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DNS XL 
 
We’ve written a number of times about the issues of managing packet sizes in packet-switched networks. 
It’s an interesting space that is an essential part of the design of packet-switched networks, and a space 
where we still seem to be searching for a robust design.  
 
This work has been prompted by the DNS Flag Day 2020 (https://dnsflagday.net/2020/), where a number 
of DNS resolver implementations were altered to set their default EDNS(0) UDP Buffer Size down from 
4,096 octets to 1,232 octets. That's a big change, and it raises many questions. How bad was the problem 
when with the larger default value of this parameter? Does this new parameter setting improve the 
robustness and efficiency of DNS transactions? Is the setting of 1,232 too conservative? Are there larger 
values for this parameter that could offer better DNS performance?  
 
This is a technical report on a detailed exploration of the way the Internet’s Domain Name System (DNS) 
interacts with the network when the size of the application transactions exceeds the underlying packet 
size limitations of hosts and networks. 

IP Packet Sizes 
The choice of permitted packet sizes in a packet-switched network is often the result of a set of design 
trade-offs, where issues of carriage efficiency, capacity, speed, jitter, reliability and transmission noise 
tolerance all come to bear. We’ve seen fixed length 53-octet ATM cells and variably sized Ethernet, 
Token Ring and FDDI LAN designs. The Internet Protocol was intended to straddle all of these variants 
in underlying packet transmission media as its name implies, but even this protocol has some minimum 
and maximum packet size thresholds. 
   
We’ve had a couple of rounds of defining packet sizes in IP network, namely IPv4 and IPv6. There are 
four threshold values here of interest: the smallest valid packet size, the maximum size of a packet that 
is to be passed across any underlying network without IP level fragmentation, the largest packet size that 
all IP hosts must be capable of processing and the largest packet size that can be represented in the IP 
protocol itself. 
 
In IPv4 the minimum IP packet size is the IPv4 packet header without any options and no upper level 
protocol payload, which is 20 octets in length. The maximum size of a packet that is to be passed across 
any network without IP fragmentation is 68 octets (RFC 791). The largest packet that all hosts must be 
capable of processing is 576 octets. The maximum IP packet size in this protocol is 65,535 octets, as the 
IP header uses a 16-bit IP packet length field. 
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The choice of 576 octets is unexpected. Unlike ATM’s choice of 53 octets this 
value was not the result of an uncomfortable compromise within a standards 
committee, although it certainly looks like it could’ve been! It’s motivated by a 
desire to support a universal application transaction model in IP that was able 
to use a 512-octet data payload between any two IP hosts as an assured 
transaction. In addition to the payload there was an allowance of 64 octets for 
the IP and transport level headers (which is larger than the minimum required 
and shorter than the largest possible headers with options included). The 
specification of the DNS that uses a maximum of 512 octets for DNS payloads 
in UDP is of course related to this underlying IP definition.  

 
In IPv6 the minimum IP packet size is 40 octets. The maximum size of a packet that needs to be passed 
across any network without IP fragmentation is 1,280 octets (RFC 8200). The largest packet that all hosts 
must be capable of processing is 1,500 octets (RFC 8200). The maximum packet size is 65,575, based on 
the redefinition of the 16-bit packet length field to not include the 40 octet IPv6 packet header. There is 
also a Jumbo Payload option (RFC 2675) that uses a 32-bit packet length field, allowing for packet sizes 
with a 32-bit payload length (which excludes the IPv6 packet header). This jumbo gram extension header 
allows the IPv6 protocol to support packets up to 4,294,967,336 octets in length. 
 
 

Similarly, 1,280 is an unexpected choice. In the same way that IPv4 used 576 
as the sum of 512 octets of payload and an allowance of 64 octets of payload 
headers, IPv6 derived 1,280 as the sum of 1,024 and 256, so that it could be 
reasonably assumed that all IPv6 hosts could process a 1,024-octet packet 
payload with allowance of 256 octets of payload headers. Alternatively, it could 
be explained by assuming an Internet-wide packet size of 1,500 octets and 
allowing up to 220 octets of numerous levels of IP-in-IP encapsulations 
simultaneously. Given that the protocol needs to define some value here, 1,280 
is probably as good as any other, but 1,280 as a value reflects no limitation of 
any underlying media layer in the transmission system. 

 
 

The value of 1,500 octets deserves some further explanation as this has become 
the default maximum packet size of the Internet for more than two decades. 
This value has a different derivation, based on the original 10Mbps Ethernet 
LAN specification. It appears that the available chip sets for the original 
Ethernet implementation had a maximum of 1,518 octets in their per-packet 
buffer. While larger packet sizes of some 4,000 octets were subsequently used 
in Token Ring and FDDI LAN standards, the lowest common denominator 
of 1,500 became a defacto industry standard. It should also be remembered 
that Ethernet used self-clocking packets, so a 1,500-octet packet required the 
data clock to maintain stability at a 20Mhz oscillation rate for 1.2ms. A larger 
maximum packet size would call for higher levels of clock stability as well as 
larger data buffers on the chip, both of which would’ve increased the cost of 
Ethernet chips at the time. The larger packet size range would’ve also increased 
the network’s jitter characteristics. 

 
This is set of capabilities and constraints for IP is summarized in the following table: 
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 IPv4 IPv6  
Minimum IP packet size 20 40  
Maximum Unfragmented IP packet size 68 1,280  
Assured Host Packet Size <= 576 <= 1,500  
Maximum Packet Size 65,535 65,575 4,294,967,336 (Jumbogram) 
 
Table 1 – IP Packet Sizes 

 
Today the public Internet largely supports a maximum unfragmented IP packet size of 1,500 octets. 
There are minor variations where some forms of encapsulation are used, but in what we might call the 
core of the network 1,500 octets is the general rule. 

DNS and Packet Sizes 
 
Where this topic of packet sizes matters is with the DNS. 
 
The DNS operates in a very conservative way when it uses UDP. In order to avoid the issues with packet 
loss and fragmentation, the original DNS specification (RFC 1035) mandated that the maximum size of 
a DNS response was 512 octets. This was not an onerous imposition, as it was challenging to generate a 
larger response for any query other than a response to an ‘ANY’ query, and this matched the IPv4 host 
requirements to accept any packet up to 576 octets in length (RFC 791). Even if the server had much it 
could add to a response in additional sections in a response, such additional sections are optional. A client 
could explicitly ask for this data in any case if it needed to use the data. If the DNS response was larger 
than 512 octets when packaged as a DNS message, it was possible to truncate the DNS response at 512 
octets or less, mark it as truncated, and send it back. The client should interpret a truncated response as 
a directive to switch to use TCP, where larger responses could be placed into a TCP stream. TCP’s reliable 
stream control system and the interaction between TCP MSS settings, host MTU settings, Path MTU 
and ICMP messages was seen to provide TCP with sufficient capability to carry a DNS response across 
a diversity of hosts and paths. This DNS packet handling framework was considered to be adequately 
robust for many years. 
 
