queries per day, then that’s
“aggressive”.

Natalia Knob of the University of Passo Fundo, Brazil, reported on their efforts to use machine learning
to identity those resolvers that show these forms of aggressive query behaviours. In their case they are
using the OARC DITL data sets of captures of queries made to the root servers on single days in 2016
to 2019. It’s clear that there is a highly skewed distribution in these data sets, where a small number of
resolvers make the majority of all queries (Figure 1).

Figure 1 – Distribution of queries and queriers in Root queries – From “Identifying Aggressive DNS Resolver Behaviors using
Unsupervised Machine Learning”, Natalia Knob.

The key metric of this skewed distribution is visible in the 2019 DITL data, where 1% of all resolvers by
unique IP address sent 87% of all queries. The average query rate for these queries for the 24 hour period

 Page 2

was 76,047 queries per resolver, compared to the other 99% of resolvers who sent an average query count
of a far more modest 115 queries.

What form of automatic classification scheme should we use to classify each visible resolver into the
behaviour modes of aggressive queriers and non-aggressive queriers? Because of the diverse collection
of data sets, where the DITL data sets for each year have different collection criteria, the application of
simple thresholds across all of these data sets are not applicable. What other clustering models could be
applied to this data to successfully classify resolver behaviour? The researchers chose to use a Gaussian
Mixture Model as the clustering algorithm. They use the concept of an “active minute”, which is the
count of minutes where the resolver is seen to make queries within the minute interval, and the total
query count. As the number of active minutes increases the average query rate also increases (Figure 2).

Figure 2 – Distribution of queries and query minutes in Root queries – From “Identifying Aggressive DNS Resolver Behaviors
using Unsupervised Machine Learning”, Natalia Knob.

A peak query minute is defined as a query rate per minute that is at least twice the mean query rate for
the entire day. They then use this concept of the count of peak query minutes to build a three-dimensional
picture of the relationship between these three metrics (Figure 3).

Figure 3 – Distribution of queries, query minutes and peak query rates in Root queries – From “Identifying Aggressive DNS
Resolver Behaviours using Unsupervised Machine Learning”, Natalia Knob.

 Page 3

The classification model is then used to analyse this data. The result is that some two-thirds of visible
resolvers (65%) are non-aggressive, contributing less than 0.19% of all queries. A further 28% of resolvers
are “low aggression” resolvers, contributing some 4% of queries, and 4% of resolvers are “medium
aggression” resolvers with 10% of queries. The remaining 2% of resolvers contribute 85% of queries.

This analysis poses a far larger set of questions than it answers. Are these aggressive resolvers
misconfigured? Are they repeating the same query? Is the distribution of query names the same as that
used by non-aggressive resolvers? Do the aggressive resolvers show signs of local caching in use? But
perhaps the fundamental question is: “Are we building a root server system designed specifically to cope
with the demands of abnormal resolver behaviour?” If we were able to change the behaviour of these
2% of resolvers, would we see a drop of 85% in query traffic seen at the root servers? Now that’s an
interesting question!

DDOS and Anycast
Anycast has proved to be very popular in DNS infrastructure. Both open resolvers and authoritative
nameservers use anycast. Anycast will perform load distribution as well as service optimisation, as each
client is steered via the routing system to the “closest” instance of the anycast service. (“Closeness” is a
routing concept in this case, and it’s not necessarily “close” in geographic terms, or even in network
terms, nor in timing terms. It’s just “close” in terms of BGP metrics.)

When we were first experimenting with anycast it was cited not only as an effective means of scaling the
service, but also as a means of defence against various forms of attack. If the attack was a widely
distributed attack, then each anycast instance would be exposed to a smaller share of the attack, and if
the size of the anycast constellation is large enough this form of load dispersal will allow the attack to be
absorbed without service disruption. For an intense attack from a single source, or a local set of sources,
the anycast environment would sacrifice the closest instance of the service constellation, while every
other anycast service point could continue unaffected.

