
The ISP Column
A monthly column on things Internet

October 2020
Geoff Huston

Securing Routing Q&As

Over the past few months I’ve had the opportunity at various network operator meetings to talk about
BGP routing security and also highlight a measurement page we’ve set up that measures the extent to
which Route Origin Validation (RoV) is actually “protecting” users (https://stats.labs.apnic.net/rpki). By this
I mean we’re measuring the extent to which users are prevented from having their traffic misdirected
along what we can call “bad paths” in the inter-domain routing environment by virtue of the network
operator dropping routes that are classified as “invalid”. As usual, these presentations include an
opportunity for questions from the audience. As a presenter I’ve found this question and answer segment
in the presentation the part that is the most fun. It covers topics that I’ve not explained well, things I’ve
missed, things I’ve got wrong, and things I hadn't thought about at all right up to the point when the
question was asked! Here are a small collection of such questions and my efforts at trying to provide an
answer.

Why doesn’t your measurement tool ever show 100%?
There are a number of network service providers that clearly perform ingress filtering of route objects
where the associated ROA shows that the route object is invalid. The network AS 7018 (AT&T Internet)
is a good example, as is AS1221 (Telstra). The numbers keep growing as deployment of this technology
spreads. The question is: Why doesn't the measurement tool report 100% for these networks? Why is
there "leakage" of users? This means that some users are reaching a site despite the invalid state of the
only route object to that site. If the network is dropping invalid routes, then how can this happen?

A number of possible explanations come to mind. It could be that there are a small proportion of end
users that use split horizon VPN tools. While the measurement system reports the user as having an IP
address that is originated by a particular network, there might be a VPN tunnel that relocates this user to
a different point in the inter-AS topology. However, it’s not a very satisfactory explanation.

There is a different explanation as to why 100% is a largely unobtainable number in this RPKI
measurement system. The reason lies in the measurement methodology itself. The issue here lies in the
way a control element is implemented, and in the nature of the experiment itself.

We could've designed the experiment to use two beacons. One object would be located behind an IP
address that has a valid ROA that never changes. A second object would be located behind an IP address
that has a ROA that casts the route object as "invalid". Again, this would never change. What we would
be counting is the set of users that can retrieve the first object (valid route object) and not the second
(invalid route object).

However, there are a couple of issues with this approach. Firstly, we want to minimise the number of
web fetches performed by each user. So, one web fetch is better than two or more in this measurement
framework. Secondly, this approach would be incapable of looking at the dynamic capabilities of the
overall system. How long does it take for a state change to propagate across the entire routing system?

 Page 2

This thinking was behind our decision to build a measurement system that used a single beacon that
undertook a regular state change. One half of the time the route object is valid, and the other half it’s
invalid (We admit to no Schrodinger’s cat-like uncertainty here - in our case that cat is alive or dead, and
there is no in between!). We designed a single measurement that changed state: one half of the time it
was a 'control' state where the route was RPKI-valid, and the other half of the time was RPKI invalid.

This might lead one to believe that a ROV-filtering network would be able to track this state changing,
installing a route when the RPKI ROA state indicated a valid route object, and withdrawing the route
when the RPKI ROA state indicated an invalid route object. This is only partially true, in that there is an
appreciable time lag between a state change in the RPKI repository that publishes the new ROA and the
state of the local BGP FIB that processes packet forwarding.

Once the RPKI repository has published a new Certificate Revocation List that revokes the old End
Entity certificate and publishes a new End Entity certificate and a new ROA signed by this new certificate,
then a number of processes come into play.

The first is the delay between the RPKI machinery and the publication point. For hosted solutions, this
may involve some scheduling and the delays may be appreciable. In our case all this occurs on a single
system and there is no scheduling delay. This is still not instantaneous, but an inspection of the
publication point logs indicates that the updated ROA, CRL and manifest files are generated and
published all within 1 second, so the delays at the RPKI publication point, in this case, are small.

