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The DNS Operations, Analysis, and Research Centre (DNS-OARC) convened OARC-35 at the start of 
May. Here's some thoughts on a few presentations at that meeting that caught my attention. 

TTL Snooping with the DNS 
These days it seems that the term "the digital economy" is synonymous with "the surveillance economy". 
Many providers of services on the Internet spend a lot of time and effort assembling profiles of their 
customers, and these days it's not just data in terms of large-scale demographics but the assembling of 
large sets of individual profiles. We are all probably aware that we emit a steady stream of bits as a digital 
outflow when we use the Internet and there is a major ongoing effort to sniff this digital effluent and 
derive profiles of individual activities from this data. If an entity operates a recursive resolver in the DNS 
or operates a popular web service, then it’s pretty clear how such use profiles can be assembled, if that's 
what they want to do. What is not so apparent is that our digital outflow can be sniffed by almost anyone. 
All it takes is a little ingenuity. 
 
The presentation on "Trufflehunter" at DNS OARC 35 is a good case in point of being able to perform 
such indirect snooping. The question posed here is to what extent is stalkerware being used. By its very 
nature stalkerware is covert, as the intent is that the intended victim should be completely unaware that 
they have this app running on their device. So, is there a puff of tell tail smoke that can reveal stalkerware 
in action? The key observation is that often these apps use the DNS as a command-and-control channel. 
After all, the DNS is ubiquitous, and the total query volumes are truly prodigious. What's a few more 
queries in such a torrent of DNS? The app is simply hiding itself in a densely packed crowd. You might 
get a signal of active stalkerware if you operated a DNS resolver, but if you aren't the resolver operator 
than you just can't see the signal. Right? 
 
Not true.  
 
The critical piece of data that is used in this form of digital eavesdropping is the TTL (Time to Live) field 
in DNS responses. When a recursive resolver loads a response that was supplied by an authoritative 
server it will hold this item of data in its local cache for the count of seconds specified by the TTL field 
of the DNS record. The first time the recursive resolver loads the data from the authoritative server the 
recursive resolver will pass back the original TTL in its response as well as storing this record in its cache. 
If the recursive resolver receives a subsequent query for the same name within this TTL period it will use 
the local cached entry, but the TTL value it returns in the response will reflect the elapsed time since the 
original load. 
 
For example: 
 

$ dig www.potaroo.net @ns1.potaroo.net 
www.potaroo.net.        6400    IN      A       203.133.248.108 
 
$ dig www.potaroo.net @1.1.1.1 
www.potaroo.net.        6240    IN      A       203.133.248.108 
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I can tell the TTL of the potaroo.net zone by querying the authoritative name server directly, and in this 
case, it returns the value 6400 seconds. The value of 6,240 seconds returned by the service behind 1.1.1.1 
says that it's highly likely that somebody else has queried for this same name to this same recursive 
resolver service some 160 seconds earlier. 
 
This way I can tell, approximately, if an application of service is being used. If I know the domain name(s) 
used by the application, then I can query for the same name to one or more of the commonly used open 
DNS resolvers. If the TTL is less than the TTL provided by the zone authoritative server, then I can 
infer that it is likely that the application is active in the area served by this open resolver as the name has 
already been loaded into the recursive resolver's cache. 
 
The resolution of this technique to snoop on user activity is pretty coarse. To see if it can reveal some 
level of intensity of use of the name the snooper needs to understand the internal structure of the DNS 
resolver service. Interestingly, this is possible using this technique. Within each cache the TTL value of 
the name is reduced in a linear manner. Successive timed queries should see a linear decline of the TTL 
value over time. (Figure 1). 

 
Figure 1 – Cache TTL behaviour, from: Audrey Randall, Trufflehunter  
https://indico.dns-oarc.net/event/38/contributions/838/attachments/801/1441/Trufflehunter_OARC_20mins.pptx 
 

When a number of less ordered TTL values is seen over time it is possible to match these observations 
to a collection of independent caches, and even to distinguish between font-side and back-end internal 
cache management in recursive resolver systems (Figure 2). 
 
 

 
 
 
Figure 2 – Resolver internal structure inferred from Cache TTL behaviour, from: Audrey Randall, Trufflehunter  
https://indico.dns-oarc.net/event/38/contributions/838/attachments/801/1441/Trufflehunter_OARC_20mins.pptx 
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This reconstruction of the likely internal architecture of the large open resolver systems from TTL 
measurement is a fascinating aspect of this study.  
 
