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DNSSEC with RSA-4096 keys 
 
Let’s look at the operation of DNSSEC and its use of public key cryptographic algorithms.  
 
The DNSSEC specification does not define in advance which algorithm you should use to generate the digital 
signature records for a DNSSEC-signed zone. And that's a very good thing. The issue here is that cryptographic 
algorithms do not generate computationally impossible problems. Instead, they generate computationally infeasible 
problems. It’s not that you couldn’t crack some cyphertext if you tried hard enough and tried for long enough. 
It’s just that the search space is intentionally set to be sufficiently large that no matter how hard you try it will 
still probably take a geological eon or two, or perhaps even a period measured at the same scale as the age of 
the cosmos itself!  
 
However, this concept of what is infeasible in practice is a moving target. Computers have, so far, continued to 
increase in capability at an exponential rate. If you consider these astonishing advances in computational 
capacity, then it’s clear that the threshold of what defines a computationally infeasible problem has changed 
dramatically. That means that if we want to preserve the privacy of encrypted information, then we'd like to 
pick a crypto algorithm and key profile that creates problems that are not only infeasible to solve on today's 
computers but are infeasible on tomorrow’s computers as well. How far ahead you want to keep a secret 
determines how much additional computing capability you need to factor in with what you might think will still 
be an infeasible computational challenge some 5, 10 or even 50 years from now. 
 
A very common cryptographic algorithm is RSA (named after the surnames of the original authors of the 1978 
paper that described the algorithm, Ron Rivest, Adi Shamir and Leonard Adelman). RSA is a cryptographic 
algorithm that does both encryption and decryption using a variable key length. A shorter key is more efficient 
in terms of encryption and decryption but is not as robust. Longer keys are more expensive to use but offer 
greater robustness against efforts to break encoded data. 
 
RSA is based on prime number operations using modular exponentiation. A basic principle behind RSA is the 
observation that it is practical to find three very large positive integers e, d, and n, such that with modular 
exponentiation for all integers m (with 0 ≤ m < n): (𝑚!)" 	≡ 𝑚	𝑚𝑜𝑑	𝑛. Even if you know the values of e and n, 
and even m, it can be extremely difficult to find the value of d. 
 
The underlying premise here is that prime number factorisation of a very large composite integer can be hard, 
and if the number is the product of two very large prime numbers, then that task can be exceptionally hard. 
We've not devised (as yet) any better approach other than brute force enumeration. For example, the workload 
to factor a composite number that is the product of two prime numbers that are 512 bits long in binary notation 
was estimated in 1995 to take around 30,000 years using a 1 MIP (millions of instructions per second) computer. 
At that time, this scale of an infeasible challenge was a good match for that computing environment. (This 
threshold of feasibility was still considered reasonable some 8 years later, as I have a security practices 
publication from 2002 that observed that RSA using 512-bit keys was a practical profile for all but the most 
extreme security applications of 2002.) 
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To help understand the relative strength of cryptographic algorithms and keys there is the concept of a security 
level which the log base 2 of the number of operations to solve a cryptographic challenge. In other words, a 
security level of n implies that it will take 2n operations to solve the cryptographic challenge.  Table 1 shows 
the security level for various RSA key lengths. 
 

Security Level (bits) RSA Key Length (bits) 
80 1,024 
112 2,048 
128 3,072 
140 4,096 
192 7,680 

 
Table 1 – Security level of various RSA key sizes 
 

Things change in this space, and these days estimates of a minimal acceptable security strength that will provide 
protection across the coming decade points to the use of SHA-256 in conjunction with RSA with 2,048-bit 
keys, or a security level of 112 bits. However, if we want to encrypt data today with a protected secure lifetime 
of greater than 10 years then it looks like we may be looking at SHA-384 and RSA with 4,096-bit keys, or in 
other words a security level of more than 128 bits. Of course, these estimates don’t factor in the impact of any 
future use of quantum computing. 
 