The situation changed with the introduction of DNSSEC and the adoption of IPv6. To convey the reason 
why the DNS response is trustworthy we've added digital signatures to responses. These signatures can 
add a significant volume of data, and this impacts on the design decisions relating to DNS’ use of UDP. 
Also adding IPv6 addresses into the DNS response can also cause larger responses. For example, the so-
called “priming query” to query for the servers that serve the root zone of the DNS require an 811-octet 
response when all the servers’ IPv4 and IPv6 addresses are loaded into the additional section of the 
response. 
 
There was an emerging concern that the DNS was triggering the switch to use TCP too early. The 
Internet certainly/ appears to support IP packets of sizes up to 1,500 without major issues, so pushing 
the DNS to use TCP for responses larger than 512 octets seems like a case of self-inflicted unnecessary 
damage. TCP requires more server state and therefore increases the overheads of the DNS. Invoking 
TCP too early is a case of incurring additional cost without benefit. If 512 octets is too early, then what’s 
a good threshold value to switch to TCP? What packet size can the Internet handle with some level of 
reasonable assurance that the packet can be delivered? Certainly, a setting of 1,500 octets is a good guess, 
but can it be even larger? Even if the IP packet has to be fragmented, is UDP still a relatively reliable way 
of passing DNS information through the Internet? If so, then what value might we use here as the 
threshold point to shift to TCP? We want it to be high enough to reflect some degree of reluctance to 
use TCP and increase the overall utility of UDP, but not so large as to push the DNS into the overhead 
of recovery from lost responses which involved timeouts and retransmission. What’s the “right” 
threshold? 
 
The first such suggestion can be found in the specification of EDNS(0) DNS extensions (RFC 6891): 
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   6.2.5 Payload Size Selection 
 
   Due to transaction overhead, it is not recommended to advertise an 
   architectural limit as a maximum UDP payload size.  Even on system 
   stacks capable of reassembling 64 KB datagrams, memory usage at low 
   levels in the system will be a concern.  A good compromise may be the 
   use of an EDNS maximum payload size of 4096 octets as a starting 
   point. 
 
   A requestor MAY choose to implement a fallback to smaller advertised 
   sizes to work around firewall or other network limitations.  A 
   requestor SHOULD choose to use a fallback mechanism that begins with 
   a large size, such as 4096.  If that fails, a fallback around the 
   range of 1280-1410 bytes SHOULD be tried, as it has a reasonable 
   chance to fit within a single Ethernet frame.  Failing that, a 
   requestor MAY choose a 512-byte packet, which with large answers may 
   cause a TCP retry. 

 

It seems that nomenclature has drifted since this RFC was written, and while 
the RFC refers to “UDP payload size”, common use today appears to use the 
terms “buffer size” or “UDP buffer size”. I’ll use this same common use 
convention here and refer to this parameter as a “UDP buffer size” (or just 
“buffer size” when I get tired of typing “UDP” all the time!). 

 
The first guess at a working size for an upper bound on UDP buffer sizes in UDP responses was 4,096 
octets, as specified in RFC 6891. A query with a buffer size value of any value greater than 1,472 (or 
1,452 when accounting for an IPv6 packet header) is saying to the server is actually two things: 
 

1. The client’s IP stack can reassemble a received fragmented IP datagram of up to the UDP buffer 
size plus the UDP and IP headers in length. 
 

2. The path between the server and the client will allow a fragmented UDP datagram. 
 
It may be an over-simplification, but in fact any UDP buffer size value more than 1,452 is saying much 
the same thing: the resolver client (or “requestor using the terminology of RFC 6891) believes that it is 
acceptable for a server to send it fragmented UDP packets. This is of course a bit of a fabrication on the 
part of the resolver client, as the client has absolutely no idea of the path characteristics of the full 
incoming path from the server to the resolver client. Even if a large UDP packet generates an ICMP 
message relating to a Path MTU problem it's the server who will receive that diagnostic packet relating 
to the path problem, not the resolver client. Which means that even if the client has over-estimated the 
path characteristics, it will be none the wiser if it got it wrong! 
 
There appears to be some uncertainties, at least for me, with the precise interpretation of the intended 
role of UDP buffer size signalling. 
 

• Is this signal related to UDP fragmentation avoidance and therefore relates to the Path MTU 
from the server to the resolver client, then how can the resolver client know the Path MTU for 
this server? If this is a unilateral announcement by the resolver client of the effective MTU for 
all paths from all servers to this resolver client, as a UDP fragmentation avoidance device, then 
the resolver client is not in an informed position to replace path-based Path MTU discovery with 
a unilateral declaration. 

 
• Is this signal related to the host’s fragmented IP packet reassembly capability? Hosts are not 

necessarily required to reassemble packets greater than 576 octets in IPv4 and 1,500 octets in 
IPv6, and the UDP Buffer Size could be strictly interpreted to indicate to the server that it is 
capable of reassembling a larger IP packet. But does the local DNS application really interrogate 
the IP drivers of the host software stack to find this IP driver configuration setting? How does 
this occur? Is it the product of looking at the maximum number of fragments per packet times 
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the interface MTU for the interface over which the query is sent? The client may not know the 
actual UDP buffer size in advance, as it is actually the product of the Path MTU multiplied by 
the maximum number of fragments per packet that the host accepts. Without knowing the 
incoming path MTU the maximum UDP buffer size cannot be calculated by the host. A reading 
of RFC6891 suggests that this parameter is not automatically set from the host’s IP fragmentation 
reassembly capability in any case.  

 
• Does this signal relate to the application behaviour and describes the maximal size of a DNS 

response that can be processed by the application? If so, then this setting should apply equally to 
TCP responses as to UDP responses. But that’s apparently not the case. 

 
It appears to me that it's the second objective from this list, namely the host’s fragmented IP packet 
reassembly process that was intended to be described in this setting. However, I suspect that it is being 
used in a slightly different manner, namely in a manner similar to the MSS setting in TCP. 

What UDP buffer sizes do we see in Queries? 
Figure 1 shows the distribution of declared buffer sizes seen in DNS queries taken from DNS data 
relating to queries seen at our authoritative servers for an ad-based measurement run across the month 
of September 2020. Over this period, we saw some 887M queries where just 760,000 (or 0.9%) did not 
use a UDP Buffer size setting. Some 83% of queries used a setting of 4,096, presumably due to the advice 
in RFC6891.  A further 6.5% of queries used a size of 8,932 octets. It may be that this setting relates to 
a 9,000-octet jumbo gram with allowance for an IPv6 plus UDP packet header. Of the 887M queries 
some 6,612 queries, or 0.0007% of all queries used a UDP buffer size of 65,535 octets. 
 