This latter case, particularly where the attack is coming from a group of attackers, but they are all being
directed to the same anycast instance is there a way of breaking up this group using anycast and get more
anycast instances enrolled in trying to disperse the attack across more of the anycast constellation? The
work of a group at USC/ISI and University of Twente proposes a “playbook” where the anycast
advertisements can be adjusted using the standard BGP traffic engineering techniques including AS Path
prepending, AS Path poisoning and local community settings to try and spread the attack volume over a
number of anycast service instances. I’m not sure this is all that effective as a technique. The BGP space
is very dense, with short AS Paths, so adjustments of anycast collection points is a very coarse response.
For this technique to work you actually need the “right” form of DDOS attack in the first place where
the group of attackers can be separated using BGP routing metrics in the first place.

Anycast and Latency Optimisation
BGP routing uses AS Path length as its primary metric. Not time, nor link congestion, nor geography,
nor hop count. When given a set of servers for a domain the DNS will tend to favour the server that
offers the fastest response. These two factors are combined when we consider the root service, where all
root server instances are anycast these days and the client set for root service queries is approximately
evenly distributed over the Internet.

Each root service (or “letter”) does not receive an equal share of the total query count. They have
different populations of anycast constellations, and while tehre are common location points where are
also many locations where a subset of services, or even only a single service, is present. What is interesting
is to look at the fraction of DNS queries per day and their distribution over time, and correlate this with
changes in anycast service sets (Figure 4).

 Page 4

Is this outcome optimal in terms of service times? For other application environments this is a critical
question and a very challenging one to answer, but the arrangement of the root service system and the
DNS gives us a massive helping hand. Each client has 13 choices for root service, and each client will
tend to prefer the service that offers the fastest response time. As long as at least one service has a close
server to the client (where “close” is measured in units of time) then the client will tend to prefer to use
this service instance over the other 12.

Figure 4 – Root Service query counts over time from “Do You Really Like Me?
Anycast Latency and Root DNS Popularity”, J Heidemann, G. Moura and W. Hardaker.

Figure 4 illustrates this behaviour. When a server instance adds more anycast sites they will probably
offer some clients a faster service than the existing services. This lower latency will attract query traffic
from these clients and cause the service’s overall query level to rise in proportion to the query load seen
by the other servers.

It’s interesting to put this data together with the aggressive queriers data from the first presentation,
where 85% of the queries come from 2% of resolvers. It appears from these numbers that these 2% of
highly aggressive queriers share their favours across all 13 root service letters.

Does Hyperlocal (RFC8806) really work?
It's a simple test: set up a local instance of a root service, then drop the routes to all 13 root servers and
then evaluate the outcome. I’m not sure that much was exposed here. Yes, the local resolver works just
fine when equipped with a copy of the root zone and does not need to refer to the root servers. Yes, the
DNS operates as designed. But there are other questions exposed here that were not specifically
addressed in this presentation.

The first is whether Hyperlocal is a political solution looking for an application. Recursive resolvers can
learn the entirety of the root zone on demand by simply caching and reusing the root zone’s NSEC
records (RFC8198). The result is much the same in terms of performance, namely that the recursive
resolver learns the entire contents of the root zone on demand and can response both positively and
negatively (NXDOMAIN) to all queries relating to the root zone from its cache. No, you can’t claim that
the resolver “serves” the root, and its that's the objective then this cache-based approach does not do
that. However, the outcome, namely that the resolver can respond to queries directly when it would
otherwise pass to a root server, is achieved. Functionally the outcome is much the same.

Another question is whether the entire concept of a secondary root zone distribution mechanism, without
and signalling of change scales. The localroot service operated by ISI (https://localroot.isi.edu/)
evidently works just fine, and that is of course a good thing and well worth using. But not everyone
should heed this advice. It’s likely that it would not work as well if there were a few million such clients
and if these clients were sufficiently motivated to keep their local copy current that they polled the

 Page 5

localroot server every second or so and pulled over a new copy of the zoner contents just in case. Even
if they modified their polling strategy and queries the root for the SOA record every second, then at the
point at which the SOA changes the AXFR service point would likely be highly congested with refresh
AXFR requests. If we have learned one thing from years of poor experiences when trying to respond to
scaling pressure, demand-pull synchronization mechanisms don't scale.