Developments in Quantum Computers and Cryptography  
 

Taking this into account dramatically increases the resources required to factor 2048-bit 
numbers. In 2015, researchers estimated that a quantum computer would need a billion 
qubits to do the job reliably. That’s significantly more than the 70 qubits in today’s state-
of-the-art quantum computers. 
 

On that basis, security experts might well have been able to justify the idea that it would 
be decades before messages with 2048-bit RSA encryption could be broken by a quantum 
computer. 
 

Now Gidney and Ekerå have shown how a quantum computer could do the calculation 
with just 20 million qubits. Indeed, they show that such a device would take just eight 
hours to complete the calculation.  “[As a result], the worst case estimate of how many 
qubits will be needed to factor 2048 bit RSA integers has dropped nearly two orders of 
magnitude,” they say. 
 
MIT Technology Review, May 2019 
https://www.technologyreview.com/2019/05/30/65724/how-a-quantum-computer-
could-break-2048-bit-rsa-encryption-in-8-hours/ 

 
Even the most optimistic anticipation of the advent of quantum computing does not mean that RSA is 
completely broken and should no longer be used. Not at all. But it does imply that we probably need to think 
about using longer RSA keys a little earlier than we had originally planned, assuming that we want to continue 
to use RSA. (It might also be useful to read through the US NIST response to these quantum challenges if you 
want to research this fascinating topic in further detail). 

DNSSEC and Large Key Sizes 
Using larger keys in crypto has several implications when we are talking about the DNS. Larger keys mean 
larger DNS signatures and larger payloads, particularly for the DNSKEY records. A comparison of key sizes 
and DNSSEC signature record sizes is shown in Table 2. 
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Algorithm Private Key Public Key Signature Security Level (bits) 
RSA-1024 1,102 438 259 80 
RSA-2048 1,776 620 403 112 
RSA-4096 3,312 967 744 140 
ECDSA P-256 187 353 146 128 
Ed25519 179 300 146 128 

 
Table 2 – Crypto Sizes (Bytes) 

 
Larger key sizes also imply that it takes more time to both sign and validate signatures. Table 3 shows the 
elapsed time taken to sign a zone with 500K entries, using OpenSSL 1.1.1k libraries on a FreeBSD 12.2 host 
with the DNSSEC toolset supplied with Bind 9.16.16. Validation time is elapsed time for completing 50K 
queries with DNSSEC validation, and for comparison I’ve included the time taken for the same set of queries 
into an unsigned zone. The absolute time intervals are not that important here, but the relative differences in 
time when using the different crypto algorithms and key sizes is important. RSA adds to the signing time at a 
rate that rises at a higher rate than the key size (i.e. double the key size in RSA takes more than double the 
time). (Table 3). 
 

Algorithm Signing Time 
(secs) 

Validation Time 
(secs) 

Unsigned  905 
RSA-1024 52 1,168 
RSA-2048 126 1,173 
RSA-4096 830 1,176 
ECDSA P-256 159  1,036 
Ed25519 205 1,008 

 
Table 3 – DNSSEC timings (seconds) 

 
Using RSA with 4,096-bit keys implies taking more time to sign and validate these signatures (although the 
other overheads associated with fetching the validation records tend to swamp the crypto processing time in 
this simple experiment). It also implies that DNS responses will be larger. Larger DNS records in UDP means 
dancing around the issues of IP fragmentation, UDP buffer size settings, truncation of responses and requests 
via TCP, as we will discuss further here. 
 
Here I’d like to look in detail at how the public DNS infrastructure copes with a zone signed using RSA with 
4,096-bit keys. The measurement approach used here is based on an active probing approach by getting most 
of the Internet’s validating recursive resolvers to validate DNSSEC-signed responses that use RSA-4096 
signatures. 
 