 
Figure 1 – UDP Buffer size distribution 

 
At the other end of the range some 3.4% of queries used a setting of 512 octets. Given that this is the 
same as no UDP Buffer Size setting in the query, it is not clear why this value is used at all.  
 
Figure 2 shows the detail of UDP Buffer sizes in the range between 1,200 and 1,500 octets. The use of 
the values 1,280 and 1,500 octets show that some DNS resolver admins have confused IP packet size 
with DNS payload size. In various ways the other values appear to indicate that the UDP Buffer size is 
being used not as a reassembly size limit, but as a surrogate path MTU signal. Perhaps this setting is being 
used as a surrogate signal to the server not to send fragmented UDP responses to this client. 
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Figure 2 – UDP Buffer size distribution between 1,200 and 1,600 octets 

 

DNS Flag Day 2020 
The use of the UDP Buffer size appears to be changing in its role, and increasingly we are seeing it being 
used as a surrogate to the IPv4 DON'T FRAGMENT setting. IPv6 has no such surrogate, as the network 
itself cannot fragment IPv6 packets. Instead of being an IP-level signal, this buffer size query attribute is 
commonly used as an application directive, to direct the DNS server application not to generate UDP 
packets that are likely to be fragmented in its response.  
 
This has been taken a step further of course, as we just can't resist taking most things one step further! 
We’ve now had DNS Flag Day 2020 (https://dnsflagday.net/2020/). This flag day was intended to 
commence a change the default operation of DNS clients (resolvers) to use the UDP Buffer Size setting 
in queries in a way that causes servers not to emit large UDP responses that may result in fragmented 
UDP responses. 
 
The rationale for this initiative is that there appears to a high incidence of IP packet loss when the packet 
is fragmented. This is due to both firewall settings where fragments are often seen to pose a security 
threat, and IPv6 itself, where the IPv6 use of an Extended Header for IP fragmentation control can cause 
packet drop in some commonly used network switching equipment.  Packet loss is a problem, in that it 
is also a loss in signalling. How long should a client wait before either resending, trying elsewhere or even 
giving up? It's a tough call, and the client software risks giving up too quickly and erroneously reporting 
resolution failure or being too persistent and causing the application to hang waiting for name resolution, 
and at the same time launching a large set of packets. In an isolated case the difference between two or 
twenty DNS queries over a few seconds is hardly noticeable, but if everyone does it, then we are talking 
about adding billions of additional queries and possibly turning the DNS into a gigantic denial of service 
weapon. If we want to be responsive, but not cause packet floods, then it’s advisable to avoid signal loss. 
 
One possible way to respond to this situation is by using the approach of an additional truncated response 
(https://www.potaroo.net/ispcol/2018-04/atr.html). This approach proposing sending an additional DNS 
response trailing a fragmented UDP response, which consists of just the query section with the truncate 
bit set. If the client does not receive the fragmented UDP response due to fragmented packet loss, the 
trailing response will be received, cause the client to immediately re-query using TCP. This concept did 
not gain any traction with DNS software developers and has not been taken up to any noticeable level. 
 
Another response is that being advocated in the DNS Flag Day 2020. Here the UDP Buffer Size is re-
interpreted as a DON'T FRAGMENT directive from the client to the server. In the absence of better 
information, the client should use a UDP Buffer Size setting of 1,232 octets in its UDP queries. This is 
intended to ensure that the server will not send UDP responses that are either fragmented at the server 
or fragmented in flight. If this is the intended outcome, then why not use a setting of 1,452 octets? Or if 



 
  Page 7 

you want to be a little more pedantic about this, why not use 1,452 octets if the query is sent using IPv6 
and 1,472 octets if it’s sent using IPv4?  Or even just use a buffer size of 1,440 octets as a lower common 
unit. After all, if the default MTU of today’s Internet is 1,500 octets, as appears to be the case, then 
shouldn’t we allow for DNS responses where the IP packet is up to 1,500 octets in size before resorting 
to a second query over TCP? 
 
It appears that the DNS Flag Day 2020 proponents took a highly conservative approach in this case. 
They appeared to be taking the position that fragmented UDP packet loss is more of an issue than the 
additional time and overheads to shift to TCP in a DNS re-query. 
 
Were they correct in their assumptions? By forcing DNS transactions to be conducted over TCP for 
responses in the range of 1,232 octets to 1,440 octets, is this improving the behaviour of the DNS? Or 
is this actually imposing a potential penalty on DNS performance? Should we use a UDP Buffer Size 
setting of 1,440 octets rather than 1,232 octets and allow UDP to service responses in this size range as 
a first effort? 
 
We can go a step further and ask a more general question about the current behaviours of the DNS when 
handling large UDP responses. That should provide some useful data to consider how to answer this and 
related questions about protocol behaviour in the DNS for large responses. 
 

Measuring the DNS and Large Responses 
To provide some further insights into the DNS and handling of large responses we set up an experiment 
to measure the behaviour of the DNS when handing large responses. The details of this online ad-based 
measurement technique have been described a number of times and I won't repeat that material here. 
However, there are a number of aspects to this measurement that should be noted, as they impact on the 
generality of the interpretation of the results of the measurement. 
 
This is a measurement of the DNS resolution behaviour by those recursive resolvers that directly query 
authoritative servers. It is not a measurement of the stub-to-recursive query and response behaviour, nor 
is it a measure of the behaviour of the internal infrastructure of the DNS including load distribution and 
query engine farms.  
 
This measurement technique uses “missing glue” as the mechanism to ascertain that the DNS response 
has been received by the resolver.  
 

The reason why we need to adopt this approach is based around the conditions 
of the advertisement system that we are using to perform this measurement. 
We need to use dynamic labels to bypass caching in the DNS, but the ad system 
only allows the ad recipient to resolve names using a single dynamic label as 
the terminal left-most label. To pose a condition in DNS resolution and then 
use the DNS itself to see if the DNS was able to resolve that condition would 
normally use multiple levels of dynamic labels in the delegation chain. As we 
are constrained in the names used in the ad script, we turned to the resolution 
of nameserver names top meet the constraints of the advertising system and 
achieve a relatively reliable measurement. 