Now the remote RPKI clients need to sweep across the repository and discover that there has been a
state change. This is the major element of delay. How often should the RPKI client system sweep across
all the RPKI repository publication points to see if anything has changed? Don’t forget that there is no
update signalling going on in RPKI publication (yes, that’s another question as to why not, and the answer
is that publishers don’t know who the clients will be in advance. This is not a closed system.) Each client
needs to determine its “sweep frequency”. Some client software uses a 2-minute sweep interval, some
use 10 minutes, some use 1 hour. But it is a little more involved than this. The sweep process may start
every 2 minutes, but it takes a finite amount of time to complete. Some RPKI publication points are slow
to access. This means that a “sweep” through all RPKI repository publication points might take a few
seconds, or a few minutes, or even many minutes. How frequently your RPKI client system sweeps
through the distributed RPKI repository system to identify changes determines the lag in the system.
Should we perform this sweep in parallel to prevent head of queue blocking causing in the sweep
intervals? Maybe, but there is a limit to the number of parallel processes that any system can support, and
no matter what number you pick there is still the situation that a slow publication point will hold up a
client.

The result? It takes some time for your system to recognise that my system has revoked the previously
valid ROA and issued a new ROA that invalidates the prefix announcement (and vice versa). On average
it takes 30 minutes for everyone to see the valid to invalid transition and five minutes on the invalid to
valid transition. In every 7-day window there are 6 “shoulder” periods where there is a time lag between
the RPKI repository state change and your routing state. The errant users who are stopping any network
from getting to 100% lurk in these shoulder periods. Here's one snapshot of one such transition period
for one network (Figure 1). In this case the routing transition took effect somewhere between 410 and
427 seconds after the change in the source RPKI repository. Those 51 sample points out of the one-hour
sample count of 319 individual experiments are essentially the "errors" on the fringe of this measurement.

 Page 3

Figure 1 – RoV State Change Lag

It is likely that the time lags between the repository state and a network's routing state that is the factor
that presents the network recording a 100% measurement, but it's not really the network's fault. The
RPKI RFC documents are long and detailed (I know, as I authored a lot of them!) but they do not talk
about timers and the expected responsiveness of the system. So different implementors made different
choices. Some setups are slow to react, others are faster. A clear standard would’ve been helpful here.
But we would still have this problem.

The underlying issue is the parallel RPKI credential “just in case” distribution system.

How fast, or how responsive, should the RPKI distribution system be in theory? “As fast as BGP
propagation” is the theoretical best answer. The compromises and design trade-offs that were used to
construct this system all imposed additional time penalties and made the system less responsive to
changes.

Can we use this ROV setup to perform saturation DDOS defence?
This question is a bit like asking: Can I perform delicate microsurgery with a mallet and a chisel? You can
give it a try but it's going to be a really bad idea!

The objective of a saturation DDOS defence is to push back on the incoming traffic that is overwhelming
the target. One approach is to use the routing system and instruct other networks to discard all traffic
destined to the victim address. The current convention in the operational community is to use BGP
communities attached to a specific route to signal that you want all traffic destined to this prefix to be
dropped (Remotely Triggered Black Hole, or RTBH, RFC5635).

Given that the RTBH signal is saying "drop traffic to this prefix" it’s probably a good idea to make the
prefix as specific as you can, yet still allow the prefix to be propagated through BGP. The idea of using
a more specific route ensures that any destinations that share the same aggregate route are not affected.
The signal propagates through the BGP space as fast as BGP, which means that the signal is usually
effective in the order of 2 or three minutes after the RTBH route is first announced.

Could you achieve the same with a deliberately invalid ROA? What if you advertised a prefix with a ROA
of AS0, for example?

There are a few issues here:

- The network operator can't generate the blocking ROA. Only the prefix holder can sign a ROA.
So unless the prefix holder and the network operator are one and the same the network operator
has to wait for the prefix holder to mint this AS0 ROA.

 Page 4

- The effect of the ROA will take time to propagate through the BGP. It appears that it takes some
30 minutes for a blocking ROA to propagate to the point that packets are being discarded.