When using RSA-4096, the RRSIG records (the digital signatures of the DNS data records) are larger than 
RRIG records generated by equivalent strength elliptical curve algorithms. In our test case a DNS response to 
an address query (A or AAAA) with an RSA-4096 signature uses a 747-octet payload, compared to a 195-octet 
payload when using an ECDSA P-256 signature. While this 747-octet payload is larger than the basic DNS over 
UDP maximum response size of 512 octets, this doesn’t appear to present any significant issues to DNS 
resolvers, because most DNSSEC-validating resolvers use a UDP Buffer Size parameter in their queries that is 
larger than 512 octets. The DS query used in the validation process has a similar response size to the address 
query, and in our RSA-4096 case the signed DS responses use a 721-octet payload. The DNSKEY query 
generates a larger DNS response than the A, AAAA and DS records, given that the record contains the RSA-
4096 key. In our case this DNS response is 1,263 octets. This DNSKEY response should not present a packet 
fragmentation issue for DNS over UDP, given the predominate Internet use of a 1500 octet MTU. This size 
of MTU allows for a maximum unfragmented UDP payload size of 1,472 octets using IPv4 and 1,452 octets 
using IPv6, which will comfortably carry the signed DNSKEY records without requiring either fragmentation 
or truncation.  
 
However, there have been some recent changes in the DNS as configured by default by vendors of DNS 
resolver software. In October 2020 the "DNS Flag Day 2020" program advocated a default setting of the 
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EDNS UDP buffer size to 1,232 octets. This is a highly conservative value, and it was intended to ensure that 
no UDP packet greater than 1,280 octets in size was sent in DNS over UDP. This value was deliberately 
calculated to match the maximum assured unfragmented IPv6 packet size of 1,280 octets.  
 
If we put this recommendation of an EDNS UDP buffer size of 1,232 octets together with the requirement to 
pass a UDP payload of, in our case, 1,263 octets, then the result is that the DNSSEC validation process will 
take longer, as these large DNSKEY responses over UDP will be truncated. The truncation of the UDP 
response means that a TCP session will need to be established to re-query for this record. That's an additional 
2 round trip times that have been added to the validation process (one for the TCP handshake and one for the 
DNS query and response). (Figure 1) 
 

 
 

Figure 1 – DNS UDP truncation and re-query over TCP 
 
It’s also the case that previous measurements of the DNS have shown that not every DNS resolver can set up 
a TCP session, and when such a resolver receives a truncated UDP response then the resolver is wedged and 
unable to proceed with the query. 
 
So perhaps the first item of data to look at in this measurement of RSA-4096 is the distribution of EDNS UDP 
buffer sizes used by recursive resolvers in the public Internet. How far has the Internet’s DNS recursive resolver 
set come in supporting the DNS Flag Day 2020 recommendations? What is the profile of UDP Buffer sizes 
used in DNS queries by DNSSEC-validating resolvers? 
 
If we look at the distribution of UDP Buffer Size values by query count when used by DNSSEC-validating 
recursive resolvers when querying for the DNSKEY resource record, we get see a distribution of the values by 
query as shown in Figure 2. 
 

 
Figure 2 – Distribution of EDNS(0) UDP Buffer Size values by Query 
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The most common UDP Buffer sizes by query count are shown in Table 4. 
 

UDP Buffer % of queries 
4,096 41.74% 
1,400 33.82% 
1,232 9.43% 

Not Specified (512) 3.88% 
1,472 3.05% 

512 2.52% 
1,452 1.39% 
1,410 1.04% 
1,220 0.72% 
8,192 0.47% 

 
Table 4 – Distribution of EDNS(0) UDP Buffer Size values by Query 

 
There has been some recent review of this 2020 Flag Day recommendation, and an internet draft in the DNSOP 
Working Group of the IETF (https://datatracker.ietf.org/doc/draft-ietf-dnsop-avoid-fragmentation/) recommends a 
EDNS UDP buffer size of 1,400 octets, which would certainly accommodate the larger responses of DNSKEY 
records when using RSA-4096 and corresponds with common current practice in DNS resolvers while still 
avoiding gratuitous truncation and re-query over TCP. 
 