 
The approach is that the large DNS response is provided during the discovery process of finding the 
address of a name server for a domain. The original name resolution task can only proceed once the 
resolver has established the address of the name server. This resolution process is the same as all other 
name resolution exercises with just one difference: the result of this DNS resolution exercise does not 
need to be DNSSEC-validated, and so it is not strictly necessary to use the EDNS(0) DNSSEC-OK flag, 
or even to use EDNS(0) extensions at all. There is no need for DNSSEC signatures here. This 
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consideration implies that there may be a higher proportion of queries that use no UDP Buffer Size at 
all when resolving the name server names.  
 
This is what we see in the measurement data. We observed that 27% of queries for nameserver resolution 
use no UDP buffer size setting and a further 6% of queries use a buffer size of 512 octets when resolving 
missing glue for nameservers. This 33% of queries that restrict the UDP response to 512 octets in name 
server resolution compared to the 11% of queries that use this same 512 octet restriction in conventional 
name resolution queries (Table 2). 
 

 
 
Table 2 – Distribution of commonly used UDP Buffer Sizes per Query Task 

 
The resolvers using the smaller UDP Buffer sizes appear to be the same resolvers that use a UDP Buffer 
size of 4,096 octets for conventional resolution queries (Figure 3).  It should be noted that Google’s DNS 
service is a major presence when looking at the behaviour of recursive resolvers from the user’s 
perspective, with up to one quarter of all users using Google’s service either directly or indirectly. This 
implies that Google’s recursive resolver behaviour has a major impact on these numbers, and their DNS 
resolver performs nameserver resolution with no UDP buffer size specified in queries relating to 
resolving nameserver names. 
 

 
Figure 3 – Comparison of UDP Buffer Sizes for primary resolution queries and missing glue queries 

 

Buffer Size
Resolution 

Queries Cum
Name server 

Queries Cum
none 2.3% 2% 27.5% 27%
512 8.8% 11% 6.0% 33%
1220 0.4% 11% 0.3% 34%
1232 3.2% 15% 3.0% 37%
1280 0.2% 15% 0.2% 37%
1400 0.5% 15% 0.3% 37%
1410 1.2% 17% 1.2% 39%
1432 1.3% 18% 2.1% 41%
1440 0.5% 18% 0.5% 41%
1452 1.2% 20% 1.3% 43%
1460 0.4% 20% 0.3% 43%
1472 0.8% 21% 0.9% 44%
1480 0.1% 21% 0.1% 44%
1500 0.4% 21% 0.2% 44%
1680 2.5% 24% 1.9% 46%
2048 0.1% 24% 0.1% 46%
3072 0.0% 24% 0.0% 46%
3500 0.1% 24% 0.0% 46%
4000 0.2% 24% 0.1% 46%
4010 0.2% 24% 0.2% 47%
4096 73.1% 97% 51.5% 98%
8192 2.6% 100% 1.8% 100%



 
  Page 9 

At a finer level of detail there are a number of buffer sizes that are used for name server resolution but 
are not used as commonly for normal resolution (Figure 4). 
 

 
Figure 4 – Comparison of UDP Buffer Sizes for primary resolution queries and missing glue queries (detail) 

 
It has been observed that some DNS resolvers are thrown by missing glue when the response is a referral 
to delegated nameservers and they abandon name resolution. To avoid this factor causing additional 
noise in these measurements we are used a second DNS query which generated an unpadded response 
to the name server query of some 175 octets as a control, and we look at only those experiments that 
have been successful in also resolving the control experiment. 
 
We have generated the larger DNS responses using a padded DNS response. The padding contains an 
additional but irrelevant resource record. Where the response is to be truncated, we omit the answer 
section from the response, so the client cannot glean any information at all from the truncated response 
at all. This is intended to force the resolver client to use TCP in response to a received truncation signal. 
 

Dual Stack Measurements 
In this measurement we are operating the server in dual stack mode, and honouring the query’s UDP 
buffer size setting, if provided, and if there is no UDP Buffer size we use a maximum DNS response size 
of 512 octets.  
 
The failure rate for DNS responses that are up to 1,430 octets (corresponding to an IP packet size of 
1,458 octets in size in IPv4 and 1478 octets in IPv6) are at a consistent level of some 0.5% of all such 
tests. The next larger DNS response is either 1,498 octets in IPv4, or a fragmented UDP response in 
IPv6. The failure rate for this size response is 0.9%. For larger DNS responses, where either UDP 
fragmentation or truncation is used in the initial response, the failure rate is a consistent 2.6% of all such 
tests (Table 3). 
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Table 3 – Dual Stack DNS Response 
 

Note that in all test cases we also used an unpadded small response of 175 octets as a control, and the 
individual test results were only used in those cases where the resolver was also able to resolve the control 
case. This implies that the failure rates for larger responses are likely to be associated with truncated 
responses and the requirement to support TCP rather than the requirement to resolve a glueless 
delegation. 
 
This 2.6% failure rate for larger DNS responses is a significant failure rate, as it precludes the use of large 
DNS responses as a universal measure without first changing either the behaviour of DNS resolvers, 
DNS servers, or both. 
 
An analysis of the various cases of failure are shown in Table 4.  
 

 
 

Table 4 – Dual Stack Failure Cases 
 
Cases A and B are where there are only UDP responses. In both cases the UDP Buffer Size specified in 
the queries was greater than the response size, so the DNS responses were not truncated. This is the 
most common failure condition, accounting for three quarters of the failure conditions for small and 
large UDP response sizes. In the case of the larger responses it appears that the large UDP Buffer Size 
provided by the resolver is optimistic and the resolver does not receive a fragmented UDP response 
(Case B). It is not clear why the large but unfragmented UDP responses are being lost (Case A). These 
resolvers received the smaller unfragmented control response and were using a UDP Buffer Size value 
greater than the response size, as the response was not truncated. It is noted that there is no difference 
in the DNS response size in the failure rate of unfragmented UDP. The failure rate of DNS payloads of 
1,230 octets is the same as the failure rate of DNS payload of 1,430 octets, and of all DNS payloads in 
between these two sizes. The higher failure rate of the 1,470-octet response is likely to be due to the fact 
that in IPv6 this packet will be fragmented and then UDP fragmentation loss issues come into play. 
 
There are three more failure cases related to TCP.  
 