- The effect of the AS0 ROA is not to change the BGP next hop attribute of a route hop, but to

withdraw the route completely from the local BGP FIB. This means that any covering aggregate
route, or any default route, will take over and the traffic will still be passed through, assuming
that aggregates or defaults exist. Now the network provider can control whether or not aggregate
routes are being originated, but default routes are a local configuration, and the victim has no
control over such routes.

Taken together the result is that it’s slow to take effect, requires additional orchestration and my not have
any effect on the attack traffic in any case.

Is Rsync that Bad?
The use of X.509 certificates as the vehicle to convey the public keys used in the RPKI led inevitably to
an outcome of distributed certificate publication points. Each client, or relying party, of the RPKI now
has a problem, in so far as the client has to regularly comb all these publication points and gather up the
signed products and load them into a locally maintained cache. This can be done in a number of ways,
and about the most inefficient to take that previous statement literally!

Yes, it's an option to start each pass through the distributed RPKI publication points, starting with the
trust anchors and follow the publication point links in each validated CA certificate and collect a copy of
everything that you find there. It's also an incredibly inefficient option. The relying party client ends up
grabbing a precise copy of what they got from the last pass through the RPKI system. What the client
really wants to know is what's new, what's changed and what's been removed since the last visit. That
way they can simply fetch the differences and move on.

There was one application that performs this "what's changed" function very conveniently and that’s the
"rsync" application. Rsync can simply take the URL of the remote publication point, the URL of a local
cache and it will update the local cache to mirror the remote state. It will try and do so efficiently as well.

This seems like an ideal fit to the problem.

With just one problem.

Rsync is not a good idea to use in the big bad environment of the Internet.

As APNIC's George Michaelson and Byron Ellacot told us back in 2014
(https://www.ietf.org/proceedings/89/slides/slides-89-sidr-6.pdf) rsync is just not up to the task. It can be
readily attacked and its synchronisation algorithm can be mislead. As the final slide of their presentation
to the SIDR WG said: "It seems a little strange to build routing security on top of a protocol which we
have demonstrated is inefficient, insecure and dangerous to run as server or client".

Yes, rsync is that bad. Don't use it out there in the Internet.

Why does the system rely on Pull? What's wrong with Push?

Instead of Rsync, what should we use?

 Page 5

Today's answer is the RPKI Repository Delta Protocol (RRDP), described in RFC 8182. Its foundation
is a more conventional HTTPS transport subsystem, and it certainly appears, so far, to be a far better
match to our requirements than rsync.

The channel is secure, the delta files direct the synchronisation process, and neither the server nor the
client are exposed any more than conventional HTTPS exports the end points of a transaction. Better,
yes. But is it really fit for purpose? Probably not!

It’s not the RRDP protocol, but the data model that I believe is broken. The basic requirement here is a
highly reliable information flooding requirement. All the data sources need to keep all the data clients up
to date. When a source changes their data all the clients need to be updated with the new data set. What
RRDP represents, and rsync too for that matter, are "poll and pull" models. It's up to the client to
constantly check with every data source to see if the source has changed anything since the last check
(poll) and then retrieve these changed items (pull). The burden is placed on the client. All the source has
to do is simply make the data available.

But there are a few issues here with this approach. How often should clients check with each source? If
sources can alter their data at any time, then clients may fall behind the sources and make decisions based
on old data. Clients are motivated to poll sources at a high frequency in order to stay up to date. But this
intensive polling places a large load on servers, and as the number of RPKI publication points increases
the load imposed on the clients increases. What we have today is both ends of the Goldilocks problem
but no real concept of what might be "just right". The 2-minute polling intervals seem to be crazy fast
and exacerbate scaling pressures. On the other hand, 1-hour polling intervals seem to be geologically
slow for a routing system. What’s the "right" answer?