Looking at the DNS always reveals behaviours that one would never think 
would be possible, as they make no sense to a casual observer. Here is a tcpdump 
record of a query that was repeated at a high frequency during our 
measurement: 
 
IP6 2400:c600:1331::.64116 > 2400:8901::.53:  
      DNSKEY? 0di-u312782b8-c19-a5f45-s1630838626-i256fcd4a.ape.dotnxdomain.net. 

 
What’s odd about this query?  
 
It appears that the resolver is assembling a DNSSEC validation chain, and to 
do so it generates a sequence of queries for the DNSKEY for the current zone 
and the DS and DNSKEY records for all parent zones up to the root zone. 
Validation requires that the server also provides the digital signature of these 
DNSSEC records, so one would expect to see the query include the EDNS(0) 
option with the DNSSEC OK (DO) bit set to direct the server to include the 
RRSIG digital signature in the response. And that's exactly what’s missing from 
this and a large set of similar queries from this errant resolver!  

 
Of more interest to us in trying to predict the level of TCP re-query is the cumulative distribution of these 
values, and rather than looking at the data by query let’s look at the distribution of sizes by end user (rather 
than by query count). This is shown in Figure 3. 
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Figure 3 – Cumulative Distribution of EDNS(0) UDP Buffer Size values by User 

 
Figure 3 shows that some 16.8% of users (or approximately 1 in 6 users) send their queries to resolvers that 
have a UDP buffer size of less than 1,263 octets. When the response is larger than 1,263 octets, then they will 
receive a truncated response over UDP. From this data we would expect that issues with truncation and TCP 
re-query would only be visible in at most some 16% of cases when using a RSA-4096 key. 
 
Given this background in query behaviour and profiles of UDP buffer sizes in queries, lets now move on to 
looking at the results of this measurement experiment. 

Measurements of RSA-4096 
 
The test was conducted using an online ad campaign to enrol an Internet-wide sample of end users into the 
test. The test consists of a small set of URLs to fetch, using unique DNS names in the URLs to ensure that the 
DNS resolution cannot use previously cached DNS information. 

DNSKEY with 1 x RSA-4096 Key 
 
Let’s look at the results when we use a test with a DNSKEY record that contains a single RSA-4096 key, which 
corresponds to a DNS payload of 1,263 octets. We use a control test as a comparative indicator. This control 
is that of a DNSKEY record with a single RSA-1024 key, where the signed response is 491 octets in length, 
which fits within the default DNS maximum payload size of 512 octets.  The results are shown in Table 5, 
where the percentages shown in the table are percentages of test cases (or “users”). 
 

Algorithm Validating Mixed  
RSA-1024 29.7% 9.0% 
RSA-4096 29.4% 9.1% 
 
Table 5 – Comparison of DNSSEC Validation outcomes between RSA-1024 and RSA-4096 

 
These measurements were gathered across 7-day intervals in September 2021.using different sets of end-clients 
to test each crypto algorithm profile, with an average sample size of some 5.5M individual experiments for each 
algorithm profile. 
 
The Validating response column in Table 5 is where the user’s stub resolver is located behind one or more 
DNSSEC-validating recursive resolvers, all of which perform DNSSEC validation. Here a validly signed DNS 
name will be successfully resolved, while an invalidly signed DNS name will fail resolution. We can detect this 
DNS resolution failure through a failure to retrieve the web object referenced by the test URL.  
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In the Mixed case there is at least one recursive resolver in the end user’s configured resolver set that does not 
perform DNSSEC validation, in which case the invalidly signed DNS name will successfully resolved for the 
end user, and the reference web object will be fetched by the user.  
 