Another question is: What is the operational objective here? Is this trying to respond to the various forms
of national concern voiced in recent years (Russia is a good recent example) on the fact that each national
community is not autonomous and self-sufficient when it comes to the Internet, and the domestic
Internet infrastructure has critical points of reliance on services located elsewhere. Yes, continuous access
to the DNS root server system is part of this reliance, but it’s not just the root of the DNS. As we’ve
seen in various operational incidents, the authoritative services at all other points in the DNS hierarchy
can also be considered “critical”. Taking away access to the root servers will prevent you from resolving
potaroo.net, for example because once the local cached entry for the servers for .net expires, then no
name in .net can be resolved. And then there are a myriad of other services and servers. Certificate
issuance and revocation servers, RPKI publication points, various trust and identity services, and so on.
All these servers are intertwined and inter-dependent across the Internet. John Donne was probably
voicing a more universal truth when he penned the thought “No man is an island” in 1624. It applies
equally to services on the Internet.

Measuring Dual Stack
There is this theory about the transition to IPv6 that despite all appearances to the contrary the objective
of this effort is not to build a universal dual-protocol internet. The objective is to turn off IPv4 in the
same way as we’ve turned off DECnet, Appletalk and Netware and countless other networking protocol
suites over the years. The outcome is that only only can a device be equipped only with an Ipv6 network
protocol stack, but all the services and interactions used by that device will function seamlessly without
any trace of dependence on services available only via IPv4.

The current measurement exercises, including APNIC, use a far more modest form of IPv6
measurement. Its measurement is based on: “Can a user retrieve a web object if the only way to access
that object is by using IPv6”. But it could be a little more challenging. What is we also restricted the DNS
resolution to only respond when using IPv6 transport, both at all the authoritative servers and at the
recursive elements? What is the question was: “If the entire Internet support environment for this URL
retrieval could not rely on IPv4 in any way, would it still be able to access the remote service, or retrieve
a referenced object, or any other other functions that we perform over the Internet?”

It's a challenging question, but if this dual stack transition environment is ever going to come to an end,
then we need to be confident that we can operate the entire Internet only using IPv6. And a good place
to start is to look at the DNS and assess how ready we are in DNS infrastructure to operate using only
IPv6. And that’s what Florian Streibelt of the Max Planck Institute for Informatics is proposing to study.

DNS Transparency Logs
Perfection is such a tough ask. Yet we all demand it every day when we use the Internet. For example,
we expect all the entities that issue digital certificates to never lie. Never. Because the rest of us rely on
that perfection when we access remote services and pass them our credentials in a supposedly secure
manner. It works, and works well, because these folk never lie.

The problem is that this is just not true. It may not be a deliberate lie. They may have been misled. They
may have been compromised. Bad Things may have happened, and the result is that you and I are
vulnerable because we have no way of understanding when something we are relying on is a lie. The trust
infrastructure behind the web, the WebPKI tried for many years to chase down operational perfection,
with predictable results. The next move was “certificate transparency”. All trusted Certificate Authorities
(CA’s) should publish all their certification actions in an external log, and the log should be published in

 Page 6

a manner that is public and tamper-proof and the signed certificate should include a reference to the log
entry. Bag Things may still happen in the CA world, but the Bad Thing is exposed from the outset. Yes,
its second best, and frankly when a Bad Thing is performed in a few seconds the transparency log is more
of forensic interest after the event than it is an active deterrent. But as we often say in such hopeless
situations: “It’s better than doing nothing!”

Now the DNS, and DNSSEC in particular, does not have this problem. There are not hundreds of
entities issuing trusted credentials for any domain name under circumstances that are largely opaque to
the benighted end user who is forced to trust all the actions of all these CAs at the same time. Each zone
administrator has control of their zone, and the credentials for that zone are located in, and signed by,
that zone. Users can’t be misled by falsely issued third party credentials and perfection is obtained.
Utopian goodness prevails and the world is saved.

Not so.