If one were to find this kind of indirect snooping using the cached record to be slightly unsettling, then 
the obvious counter is for the authoritative server to response with a TTL value in the response chosen 
at random between 0 and the cache lifetime TTL value. Yes, this reduces cache efficiency slightly, but it 
does appear to counter this form of indirect observation of name use. 
 
However, in this case the information about usage that can be gleaned from this indirect form of 
measurement seems to be relatively minor in terms of detail and certainly appears to have minimal privacy 
concerns as far as I can tell. 
 

DNS Cookies 
Some years ago, the issue of abusing the DNS to perform various kinds of attacks was the most 
prominent theme in DNS meetings, including OARC. The use of UDP allows for a number of attacks 
that uses forged source addresses, such as reflection attacks to overwhelm a victim, or to perform a cache 
poisoning attack by an attacker misrepresenting itself as a server. A number of mechanisms were 
proposed at the time, including rate limiters, fallback to TCP and DNS Cookies. 
 
DNS Cookies were standardised in the IETF in 2016 (RFC 7873) and are intended to be a lightweight 
security mechanism that provides some protection against some off-path attacks in the DNS, “Some 
level of protection” is a deliberately vague term, of course, but it is intended to describe that this is 
comparable to the protection provided by DNS over TCP, but without incurring the additional costs 
imposed by supporting TCP sessions. In other words, the server can assume that source address of a 
query is not spoofed, and this query is not part of a reflection attack. 
 
In a DNS query sent from a client to a server when the client does not know the server’s cookie value, 
the client uses an 8-byte random value, the client cookie value. This should be different for each server. 
When the client knows the server’s server cookie value, the client also adds the server cookie value to its 
queries sent to this server. 
 
The server cookie as defined in RFC7873 was constructed from a hashing function applied to the client’s 
IP address and a random value determined by the server, and the client cookie. A subsequent refinement 
to this specification (RFC 9018) defines a 16-byte field with sub-fields of a version, a reserved section, a 
4-byte timestamp and an 8-byte hash outcome (this is the result of a hash function applied to the client 
cookie, the other server cookie subfields, the client’s IP address and a server secret), and is appended to 
the client cookie value, making a 24-byte field in total. This allows a server to associate a server cookie 
value with a client’s IP address, and if a subsequent query from this client address does not contain this 
cookie, then the server can assume that the source address of the query has been spoofed. 
 
The protection offered here is not against all forms of eavesdropping, but rather to ensure that any off-
path potential attacker cannot misrepresent itself as either the client or the server, in a manner similar to 
the properties of a TCP session. 
 
The question posed by Jacob Davis and Casey Deccio was about the level of support for Server and 
Client cookies. While some 98% of servers for the TLDs and the Alexa top million support EDNS 
options in queries, less than 30% support cookies. Of course, “support cookies” and “handle cookies 
correctly” are two different things, and in the case of client cookies the correct handling of cookies, 
namely to disregard cookies that do not faithfully use the client’s cookies, was only supported in 20% of 
the cases they used for measurement. The result regarding server cookies was also surprising. They first 
established client’s support of server cookies, then performed subsequent queries with no cookie and 
then a fake cookie value. More than 99% of the servers responded with a normal response to queries 
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with the missing or fake cookie. If the guiding motivation for server cookies was to prevent reflection 
attacks using spoofed source addresses in queries, then the observed handling of server cookies in this 
work clearly indicated that there is no change to the susceptibility of these servers to participate in DNS 
reflection attacks. 
 
It appears from this measurement exercise that the take up of cookies is still rather sparse, and around 
30% of authoritative servers use DNS cookies and 10% of clients that ask queries use cookies.  Perhaps 
more of a concern is their observation that less than 1% of authoritative servers enforce cookies by not 
responding to queries where the cookie values in a query is inconsistent with previous cookie values from 
the same client.  

Botnet Traffic in the DNS 
This was a presentation by Versign’s Duane Wessels and Matt Thomas on the DNS query profile of a 
large active botnet. It’s no secret that the DNS is one of the few universally accessible paths in today’s 
Internet, and it should come as no surprise to observe that many botnets use the DNS as their command-
and-control channel that they use to corral all these instances of the botnet code to act in a unified 
manner.  
 