The differences here between the two RSA key sizes is quite subtle, with a drop of just 0.3% of Validating 
clients with the larger 4096-bit key, and a rise of 0.1% of Mixed validating clients. The differences are most 
likely to be caused by the onset of UDP truncation and lower reliability of TCP re-query with the larger key, 
although these differences are sufficiently low as to fall within the parameters of experimental uncertainty, so 
this interpretation of the results is speculative. 
 
We have already noted that in terms of the observed DNSSEC validation queries some 16% use a UDP buffer 
size of 1,263 or less, so we should expect a visible proportion of validation query sequences to generate 
truncated UDP responses when resolving the DNSKEY RR with RSA-4096. And this is what we observed 
here (Table 6). 
 

 UDP x-UDP+TCP x-UDP 
RSA-1024 100% 0% 0% 
RSA-4096 x 1 74% 23.5% 2.5% 

 
Table 6 – UDP and TCP use – RSA-4096 single key 

 
In terms of the sequence of queries associated with name validation DNS query/response sequences, 74% of 
these cases that perform DNSSEC validation with RSA-4096 do so using only UDP. A further 23.5% of 
experiments had a truncated UDP response and a successful TCP re-query. In 2.5% of experiments the 
truncated UDP response was not followed up by a TCP query, and the entire validation process failed within 
this resolver, and it returned a SERVFAIL response code to the stub resolver. In most of these cases it appears 
that the stub resolver was able to re-query using a recursive resolver which either performed validation with a 
larger UDP buffer size in its queries or did not perform validation at all. In either case the initial truncated UDP 
response did not elicit a TCP re-query. It appears that recursive resolvers that have set their UDP buffer size 
to a value less than 1,263 octets appear to be relatively robust in terms of the reliability of the TCP re-query, 
and in those cases where this has not occurred, the stub resolver generally has options to re-query using a 
different recursive e resolver.. 
 
As the RSA-1024 response is 491 octets it fits within the DNS-defined 512 octet payload size, and no responses 
were truncated, so there are no issues with the reliability of a failover to TCP as this does not occur in this 
context. 

DNSKEY with 2 x RSA-4096 Keys 
 
This measurement is not entirely the complete picture in terms of measuring the viability of RSA-4096 keys in 
DNSSEC. It is not all that common to use the same key as both the zone signing key (ZSK) that signs the 
zone’s resources records and the key signing key (KSK) that is signed by the parent in the Delegation Signer 
(DS) record. A more common operational practice is to separate these roles and use the KSK as the key that is 
secure entry point that signs only the DNSKEY record, and use a separate ZSK to sign all the other entries in 
the zone. There is not much that changes with this model except for the zone’s DNSSEC resource record. 
With distinct KSK and ZSK keys, the DNSSEC record now contains two RSA 4096-bit keys, together with 
the digital signature. The size of this DNSKEY record when using RSA-4096 as the crypto algorithm is 1,755 
octets. This makes for a larger DNS response and entails either UDP fragmentation or DNS over UDP 
truncation and re-query in TCP to complete the validation function, as the DNS responses in both IPv4 and 
IPv6 exceed the server’s MTU of 1,500 octets.  
 
Table 7 looks at the relative level of TCP used by DNSSEC-validating resolvers based on a count of DNS 
validation tasks generated by this experiment using 2 x 4096-bit keys, measured over a 7-day period in 
September 2021. 
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 UDP x-UDP+TCP x-UDP 
RSA-1024 100% 0% 0% 
RSA-4096 x 1 74% 24% 2% 
RSA-4096 x 2 47% 50% 3% 

 
Table 7 – UDP and TCP use  

 
In one half of the cases where the DNS response is validated the resolver is passed a fragmented UDP response. 
In 46% of cases the resolver is passed a UDP response that has been truncated and then the resolver re-queries 
using TCP. In the remainder of cases there is no successful TCP re-query and the user appears to re-query 
using a different recursive resolver to validate the DNS response. This TCP failure case is most likely due to 
local security policy settings that restrict resolver traffic to DNS queries to UDP port 53 only. In this case the 
resolver will be unable to progress with the validation and it will stop at this point and return a SERVFAIL 
response code to the client’s stub resolver, which will then, in turn, re-query using another recursive resolver, 
if that has been configured at the client. 
 