DNS Response Size Tests Pass Fail Failure Rate
1,230                      4,303,625       4,282,457 21,168   0.49%
1,270                      4,308,430       4,287,046 21,384   0.50%
1,310                      4,307,172       4,286,064 21,108   0.49%
1,350                      4,303,963       4,282,752 21,211   0.49%
1,390                      4,309,937       4,288,413 21,524   0.50%
1,430                      4,303,654       4,281,858 21,796   0.51%
1,470                      4,308,472       4,269,785 38,687   0.90%
1,510                      4,303,571       4,197,910 105,661 2.46%
1,550                      4,306,455       4,194,465 111,990 2.60%
1,590                      4,300,218       4,187,575 112,643 2.62%
1,630                      4,305,191       4,191,994 113,197 2.63%

FAILURE ANALYSIS A B C D E
DNS Response Size Count UDP only Fragmented 

UDP
Truncated UDP, 

NO TCP
Truncated UDP, 

Failed TCP
TCP

1,230                      21,168   15,846   74.9% -              0.0% 605                  2.9% 1,507               7.1% 3,206 15.1%
1,270                      21,384   15,839   74.1% -              0.0% 675                  3.2% 1,532               7.2% 3,331 15.6%
1,310                      21,108   15,482   73.3% -              0.0% 735                  3.5% 1,486               7.0% 3,399 16.1%
1,350                      21,211   15,663   73.8% -              0.0% 719                  3.4% 1,541               7.3% 3,279 15.5%
1,390                      21,524   15,770   73.3% -              0.0% 871                  4.0% 1,560               7.2% 3,322 15.4%
1,430                      21,796   15,931   73.1% -              0.0% 916                  4.2% 1,516               7.0% 3,426 15.7%
1,470                      38,687   16,906   43.7% 1,649          4.3% 1,859               4.8% 11,776             30.4% 6,495 16.8%
1,510                      105,661 -         0.0% 76,136        72.1% 6,722               6.4% 13,975             13.2% 8,821 8.3%
1,550                      111,990 -         0.0% 82,145        73.4% 6,948               6.2% 14,017             12.5% 8,872 7.9%
1,590                      112,643 -         0.0% 82,334        73.1% 7,451               6.6% 13,910             12.3% 8,937 7.9%
1,630                      113,197 -         0.0% 82,761        73.1% 7,802               6.9% 13,906             12.3% 8,721 7.7%
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Case C describes the case where the UDP Buffer size is either not specified (limiting the DNS UDP 
response to 512 octets, thereby forcing truncation) or is smaller than the response size. A truncated 
response is generated by the server, but there is no subsequent TCP session for this DNS name that gets 
to the point of passing the server a TCP segment that contains a DNS query. What is interesting here is 
that this failure rate rises as the DNS payload size increases between 1,230 octets through to 1,630 octets. 
What appears to be the happening here is the increasing number of UDP responses that trigger truncation 
as the number of queries that have a buffer size less than the size of the DNS response rises as the DNS 
payload size increases (see Table 2 for the incidence of these intermediate UDP buffer sizes in queries). 
 
Case D describes a TCP condition where the response is passed back to the querier using TCP, but the 
server never sees a TCP ACK for the data segments that contain the response. The TCP session is left 
hanging. The larger responses require multiple TCP segments, while the smaller responses can be loaded 
into a single TCP segment. To get to the point of passing the response over TCP the TCP three-way 
handshake has been completed, so we can assume that the far end is reachable from the server for smaller 
TCP packets. The elevated loss rate for larger responses in Case D could possibly be explained by some 
form of path MTU mismatch that has resulted in a silent discard of the full-sized TCP segment that 
contains the response (or a “TCP Black Hole” condition). The client appears to be offering a TCP MSS 
size that generates IP packets in the TCP session that exceed the path capabilities. In IPv4 the path router 
that is encountering this MTU problem will fragment the packet, but the fragments may be filtered by a 
security firewall closer to the intended destination. In IPv6 the resolution is more complex, involving an 
ICMPv6 message being passed back to the server. The server needs to inform the TCP context of the 
problem and the sender should adjust the session MSS setting downward and resend the segment using 
a smaller TCP framing. The elevated failure rates point to some issues in this process. 
 
Case E describes the condition where there is a TCP ACK response for the data, yet the resolver does 
not revert back to the primary query chain and make the closing query to complete the resolution process. 
Case E implies that there has not been a Path MTU problem, but the resolver at the far end of the TCP 
connection appears to have dropped the name resolution task completely. Most resolvers use a master 
query resolution timer and when this time is exceeded the name resolution context is abandoned. 
 
It should be noted that there is nothing unusual in the server behaviour in this measurement exercise. 
The experiment’s server honours the UDP buffer size parameter if specified or truncates the response if 
no UDP buffer size was specified and the DNS response is larger than 512 octets. The server is accessible 
over TCP and responds in all cases. And in all test cases used to compile these result tables the control 
experiment, namely of a small DNS response to resolve the nameserver name, was successfully 
completed. The server is configured as a dual stack server and uses a 1,500 octet MTU on its network 
interface, which while it may not be the most robust setting for a DNS server is certainly a conventional 
setting in the DNS environment. 
 

Resolution Performance – Query Count 
The way in which this glueless domain name structure was contrived we would expect to see at our 
servers up to 6 queries.  
 

As already noted, and shown in Figure 5, the experiment’s DNS structure uses 
three zones and with the use of dynamically generated DNS labels we can 
ensure that these three zone labels are unique for every measurement. A 
minimal path through for a resolver is to ask the “parent” zone server for the 
domain name, and because the response is a delegation response without any 
associated glue records the resolver must pause its primary resolution task and 
resolve the name of the name server. This resolution process will generate a 
second visible query to the “sibling” zone server for the nameserver name. The 
response will provide the resolver with an IP address which will then allow the 
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resolver to complete the task with a query to the “child” zone server. If the 
resolver supports only IPv4 then a minimal query set is three queries. A dual 
stack resolver may query for both the A and AAAA records for both the 
terminal zone and the so-called “sibling” zone, so a dual stack query set may 
use A and AAAA queries in all three cases, making 6 visible queries. 
 

      
     Figure 5 – “Glueless” delegation in the DNS 
 
However, such a low query count assumes that the resolver and the server have 
complete knowledge about each other’s state. UDP is not a protocol that 
supports tight state synchronisation between the two end parties, so a DNS 
resolver will generally re-query in a relatively aggressive manner when it has not 
received a response in the expected time, as it has no other way of determining 
the fate of its earlier query.  

 
 
There is a considerable difference between success and failure here, as is shown in the average number 
of queries to either complete the resolution or fail (the failure point is 60 seconds from the first query) 
(Table 5). 
 

 
 
Table 5 – Average Query Count vs DNS Response Size 

 
A cumulative distribution of the successful resolution distribution is shown in Figure 6. All DNS sizes 
below 1,470 octets behave in a very similar manner. In some 70% of cases the name is resolved within 4 
queries, and in 90% of cases the name is resolved within 7 queries. The case of 1,470 octet DNS payload 
requires fragmentation in IPv6 but not in IPv4 which adds to the query count. For DNS payloads that 
always required UDP fragmentation or truncation, namely 1,510 octets of DNS payload or higher, there 
is no visible difference between the various tested payload sizes. The larger packets add approximately 2 
further queries to the the query count. 
 