This particular case was a highly active botnet, generating some 375,000 queries per second to Verisign’s 
.COM and .NET servers. However, it was also one where not all the domain names used in the bot code 
had been registered in the DNS, so most of these queries had a NXDOMAIN response. They observed 
some 71,000 unique three-label domain names, and a 900 second negative caching TTL applied to these 
domains. The queries for these domain names were diverted to a sinkhole, and the query rate per unique 
domain name dropped from 225 qps to 6 qps once the sinkhole was activated. (Figure 3) 
 

 
 
Figure 3 – Sinkholing Botnet Traffic, from Duane Wessels, Matt Thomas, “Botnet Traffic” https://indico.dns-
oarc.net/event/38/contributions/841/attachments/809/1430/verisign-sinkhole.pdf 
  

The interesting aspect of this presentation was in looking at the chances in the traffic profile based on 
the way the sinkhole is implemented. How does the response code of the sinkhole affect the query rate? 
What’s the difference between NXDOMAIN and NOERROR responses? And do the error code 
responses, SERVFAIL and REFUSED, alter the query behaviour? 
 
It certainly appears that the DNS does not appreciate non-answers, and the query rate more than doubles 
when the query rates associated with NOERROR/NODATA and NXDOMAIN responses are 
compared to NOERROR/DATA responses (Figure 4). 
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Figure 4 – Comparison of responses on Botnet Query Traffic, from Duane Wessels, Matt Thomas, “Botnet Traffic” 
https://indico.dns-oarc.net/event/38/contributions/841/attachments/809/1430/verisign-sinkhole.pdf 
 

What if the answer is of the form “I am not going to answer this query.” The options in the DNS are to 
respond with the REFUSED or SERVFAIL rcode values. DNS clients significantly increase their query 
volume in response to these two “no answer” response codes. Such responses do not have a cache TTL 
value, so this is an expected outcome. It also appears that both REFUSED and SERVFAIL are 
interpreted by client as a denial of that particular domain name, not a denial of the client itself for all 
queries posed by the client to this server. 
 
It appears that the most “efficient” sinkhole in the content of botnets is to provide a misleading response, 
such as 127.0.0.1 I suppose. NXDOMAIN and NOERROR/NODATA create a slightly higher query 
rate, but the responses will still be cached in the DNS, so the query rate does not immediately blow out. 
The SERVFAIL and REFUSED codes generate the highest query rate. It was not reported here if no 
response at all would be worse than SERVFAIL and REFUSED. I suspect it would be, as the DNS client 
side is incredibly persistent in trying to get any response at all! 

XoT 
The DNS privacy effort does not apply only to DNS queries and responses. There are a number of 
scenarios where a zone admin may wish to keep the zone contents private during a zone transfer between 
the primary and secondary servers. One possible way to prevent unauthorized zone data collection during 
this zone transfer is to perform the transfer operation (AXFR and IXFR) using a TLS transport. This is 
being termed XFR-over-TLS, or XoT. 
 
XoT complements existing TSIG, as it adds payload protection to TSIG’s endpoint authentication. In 
terms of TLS, the draft specification (https://datatracker.ietf.org/doc/html/draft-ietf-dprive-xfr-over-
tls) requires the use of TLS 1.3, using the DoT default port of 853. The client (secondary DNS server) 
must authenticate the server (primary DNS server). The server must authenticate the secondary through 
either mutual TLS authentication or some unspecified form of IP address authentication.  
 
It is an interesting area of speculation whether we really need to continue with the concept of primaries 
and secondaries in the DNS, particularly if you combine zone signing (RFC8976) with XoT. If the 
outcome of the XFR process is to have a group of servers who all have the same zone data in order to 
respond to DNS queries then we could consider the use of closed groups as an alternative to the strict 
primary/secondary hierarchy, using the combination of the ZONEMD and SOA records as a means of 
assuring each group member that they are up to data with the current zone state. 
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Deployment of XoT does not pose the same huge logistical exercise of incremental deployment of DoH 
and DoT, as here we are looking at the more constrained network of primary and secondary servers, and 
the decision of zone to use XoT can be made independently of other zones. 
 
While it could be argued that the need for secured XFR channels is not a high priority requirement in the 
effort to fix the privacy and tampering issues with the DNS, it is still an important component in the 
overall picture of a secure DNS. Support for XoT is coming from vendors of server software, including 
Bind (9.17), Unbound, and NSD.  
 
There is a current debate in DNS circles whether vendors of DNS systems should implement proposals 
described in Internet drafts or await their formal adoption by the IETF standardisation process in the 
form of an RFC. Implementing every DNS draft as it progresses through the DNS channels of the IETF 
process is a daunting challenge that just gets worse as the number of drafts-in-progress in the IETF seems 
to be getting larger in recent times. This observation has provoked a conversation about the DNS turning 
into bloatware in the form of the “DNS Camel” conversation, and there is a thought to rely on the 
relatively sedate RFC publication rate as some form of rate containment of this incipient “bloating” of 
the DNS. On the other hand, pushing the IETF standardisation process into publishing specifications 
of technology without already having deployed implementations of the technology stands the risk of 
further pushing the RFC publication process into an even more protracted exercise of generating vacuous 
specifications without no visible application or use (Or, as was said many years ago when describing the 
OSI effort of the late 80’s, just more “paperware about vapourware”). 