If we can measure the incidence of this situation where the truncated UDP response cannot be resolved by the 
recursive resolver using TCP, nor are there working alternative recursive resolvers available for the stub 
resolver, we can measure the extent to which this large DNS payload is causing resolution failure due to failure 
to validate the response. If we look at the DNSSEC validation rate in this case, the average validation rate falls 
from 29.4% of users with a single RSA-4096 key to 27.9% with two RSA-4096 keys.  
 

Algorithm Validating Mixed  
RSA-1024 29.7% 9.0% 
RSA-4096 x 1 29.4% 9.1% 
RSA-4096 x 2 27.9% 9.6% 
 
Table 8 – Comparison of Validation outcomes 

 
There are two issues going on here that contribute to this 1.5% decline in Validation rates for the larger 
DNSKEY record. The first concerns resolvers that are using a large UDP buffer size in their queries (larger 
than 1,755 octets). This is the case for some 34% of users. If the resolver is incapable of receiving and 
reassembling a fragmented UDP packet, then the resolver necessarily times out in waiting for a response to its 
query. Older versions of DNS resolver software performed a re-query in such cases using smaller UDP buffer 
sizes, but this behaviour has largely been replaced with a SERVFAIL response, allowing the stub resolver the 
option to query using a different recursive resolver. The second issue concerns the small proportion the other 
66% of users, who receive a truncated DNS response over UDP and are unable to complete the subsequent 
TCP re-query. 
 

DNSKEY with 3 x RSA-4096 Keys 
 
This 2-key DNSKEY situation is not quite the final word here. There are a number of scenarios when rolling 
a DNSSEC key where the old key is used to sign across the incoming key and subsequently the keys are 
swapped, and the old key is removed. This allows a key to be rolled while still preserving the integrity of the 
signed zone and allowing caching resolvers to maintain a coherent view of the zone’s keys and signatures 
through the rollover process (see RFC7583 for more details on the timing of such a staged-key keyroll process). 
This process entails a period where there are three keys in the DNSKEY record, assuming the KSK and ZSK 
keys are rolled independently. Let’s look at how well this 3-key situation is managed when using RSA-4096 
keys. 
 
In this case the signed DNSKEY RR contains 3 keys and a signature, and the total size of the DNS response 
is 2,299 octets with RSA-4096 keys. This should be similar to the 2-key situation, given that there is a 0.3% 
difference in the number of clients using resolvers with a UDP buffer size setting of 1,755 octets or greater and 
a setting of 2,299 octets (Table 9). 
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Algorithm Validating Mixed  
RSA-1024 29.7% 9.0% 
RSA-4096 x 1 29.4% 9.1% 
RSA-4096 x 2 27.9% 9.1% 
RSA-4096 x 3 24.0% 7.8% 
 
Table 9 – Comparison of Validation outcomes 

 
Unexpectedly, the larger DNSKEY response appears to cause issues for 3.9% of clients who are Validating 
clients, and 1.2% of clients who use a mix of validating and non-validating resolvers. 
 

 UDP x-UDP+TCP x-UDP 
RSA-1024 100% 0% 0% 
RSA-4096 x 1 74% 24% 2% 
RSA-4096 x 2 47% 50% 3% 
RSA-4096 x 3 47% 50% 3% 

 
Table 10 – UDP and TCP use  

 
The UDP truncation and TCP behaviour are very similar across these two cases (Table 10).  
 
Why is there a change in both the Validating and Mixed cases when the distribution of UDP buffer size values 
in queries suggests that we would see a similar outcome in these cases?  
 