DNS Response Pass Queries Fail Queries
1,230              4.8 12.3
1,270              4.9 12.0
1,310              4.9 12.0
1,350              4.9 12.5
1,390              4.9 12.7
1,430              4.9 12.6
1,470              5.2 27.5
1,510              5.8 46.1
1,550              5.8 43.7
1,590              5.8 43.6
1,630              5.9 44.2
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Figure 6 – Cumulative Distribution of Queries to Resolve the Target DNS Name 
 

This query count is perhaps the one aspect of the measurement where there is a small but discernible 
difference between the various DNS payload sizes. Figure 7 shows a magnified detail of Figure 6, showing 
the cumulative proportion of experiments that complete in 4 queries or less. The DNS payload size of 
1,230 octets shows that 69.3% of cases complete in 3 or 4 queries, while a 1,270-octet payload shows a 
slightly lower proportion of 68.4% of cases. The next three sizes of 1,310, 1,350 and 1,390 octets show 
a similar completion proportion of 67.9% of cases for each size. The next size of 1,530 shows a lower 
proportion of 67.4% of cases.  
 
The difference in the query count is likely to be due to the distribution of UDP buffer sizes for name 
server name resolution (Figure 4). The relatively high proposition of queries with a UDP buffer size of 
1,280 octets is the most probable factor, causing a higher rate of response truncation and re-try over TCP 
for DNS responses of more than 1,280 octets in size. there is a smaller peak in the use of a UDP buffer 
size of 1,269 octets, explaining why there is an observed difference here between responses of 1,230 
octets and 1,270 octets in size. 

 
Figure 7 – Cumulative Distribution of Queries (magnified) 
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The DNS is extremely persistent when failure occurs. For smaller payloads 90% of cases stop the name 
resolution process within 20 queries. However, for the packet sizes larger than 1,500 octets 90% of cases 
perform up to 120 queries before either abandoning the query or after 60 seconds has elapsed since the 
initial query (Figure 8). The long tail of queries not shown in Figure 8 is extremely long, and we observed 
extreme cases of 3,843 queries, 4,347 queries and 6,467 queries within this 60 second interval. It appears 
that there are still a number of pathological situations in some parts of the DNS where query storms can 
occur. 

 
Figure 8 – Cumulative Distribution of Queries to Fail to Resolve the Target DNS Name 
 

Resolution Performance – Resolution Time 
When we look at the elapsed time to resolve this name, or abandon the resolution, we see a distribution 
pattern similar to the query time distribution. It is notable that there is a dramatic time difference between 
smaller DNS responses that are resolved using UDP and the time to set up a TCP session and requery 
(Table 6) 
 

 
 

Table 6 – Average DNS Resolution time vs DNS Response Size 
 
Where the resolution is successful the elapsed time is very short. For small responses (smaller than 1,470 
octets of DNS payload) 80% of experiments complete in under 200ms. For larger responses where the 
payload is greater than 1,500 octets this figure drops to 70% of clients completing the resolution in 200ms 
or less (Figure 9). 

DNS Response Pass Time (ms) Fail time (ms)
1,230              66                    5,801             
1,270              68                    5,829             
1,310              68                    5,970             
1,350              71                    6,107             
1,390              72                    6,163             
1,430              73                    6,190             
1,470              247                  12,385           
1,510              1,221               20,842           
1,550              1,230               19,708           
1,590              1,232               19,605           
1,630              1,250               19,799           
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Figure 9 – Cumulative Distribution of Elapsed Time to Resolve the Target DNS Name 

 
The situation changes somewhat when the resolution is not successful and the effort is abandoned. There 
is now a far more obvious difference between smaller and larger DNS payloads, and while 80% of the 
resolution experiments stop within 10 seconds for smaller DNS payloads, the larger payloads take longer. 
80% of experiments with larger payloads stop within 30 seconds (Figure 10). This figure also shows that 
5% of cases are still seeing queries at the time when the 60 second timer has expired. 

 
Figure 10 – Cumulative Distribution of Queries to Fail to Resolve the Target DNS Name 
 

Resolution Performance – TCP 
In this experiment there is a high level of reliance on TCP to complete the DNS resolution task. Some 
43% of queries are received from resolvers that use a buffer size of less than 1,452 octets, which means 
that the server will truncate larger responses and not even attempt to respond with UDP despite the fact 
that the UDP packet is still smaller than the onset of packet fragmentation. In some 13% of cases of this 
behaviour is attributable to a resolver change when resolving name server names, where some resolvers 
use a smaller UDP buffer size for name server queries, but the remaining 20% of cases are also seen in 
conventional name resolution queries (Table 2). The overall reliance on TCP is shown in Table 7. What 
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is evident in Table 7 is that while there is widespread use of smaller buffer sizes in queries, the resolvers 
are at times unable to successfully manage the consequent TCP session when the UDP response is 
truncated. Where the buffer size is less than 1,452 octets, we see that one quarter of the failure cases are 
related to a failure where TCP is being used. 
 

 
 

Table 7 – TCP use Profile 
 
The high TCP failure rate in Case D of Table 3 is also of interest. Some 12% of the failure cases are those 
where we see no subsequent ACK to the outgoing TCP segment that contained the response. Given that 
the first segment of the TCP response will be a full-sized segment, it will be sent using the minimum of 
the remote resolver’s TCP MSS value and 1440 or 1460 octets, depending on whether IPv6 or IPv4 is 
used as the IP protocol (i.e. a 1,500 octet packet, corresponding to the server’s MTU setting).  
 
If there is any form of packet encapsulation on the path between the server and the resolver then this 
packet setting will be too large, and either fragmentation of the TCP packet will need to occur or the 
TCP MSS setting for this session will need to be revised. In IPv4 fragmentation can be performed on the 
fly by the router that is attempting the encapsulation, but this then assumes that the receiver will receive 
and reassemble the IP packet fragments, which according to the comparable results for fragmented UDP 
is not a good assumption. In IPv6 this path MTU issue is further complicated by the need to receive and 
process an ICMPv6 Packet Too Big message at the server. The best response to these kinds of issues is 
to adopt a conservative position and for resolver clients to use a TCP MSS value that is lower than 
maximum allowed by the interface MTU. Given that the DNS is (so far) not an intensive user of TCP, 
the additional inefficiencies of a smaller TCP MSS value would be outweighed by the increased likelihood 
of TCP segment delivery.  
 
What MSS value to DNS resolvers use? This is shown in Figure 11. Some 80% of TCP sessions over 
IPv4 and 57% of TCP sessions over IPv6 use an MSS session that assumes a 1,500-octet path MTU. 
 