TCP Fast Open 
TCP has a very mixed reputation. On the one hand, it is an extremely resilient protocol than can shift 
huge volumes of data, with sufficient flexibility to incorporate various forms of bolt-on security, such as 
TLS. On the other hand, it’s clunky and slow for small transactions. 
 
In some ways the getting the “just right” transport protocol for the DNS is the Goldilocks problem: 
UDP is just too small for the larger payloads we appear to want with DNSSEC, EDNS and expanding 
resource records, while TCP is just too big and heavy-handed. Sure, TCP can handle these larger DNS 
payloads with ease, but the overheads of setting up and maintaining TCP session state are a heavy price 
to pay in terms of setup latency and session maintenance. This observation is nothing new, and RFC955 
from September 1985 explains this tension very clearly.  
 
An earlier “solution” to this search for the “just right” transport protocol headed into two directions. 
Adding “reliability” to UDP (such as the Reliable Data Protocol (RFC908 asnd RFC1151 was one 
approach. The other was to strip put TCP, and the TCP for Transactions (T/TCP) was specified in RFC 
1379 and subsequently RFC1644. T/TCP was certainly an interesting approach as it attempted to load 
the client’s entire TCP interaction into a single opening packet, using the SYN, PSH, and FIN flags 
together with the data payload into its initial packet and the server was intended to respond with the 
SYN, FIN and PSH flags and the response data in its packet. All that was left was for the client to close 
off the T/TCP session with an ACK and it was done (Figure 5).  

 
Figure 5 – T/TCP protocol exchange 
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T/TCP attracted some interest at the time, but the interest faded, and the protocol was declared 
“historic” in 2011 in RFC6247, citing security weaknesses.  To put this into some perspective, T/TCP is 
at a par with UDP in terms of supporting a securable session, but if the case for T/TCP is that “it’s about 
the same as UDP” then there seemed to be little point in pursuing it further. 

 
 
The search for a faster version of TCP has continued, concentrating on the delays inherent in TCP’s 3-
way handshake. TCP Fast Open (TFO) (RFC7413) is the current preferred approach, which uses TCP 
cookies. The client requests a TCP cookie in the first open exchange, allowing the client to bypass the 
TCP handshake on subsequent connections and ‘resume’ the session by adding the cookie to the data in 
the first packet in the subsequent connection (Figure 6). TFO is probably entering the phase in its lifetime 
of being considered as a “mature protocol,” with relatively widespread support across platforms and 
applications. In the DNS world TFO is supported in current releases from Bind, Knot, PowerDNS 
recursor and dnsmasq. 
 

 
Figure 6 – TCP Fast Open Protocol Exchange 

 
However, as Otto Moerbeek explained, TFO has encountered issues in today’s DNS world. Where 
servers are implemented using anycast constellations some care must be taken to either steer the same 
end client to the same server engine where there is a record of the TFO cookie state, or the TFO 
information needs to be implemented in a shared state across all anycast engines in the anycast service 
constellation. On some platforms it appears that a single timeout on a TFO connect is enough for the 
platform to stop using TFO for all client connections for periods of minutes or ever hours. Otto’s 
observations point to an outlook of a somewhat protracted deployment for TFO in the DNS, if at all. 
 
It’s more likely that efforts to optimise the performance of DNS over TCP will get lost in the larger effort 
to make DoH (DNS over HTTPS) more efficient, using TSL 1.3 and the 0-RTT session open options 
available with using DoH. It already takes some time to switch a DNS query from UDP to TCP  (using 
the truncation flag in the UDP response) and I suspect that the pragmatic argument may well be that at 
this point the flipping between transport protocols is already exacting a latency cost on the DNS 
transaction. If we can make DoH sufficiently fast and efficient then we can bypass the entire UDP/TCP 
transport issue. Or at least that seems to be a strong line of thought in DNS realms at present. 

DNS OARC 35 
This is a small selection of those presentations from OARC 35 that caught my attention. The workshop 
program can be found at https://indico.dns-oarc.net/event/38/timetable/#20210507.detailed, and the 
recordings of presentations will be uploaded into the DNS-OARC YouTube channel 
(https://www.youtube.com/dns-oarc) in the near future. 
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