There are many weak points in DNSSEC, but there are also many weak points in the DNS infrastructure
itself. If a Bad Person were to represent themselves as the zone admin to a registrar and request a change
of delegation, then as long as the registrar believes them then the change will be performed, as the
interaction between the registrar and the registry, and the registry and the published parent zone in the
DNS is largely automated. There are many registrars and many paths into the DNS infrastructure that
can permit DNS hijacking, so despite the tighter level of control over the trust points in DNSSEC, it
turns out that once more the poor benighted user ends up trusting folk whom they have never met, who
use processes that they are completely unaware of, to operate perfectly all the time. In fact, it’s no better
than the woeful trust model the underpins the WebPKI, and arguably it’s far worse!

We continuously chide registrars to operate two-factor authentication and exhort them to perform high
touch functions in changing DNS delegations, but in this high-volume low margin world there is no
viable business model that supports registrars making extensive investments in such operationally robust
processes. And even if one registrar did this, and necessarily charged its clients large sums for such a
robust service, the overall model is compromised by the other registrars who operate at a lower level of
assurance (for a lower retail price). Yes, your DNS name could still be hijacked in any case. There is little
incentive for any individual registrar to improve their quality of service when the outcome could still be
compromised by the actions of others. It's a form of the tyranny of the lowest common denominator.

But, as in the WebPKI we want to Do Something. So why not borrow from Certificate Transparency
and require all registry operators to publish tamper-proof change log entries in third party-operated public
repositories. It won't prevent such nefarious practices within the DNS infrastructure, but it will expose
the outcomes, whether its redelegation, change of zone keys, registration of new names or retirement of
names. The grand dream would be to do this over the entire DNS, but that's perhaps too big a dream.
What if we started out just looking at the top-level domains?

This is a case of more easily said than done and there are a huge set of privacy issues, commercial issues
and probably regulatory issues associated with this, and probably far more issues than those associated
with the WebPKI’s Certificate Transparency efforts. But it seems wrong to just give up and accept that
there are parts of the DNS that are a toxic wasteland of lies and deceptions and we can't tell which parts
are rotten and which are not in advance.

A Case Study in GeoDNS Servers
The DNS is meant to provide the same answer when it is presented with the same query. This consistency
is one of the basic objectives of the DNS architecture. Except of course for those cases when we want
to break with this convention. We can, and have, used the DNS to provide different answers to the same
query. If we want to balance a service load across a collection of server engines the DNS can be informed
by the current server load and serve the address of the most available server at any time and do so with

 Page 7

a zero cache time to ensure that the effects of caching are mitigated. Or we could assume that a recursive
resolver is located close to the end user (which appears to be the case most (66%) of the time) and use
the location of the recursive resolver to offer a service address in the response that is intended to be
closest to the end user. This has been used by Akamai in its cloud infrastructure for many years as a fast
and efficient form of service delivery management.

The large scale use of open DNS resolvers by up to 30% of internet users would appear to undermine
this assumption of locality between the user and their recursive resolver, but the anycast structures used
by the most popular resolvers (and yes, this is referring specifically to Google, but some other open DNS
resolvers also do this, including Cloudflare) publish the IP addresses and location of the DNS resolver
engines, so conventional geolocation databases are still quite effective at guessing the location of a user
through the location of the recursive resolver that they use.

A longstanding use of this approach is NTPPool (https://www.ntppool.org/zone). When you configure a
NTP time client its preferable to use a nearby NTP time source to remove network jitter effects, and its
preferable to use a server that has capacity to accept a new client. As Giovane Moura points out:
“GeoDNS [used by NTPPool] seems to be the first open-source authoritative that supports GeoIP.
Researchers can benefit from its simplicity and being relatively lightweight compared to other alternatives:
zone files are written in JSON (easier integration with Python), and it automatically reloads when a zone
file is re-written. We still need to evaluate its performance, but we can say it has survived the test of time
on the NTPPool, running since 2013.”