DNS Size

Total 
TCP use 

Ratio

TCP use 
when 
Pass

TCP use 
when 

Fail
1230 9% 9% 22%
1270 12% 12% 23%
1310 13% 13% 23%
1350 13% 13% 23%
1390 13% 13% 23%
1430 14% 14% 23%
1470 31% 30% 41%
1510 36% 36% 21%
1550 36% 37% 20%
1590 36% 37% 19%
1630 36% 37% 19%
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Figure 11 – Distribution of Resolver TCP MSS values 
 

IPv6-only Measurements 
UDP fragmentation behaviour differs between IPv6 and IPv4. In a second run of this measurement 
experiment the name server resolution was limited to IPv6-only. When IPv6 is tested with fragmented 
UDP we see significant loss rates, so what can we expect in the context of a managed DNS framework 
where there is the potential to specify a maximum UDP size in responses and shift to TCP? The results 
are shown in Table 8. 
 

 
 

Table 8 – IPv6 DNS Response 
 
This is a surprising result, in that an IPv6-only DNS resolution framework is better better (i.e. has a lower 
failure rate) than the comparable dual stack case, for all the DNS response sizes being tested. Obviously, 
the case of the 1,470-octet payload now behaves in a similar manner as larger payloads, as the addition 
of the 40-octet IPv6 packet header takes this response to 1,518 octets.  
 

 
 
Table 9 – IPv6 Failure Cases 

 

DNS Response Size Tests Pass Fail Failure Rate
1,230                      5,933,991       5,929,015 4,976     0.08%
1,270                      5,933,841       5,928,634 5,207     0.09%
1,310                      5,938,874       5,933,491 5,383     0.09%
1,350                      5,937,875       5,932,333 5,542     0.09%
1,390                      5,938,285       5,932,563 5,722     0.10%
1,430                      5,935,928       5,929,715 6,213     0.10%
1,470                      5,941,800       5,816,543 125,257 2.11%
1,510                      5,936,136       5,810,425 125,711 2.12%
1,550                      5,938,521       5,812,568 125,953 2.12%
1,590                      5,939,611       5,812,356 127,255 2.14%
1,630                      5,941,612       5,813,309 128,303 2.16%

FAILURE ANALYSIS A B C D E
DNS Response Size Count UDP only Fragmented 

UDP
Truncated UDP, 

NO TCP
Truncated UDP, 

Failed TCP
TCP

1,230                      4,976     2,228     44.8% -              0.0% 1,587               31.9% 760                  15.3% 401    8.1%
1,270                      5,207     1,988     38.2% 1                 0.0% 1,961               37.7% 796                  15.3% 459    8.8%
1,310                      5,383     1,967     36.5% -              0.0% 2,192               40.7% 736                  13.7% 474    8.8%
1,350                      5,542     2,045     36.9% 1                 0.0% 2,250               40.6% 764                  13.8% 472    8.5%
1,390                      5,722     1,972     34.5% -              0.0% 2,533               44.3% 761                  13.3% 444    7.8%
1,430                      6,213     2,072     33.3% 1                 0.0% 2,719               43.8% 824                  13.3% 581    9.4%
1,470                      125,257 616        0.5% 114,270      91.2% 7,847               6.3% 1,180               0.9% 1,324 1.1%
1,510                      125,711 585        0.5% 114,060      90.7% 8,542               6.8% 1,139               0.9% 1,347 1.1%
1,550                      125,953 592        0.5% 114,096      90.6% 8,738               6.9% 1,148               0.9% 1,352 1.1%
1,590                      127,255 597        0.5% 114,600      90.1% 9,514               7.5% 1,158               0.9% 1,360 1.1%
1,630                      128,303 646        0.5% 114,547      89.3% 10,493             8.2% 1,189               0.9% 1,399 1.1%
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There are some differences in failure cases between Dual Stack and IPv6-only. Where the UDP Buffer 
size allows the server to send fragmented UDP packets, these fragmented UDP packets form the majority 
of the loss case (Case B). If the TCP session is completed, then the consequent failure rate is far lower 
(Case E). It may be the case that the extended time taken in a dual stack environment may trigger a 
resolver’s query timer, and even through the TCP session completes it has taken too long to get to this 
point and the resolution is abandoned.  
 
Before we get too far in conjectures here it is useful to compare this IPv6-only result with a comparable 
IPv4-only experiment. 
 

IPv4-only Measurements 
The third measurement pass used IPv4 only. For DNS responses less than 1,500 octets in size the IPv4 
failure rate is significantly higher than IPv6 (slightly over three times the relative failure rate), which is an 
unexpected result. This does not appear to be related to the carriage of unfragmented UDP packets, so 
it must be related to those queries with a small buffer size or no buffer size at all. For responses larger 
than 1,500 octets IPv4 appears to operate more reliably than IPv6, and oddly enough, more reliably than 
the dual stack configuration (Table 10). 
 

 
 
Table 10 – IPv4 DNS Response 

 
The analysis of failure cases, shown in Table 11, shows some differences in failure diagnostics between 
IPv4 and IPv6. Case B shows that fragmented UDP packets fare better in IPv4 and IPv6, which 
corresponds with results from other studies of fragmented UDP. It also appears to be the case that there 
is a higher failure rate in not re-querying in TCP following the reception of a truncated response. Where 
the TCP transaction appear to be successfully completed there is a higher failure level in IPv4 as 
compared to IPv6.  
 
 

 
 
Table 11 – IPv4 Failure Cases 

DNS Response Size Tests Pass Fail Failure Rate
1,230                      1,165,962 1,162,612 3,350   0.29%
1,270                      1,167,025 1,163,625 3,400   0.29%
1,310                      1,169,710 1,166,336 3,374   0.29%
1,350                      1,166,812 1,163,507 3,305   0.28%
1,390                      1,168,637 1,165,209 3,428   0.29%
1,430                      1,167,532 1,164,058 3,474   0.30%
1,470                      1,166,895 1,163,069 3,826   0.33%
1,510                      1,167,065 1,142,948 24,117 2.07%
1,550                      1,167,403 1,143,182 24,221 2.07%
1,590                      1,167,238 1,143,064 24,174 2.07%
1,630                      1,167,685 1,143,158 24,527 2.10%

FAILURE ANALYSIS A B C D E
 DNS Response Size  Count       UDP only Fragmented 

UDP
Truncated UDP, 

NO TCP
Truncated UDP, 

Failed TCP
TCP

                          1,230     3,350      2,506 74.8% -             0.0%                     209 6.2% 281 8.4%      354 10.6%
1,270                         3,400   2,553    75.1% -             0.0% 210                   6.2% 256 7.5% 381    11.2%
1,310                         3,374   2,508    74.3% -             0.0% 225                   6.7% 256 7.6% 379    11.2%
1,350                         3,305   2,476    74.9% -             0.0% 227                   6.9% 255 7.7% 342    10.3%
1,390                         3,428   2,529    73.8% -             0.0% 231                   6.7% 269 7.8% 392    11.4%
1,430                         3,474   2,492    71.7% -             0.0% 270                   7.8% 275 7.9% 427    12.3%
1,470                         3,826   2,428    63.5% 262            6.8% 304                   7.9% 299 7.8% 528    13.8%
1,510                         24,117 700       2.9% 18,828       78.1% 2,568                10.6% 363 1.5% 1,640 6.8%
1,550                         24,221 603       2.5% 19,055       78.7% 2,625                10.8% 373 1.5% 1,556 6.4%
1,590                         24,174 652       2.7% 19,018       78.7% 2,490                10.3% 405 1.7% 1,595 6.6%
1,630                         24,527 642       2.6% 19,185       78.2% 2,591                10.6% 394 1.6% 1,707 7.0%
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Observations 
There are a number of interesting observations from this data. 