A possible factor concerns the recursive resolver’s handling of fragmented IP packets. According to the still 
current IPv4 IP standard, RFC791, all IPv4 hosts must be capable of reassembling an IP datagram of total size 
up to 576 octets and may silently discard larger datagrams. In IPv6 a similar upper limit of a mandatory-to-
support size of the fragmentation reassembly function is 1,500 octets, and an IPv6 host may silently discard a 
datagram whose reassembled size is greater than this size. Both the 1,755-octet and 2,299-octet DNS payloads 
in a UDP packet exceed these basic IP parameters of assured reassembly. 
 
However, this is an unlikely factor, in that most implementations of the IP protocol do not have a per-packet 
IP reassembly limit but define a maximum amount of memory that is used to hold all partially reassembled 
packets.  
 
More likely is the existence of security filter rules at the resolver that are likely to classify a large DNS response 
as part of a DOS attack. In this case “large” may well be around the 2,048-octet level for the DNS payload, 
leading to the higher drop rate for the larger 3-key case. 

Variations by Economy and Network 
 
Global averages mask out a lot of detail, and when we look at the same data using geo-location information to 
map the tested end points into countries, we can see those economies where the change in validation outcomes 
between RSA-1024 and RSA-4096x2 is the greatest. 
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 RSA-1024 RSA-4096x2 Difference 
Portugal 68% 40% -28% 
Morocco 59% 31% -27% 
Iceland 95% 72% -23% 
Guyana 41% 28% -13% 
USA 60% 48% -12% 
Ireland 27% 18% -9% 
Switzerland 81% 73% -9% 
Brunei 31% 23% -8% 
Singapore 71% 64% -8% 
Sweden 91% 84% -7% 
 
Table 11 – Validation Rates across RSA key sizes by Economy 

 
Similarly, we can map the test points into the associated host network and list those networks where we have 
gathered sufficient results to have a meaningful reading, and where the difference between RSA-1024 and RSA-
4096x2 is the greatest. 
 

 RSA-1024 RSA-4096 x 2 Difference AS Name 
AS39603 93% 47% -45% P4 UMTS, Poland 
AS5466 94% 51% -44% Eircom, Ireland 
AS23688 93% 54% -39% Link3, Bangladesh 
AS45543 73% 34% -39% SCTV, Vietnam 
AS36903 77% 41% -36% MT-MPLS, Morocco 
AS34779 91% 56% -35% T-2, Slovenia 
AS35819 93% 65% -28% Etihad Etisalat, Saudi Arabia 
AS28573 63% 37% -26% Claro, Brazil 
AS3243 92% 67% -25% Meo Residencial, Portugal 
AS4818 91% 69% -22% Digi Telecom, Malaysia 

 
Table 12 - Validation Rates across RSA key sizes by AS 

 
Presumably the resolvers located in this network have some form of drop filter applied to DNS over TCP, or 
more likely, some filter that applies a maximum size to DNS responses as a defence against DNS-based DOS 
attacks. 

Conclusions 
 
The DNS must steer a careful path between two problem areas. If the recursive resolver uses a large UDP 
buffer size then it may encounter the issue of IP fragmentation loss, which causes the querier to encounter a 
timeout on the query. If the UDP buffer size is set to the anticipated MTU size, less the IP and UDP packet 
headers of course, then it will receive a truncated UDP response and then must re-query over TCP. In this case 
the response takes more time, and the resolver may still encounter the issue of network-based TCP blocking. 
 
In the case of RSA with 4,096-bit keys we see DNS resolvers encountering these issues. The relative incidence 
is, at a whole-of-Internet level of the order of 2% - 3% of users, but there are individual networks where these 
issues are clearly evident at a much higher rate. The compounding factor here is that a failure to resolve a name 
because of a validation failure will result in the DNS outcome being withheld from the stub resolver. From that 
perspective it certainly appears that RSA with 4,096-bit keys is a step too far, and alternatives should be 
considered. 
 
In other words, these measurements suggest that using RSA with 4,096-bit keys in the DNS is not a practical 
choice in terms of the resilience of validating DNS resolvers being able to handle this configuration. 
 