IoT
It’s still unclear where IoT is heading. The dream of the mobile sector is that IoT will be folded with 5G,
and the entire issue of secure enrolment, operation, command, and control will be based on some form
of SIM card and communications over the mobile network. This 5G-centric perspective is exactly what
the mobile industry wants to hear, but it’s not exactly the only way to do this. The alternative lies in using
Internet tools and it frees the IoT world from the SIM tether of the mobile network operators and allows
the use of a variety of media including various forms of WiFi and similar. The reason for such alternatives
is that exclusive use radio spectrum did not come cheaply, and shared spectrum unlicensed solutions,
including WiFi, can be exploited by IoT at a much lower price point in many circumstances. If the aim
of IoT is massive scale at very low unit cost, then any measure that offers lower unit cost is going to be
of extreme interest.

One of the challenges is that of provisioning and enrolment. The current stopgap approaches using
inbuilt WiFi access points to allow operator configuration of the device simply do not scale, so
alternatives that use technologies such as the DNS and DANE allow for more flexible approaches. The
DNS infrastructure, its security extensions, and TLS could provide provisioning, service resolution, and
communication security for IoT. I suspect that the recently started DANCE work in the IETF is central
to this topic.

Passive vs Active Measurements in the DNS
The first presentation on query behaviour at the root revealed a deeply skewed query pattern where a
very small proportion of resolvers generate the overwhelming majority of queries. The obvious followup
question is what is going on in the root zone and why is there this skewed behaviour? This is not just an
issue at the root, and this presentation described work at APNIC Labs where I look at the age of DNS
queries that I see at an authoritative name server that is further down in the DNS hierarchy. In this case
the experiment uses one-off DNS names where the time of the only use of the name is placed into the
DNS name, using an active measurement technique where the name is actively used by an end user agent
through the use of advertising networks to plant these queries across a broad set of users.

In this case we look at the query volume where the query name shows that the name is being queried in
the DNS more than 30 seconds after its first and only use. The daily results are shown in Figure 5.

 Page 8

Figure 5 – Daily Zombie Query Rate from “Passive vs Active Measurements”, G. Huston

One some days the proportion of queries for these older names, or “zombies” is between 8% to 10% of
the total query volume, while on other days the proportion can be as high as 85%. It must be noted that
the only reason that we can perform this classification is because of the form of encoding of information
in the DNS label. Were this not to be the case and were we looking as a passively collected query log
we’d be seeing this same query pattern without any further information that could assist us in
understanding why the DNS is behaving in this manner.

On average some 40% of queries seen at this authoritative server relate to queries that are zombie queries
that are being replayed into the DNS. If this is indicative of the general behaviour of the DNS, then are
our assumptions of DNS behaviours based on the concept of “normal” query pattern of stub resolver
to recursive resolver to authoritative name server being based on a false premise, and a significant
proportion of DNS query behaviour is based on different behaviours, such as query log replay, cache
repopulation and similar internal functions which are unrelated to current user actions?

Trustworthy Transfers
In the late 1980’s in the nascent days of the DNS, a monopoly was established under the auspices of the
US Government in the registration and hosting of domain names. It’s been a long and convoluted saga
to try and dismantle this monopoly and create competition int this space. We’ve ended up with two major
pillars of competitive activity. The first is the opening up of the top-level domain name space to more
labels, allowing competition to the original triumvirate of “.com”, “.net” and “.org”. The second is the
opening up of the registrar activity while increasing the level of contractually obligated oversight in the
shared registry setup. It could be argued that in so doing we’ve managed to create the worst of both
worlds, but that is not the topic of this particular presentation. Here Joe Abley is looking at the topic of
registrar transfers in the shared registry system, and the level of disruption to secured domains (DNSSEC-
signed domains) when being transferred within this system. The Shared Registry System accommodates
domain transfers between registrars with no interruption to registration systems. After all the registry
itself still contains the same delegated name and the change here in DNS terms is a staged transition of
NS and DS resource records. However, continuity of bundled DNS hosting or DNSSEC signing services
is not assured by the system and there has been concern expressed for over ten years that the lack of
such assurance causes operational problems that ultimately may act as barriers to improved DNSSEC
adoption. Operating a registrar is a low margin business and operators tend to offer precisely the
contracted service and nothing more. When the registrar service contract is terminated all care and
attention terminates as well.