Poor Dual Stack Resolution Behaviour 
Firstly, there the observation that dual stack DNS environments are marginally less reliable than either 
dedicated IPv4 or IPv6 environments (Table 9). This is a surprising outcome, in that a conventional 
expectation is that the dual stack environment should be able to use the “better” of the two protocols. A 
good case in point is the failure rates for the DNS response of 1,470 octets. In IPv4 the IP packet will 
be 1,498 octets in size, and the failure rate should be comparable to other small sized packets, which is 
the case. For IPv6 the higher failure rate for this response is comparable to all larger packets.  
 
What is surprising is that DNS resolution failure in IPv6 does not immediately get repaired by repeating 
the query using IPv4. There is no “Happy Eyeballs” support in the DNS and failure in one protocol does 
not cause the other protocol to be invoked. This is a shortcoming of most DNS resolver 
implementations. It appears that many, or maybe all, resolver implementations assemble a list of name 
server IP addresses and query them serially, irrespective of which IP protocol family the addresses are 
associated with. A failure with an IPv4 address, for example, does not appear to cause a re-query 
immediately to the IPv6 of the same server, or, preferably the reverse. This is a shortcoming of most 
DNS resolver implementations. It is also unclear why in all cases except the 1,470-octet payload case the 
Dual Stack environment has a higher failure rather than exclusively using either IP protocol. 
 
 

 
 
Table 12 – DNS Failure Rates by Protocol 

 

Uncertainty over the Role of UDP Buffer Size 
Secondly, there is little evidence from the figures to suggest that there are systematic issues with the 
carriage of IP packets of sizes between 1,280 and 1,500 octets in the network itself when we look at the 
response paths leading to the recursive resolvers. There is no clear evidence that there are Path MTU 
issues at play here in the infrastructure parts of the network.  
 
What appears to be the major issue here is the use of smaller UDP buffer sizes below the IPv4 level of 
1,472 and the IPv6 level of 1,452 octets. The smaller buffer size causes DNS response truncation and 
requires a re-query using TCP.  
 
There is some uncertainty of the precise operational role of the UDP Buffer Size field. It’s commonly 
interpreted role is as a proxy for a Path MTU value to guide the DNS to avoid packet fragmentation. 
This interpretation appears to be the motivation between the DNS Flag Day 2020. 
 
The problem with this form of use of the buffer size is that the receiver (the querier who set the value in 
the DNS query) has no clear idea of the incoming Path MTU value, and no way of revising its value even 

DNS 
Response 

Size

Dual Stack IPv4 IPv6

1230 0.49% 0.29% 0.08%
1270 0.50% 0.30% 0.09%
1310 0.49% 0.30% 0.09%
1350 0.49% 0.29% 0.09%
1390 0.50% 0.30% 0.10%
1430 0.51% 0.30% 0.10%
1470 0.90% 0.34% 2.11%
1510 2.46% 2.13% 2.12%
1550 2.60% 2.14% 2.12%
1590 2.62% 2.13% 2.14%
1630 2.63% 2.16% 2.16%
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in the event of wayward packet fragmentation! Any ICMP messages will head in the opposite direction, 
toward the sender of the packet, so the client is working in the dark here. If this value is set too low, then 
it adds the burden of doubling up on queries and the additional overhead of TCP session establishment 
for resolution. If it’s too high then UDP packet fragmentation may occur which, in turn, may exercise 
firewall filters, which commonly interpret UDP fragments as inherently unsafe and discard them. While 
a low buffer size value does not cause a loss of signal, a too high a value that triggers fragmentation 
packet drop does cause signal loss, and this then requires the client to rely on packet timeouts to amend 
its query strategy to work around the issue. 

Context of these Measurements 
And finally, a small note of caution about the interpretation of these results. This is a measurement 
between recursive resolvers and authoritative nameservers. In fact, it's a measurement between recursive 
resolvers and just three authoritative name servers. It’s not a measurement of the edge environment from 
the stub resolver to the recursive resolver. There are packet issues at the edge of the network that are not 
encountered in the “middle”. It’s also the case that larger DNS responses are often associated with 
DNSSEC signatures. DNSSEC validation at the stub resolver is still a rarity these days, so the entire issue 
of why we should have reliable mechanisms to carry large DNS responses all the way to the stub resolver 
is not clear to me. 
 
Also, as already noted, this measurement is based on an exercise in resolving the name of a name server, 
and some resolvers use different settings when performing this task. 
 

What If…  
So far, these measurements are based on respecting the packet size conventions related to DNS. These 
are that no UDP DNS response should exceed 512 octets unless there is an EDNS(0) extension with a 
UDP buffer size in the query, and the value of this field is greater than 512. When there is a UDP buffer 
size in the query the response should be no larger than this size. In such cases where this is not possible 
the server will respond with a truncated packet. In this measurement the truncated packet has an empty 
answer section, so the resolver making the query cannot use the truncated response to form an answer, 
and the truncated response should trigger the resolver to repeat the query over a TCP session with the 
server.  
 
What if we break these conventions? 
 
In particular we are interested in understanding the likely changes to DNS resolution behaviour of 
fragmented UDP responses, the behaviour of TCP responses and the behaviour of the DNS as a whole 
if all recursive resolvers were use the DNS Flag Day 2020 setting of 1,232 as a buffer size in their queries. 
In the second part of this report we will look at the behaviour of the DNS when we rewrite the queries 
as if they all had an EDNS(0) extension and there was a buffer size in this extension that was set to a 
particular value. Yes, this server-based rewriting of queries is cheating, and it’s not what resolvers may be 
expecting, but it allows us to gain some further insights into the capabilities of the resolver to authoritative 
part of the DNS. 
 
More to come in the second part of this report. 
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