How do we avoid these pitfalls of signing DNS records with RSA using 4,096-bit keys? 
 
One answer is to avoid using large RSA keys. In this case RSA with 4,096-bit keys encounters a visible level of 
resolution failure, due to the inconsistent handling of the larger DNS responses for the DNSKEY record, and 
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the current practice appears to point to the use of 2,048-bit keys as a suitable security choice for the moment. 
The problem is that the crypto environment is a moving target and over time smaller RSA keys will be more 
vulnerable as we develop more capable computers. 
 
Another answer is to use a “denser” crypto algorithm that has a high security level with a far smaller key size 
than RSA. Here the Elliptical Curve algorithm, ECDSA P-256, is an obvious contender, and in our next article 
that looks at DNSSEC algorithms.  I’ll compare ECDSA P-256 and RSA in terms of the level of support for 
these algorithms in today’s DNS. 
 
The Edwards Curve family of algorithms has a similar crypto density to Elliptical Curve algorithms, but the 
problem with using such algorithms such as Ed25519 for DNSSEC signing, is that the level of acceptance of 
this algorithms in validating resolvers is still well below ECDSA (see https://www.potaroo.net/ispcol/2021-
06/eddi.html for details of recent measurements of this comparison). 
 
However, it should be noted that this “security level” relates to conventional non-quantum computers and 
algorithms. Our current thinking about quantum computing capabilities is that some algorithms appear to be 
more “quantum-resilient” than others, and specifically RSA with larger keys will be more resilient than an 
equivalent strength elliptical curve profile in this envisaged quantum computing environment. 
 
  



  Page 12 

Afterword: Secure Lifetimes, DNSSEC and the DNS 
 
This article started with some consideration of the topic of the anticipated secure lifetime of a piece of 
ciphertext, noting that when choosing an encryption algorithm, the choice needed to take into account the 
anticipated changes in computational capacity over this secure lifetime. 
 
It is useful to ask whether this is a relevant consideration for DNSSEC. In choosing an algorithm to sign a 
DNS record should we be concerned about the secure lifetime of this digital signature? 
 
DNSSEC is not used to encrypt DNS data. From the perspective of DNSSEC, DNS data is public data and 
DNSSEC does not help at all to protect its secrecy. There are other mechanisms to provide channel security 
for DNS queries and responses (DNS over TLS, DNS over QUIC, and DNS over HTTPS) and other 
mechanisms to pull apart the association of who is making what DNS query (oblivious DNS). DNSSEC 
protects the data against tampering and a more limited protection against replay of stale DNS data.  
 
This consideration implies that secure lifetime of a data item secured by a DNSSEC signature is based on the 
lifetime of the key that signs the data lifetime. The more frequently a zone admin rolls the keys, and the shorter 
the signature validity periods the shorter the window available for an attacker to crack the algorithm and 
manufacture bogus DNS records that appear to be validly signed. 
 
This then gives zone administrators a trade-off in terms of anticipated secure lifetimes for their choice of crypto 
algorithm profiles. More secure keys have a longer anticipated secure lifetime, but the longer DNS records may 
cause DNS failures. If the keys are rolled regularly, then the window of opportunity for attack is shortened, and 
the secure lifetime need only be of the same order of length as key lifetimes in the zone. This would allow the 
continued use of key profiles that have a secure lifetime much shorter than 10 years. In this latter scenario the 
choice of a shorter key also places an obligation on the zone administrator to perform regular a keyrolls within 
the selected design parameters so sure that an attacker does not have sufficient time to break the encryption 
profile for each iteration of the key value.  
 
In the case of the Root Zone, the ZSK’s DNSSEC Practice Statement specifies a key lifetime of 3 months 
(https://www.iana.org/dnssec/archive/files/vrsn-dps-00.txt), and the KSK’s statement specifies 5 years 
(https://www.iana.org/dnssec/procedures/ksk-operator/ksk-dps-20201104.html). 
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