 Page 9

There is a lot of anecdotal evidence of an operational practice that drops a secured domain to an insecure
state before performing the registrar transfer and then creating a new secured state through the new
registrar. Aside from the obvious window of vulnerability that this entails, this process is far more
convoluted than it should be. However, the real question to start with is how well these anecdotes and
operational reality coincide. Joe Abley is proposing a study that draws upon the CZDS data to assemble
a history of some of the gTLD zone contents, look for transitions that are clearly a result of transfers
and then look at the associated records of secure delegation to see of the zone was secured across the
transfer.

As Joe notes, he is not sure what to expect from the data analysis. There may be clear signals of zone
transfer which will allow for investigation of continuity of secure delegation, or it may become a needle
in a haystack problem and other indicators of a transfer would need to be identified.

Detecting Phishing
Domain phishing is one of the most prevalent forms of cybercrime. It is easy to craft a domain name
and as associated service appearance which is sufficiently faithful to the original to deceive enough victims
to make the process worthwhile. Our collective response has been to maintain “blacklists” or lists of
those domains whose only purpose is to perform phishing attacks. DNS resolvers that subscribe to such
blacklists would deliberately fail to resolve such names, limiting the effectiveness of the phishing
campaign.

However, maintaining such blacklists is intensive in terms of human input, they lag reality because they
are reactive not predictive and they are literal as they block individual names, not generic types of names.
Can we improve on this approach? Can we use heuristics to assess the probability that a domain name is
a phishing name either though its similarity in the DNS label display string to known authentic domain
names, or by similarity in web site appearance to known web domains.

The likely answer is yes, but no. In the same way that mail spammers quickly adapted their spamming
behaviour to try and get around the commonly applied spam heuristics in mail handlers, the issue here is
that phishers would likely follow a similar path and adapt their behaviour to create phishing domains that
would circumvent the current heuristics. It doesn’t mean that we shouldn't try to do this, and I think
that this is promising work, but we do need to be realistic about our expectations that may result from
this work.

DNS Hijacking
The other form of DNS attack is not to attempt to resemble a known site, but to literally hijack the site
through redelegation. Such control allows the attack to obtain new certificates using the attacker’s keys
and the attacker can then assume complete control for the duration of the attack. The Sea Turtle
campaign has been somewhat of a catalyst in this area. It has prompted several groups involved in security
research to publish details of the attacks, as well as recommendations for defences, and warnings that
this incident could be a forerunner of new and increasingly serious DNS-focused attacks.

Can the process of identification of a hostile hijack of a domain be automated? Using analysis of passive
DNS data sets, such as Farsight’s passive DNS database searching for reported hijacked domains the
answer looks promising. Attackers don't appear to use a very sophisticated cloaking approach to the
hijack, and they tend to reuse the same IP addresses and domain names to identify the hijack DNS and
web servers. There are also patterns of the redelegation that can be used to guide heuristic algorithms
that can the DNS to look for redelegations that could be associated with a hijack effort.

As with Phishing defences, it’s likely that the defensive efforts will inform future attackers and future
attack patterns, but the ultimate aim is often not to design the perfect defence, but to divert the attacker.
As the saying goes you don't necessarily need to outrun the lion. You just need to outrun the person
beside you! In this case the purely pragmatic aim is to make the attack sufficiently expensive that the

 Page 10

attacker will be motived to attack elsewhere. The ultimate endpoint is that this process of progressive
improvements will make all such attacks prohibitively expensive to mount.

It is also worth bearing in mind that attackers are opportunistic and will not necessarily attack the best
defended parts of the infrastructure:

Figure 6 – Security as seen by XKCD – https://xkcd.com/538

The State of DNS Research
As the DINR 2021 program illustrates there are many activities happening in DNS research today. It
seems like a simple distributed database with a very simple query protocol but lurking behind this veneer
is a world of detail and complexity, complete with all forms of behaviours that at times challenge our
understanding.

The more we poke and prod at the DNS, the more the DNS shows us that there is much that we really
don't understand about it!

 Page 11

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author

Geoff Huston AM, B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region.

www.potaroo.net