A similar issue was observed in the DNS between primary and secondary servers, and one response was
the adoption of the NOTIFY and IXFR mechanisms. These allowed the primary source to notify the
secondary clients of a change and then allow the clients to retrieve only the changes. Would this work in
the RPKI space? Probably not. The issue is that there are an unknown number of clients, so the server
has no a priori knowledge of whom to notify. Perhaps there is also a deeper problem here in that this
framework of sources and clients makes no use of intermediaries. If we want to scale up the system, then
perhaps we need to consider a different distribution structure.

What we need is a reliable distributed data flooding model that can propagate routing-related meta-data
across the realm of BGP speakers and have the same dynamic properties in terms of propagation times
as BGP itself. What’s the best protocol where we have experience and knowledge to achieve this
outcome? BGP itself of course! The same mechanisms that propagate route object updates and
withdrawals across the inter-domain space is equally capable of propagating any other data payload. All
that’s needed is to extend BGP to allow the support of other data objects. Can we do this? Of course,
we can! The BGP session Open messages conversation exchange a set of capabilities, and if both parties
support a particular capability then the peers can exchange information based on this capability. This is
not a new attribute of a route object, but an entirely new object.

Sources originate changes to their information base and pass them into BGP. Each BGP speaker
integrates this new information into their local information model and then send updates to their BGP
peers based on the changes to the local information model.

Why haven't we gone down this path? Why are we configuring RRDP in a way to try and replicate the
capabilities and performance of BGP in terms of reliable and efficient information flooding? If BGP
could achieve all this then why aren't we using it?

I suspect a bit of IETF history is relevant here. The original brief to the SIDR Working Group included
the admonition: "Don't change the BGP protocol!" So, when the working group needed a reliable

 Page 6

flooding capability that was equivalent in so many ways to BGP, altering BGP to add a new protocol
object was just not an available option for the Working Group.

In answer to the original question, it appears that there is nothing wrong with push. BGP is a push
protocol and it seems to be doing just fine! The RPKI system adopted pull largely because of a
constrained set of options available to the design group. Personally, I see this as an unfortunate outcome!

Why don't we attach credentials to BGP updates?
TLS is an interesting protocol in many ways. TLS uses X.509 certificate validation as a means of
authenticating that the party at the other end of a connection is the party that they are purporting to be.
However, the TLS protocol can do this without distributed repository publication points, without pull
or push to maintain local caches or any of the other mechanism used in the RPKI system for BGP
security. Yet both TLS and Route Origin Validation use X.509 certificate systems to validate digital
signatures. In the case of TLS, the difference is that within the initial exchange of information from the
server to the client, the server includes the entire set of certificates that allow the client to construct a
validation chain form the public key to a trust anchor. All the client needs is the trust anchor and it’s up
to the server to demonstrate a chain of transitive trust from this trust anchor to the entity that is
presenting a public key to the client as a proof of authenticity.

Could we undertake an analogous operation in RPKI?

The basic answer is yes. If all we are looking for is validation of the authority granted to an AS to originate
a route for this prefix, then it’s possible to affix the certificate chain to the route object and just propagate
the digital credentials along with the object. Affixing the entire validation path with every update can lead
to significant levels of duplication in the BGP exchange, but we can leverage the observation that BGP
itself uses TCP and is a reliable protocol. Once a certificate is passed to a peer within the context of a
BGP session it can be assumed that the peer possesses the certificate and further use of this certificate
need not reproduce the entire certificate, but simply refer to the previously sent item. The result is similar
to the use of the 4-byte AS transition in BGP, where information was passed through the 2-byte BGP
world in the form of an opaque community attribute.

So why didn't we do this?

The same IETF history referred to above is relevant here. This would change the BGP protocol, and the
admonition to the SIDR Working Group was to change nothing. Taking out the entire side-channel of
attempting to pass the certificate credentials in advance of their use in a BGP updates takes out a rather
significant source of operational complexity. Like TLS, if a BGP update message contained sufficient
metadata to allow the prefix to be validated the entire system would be far simpler to operate. Again, I
see the current design as an unfortunate outcome.

Why don't we outsource validation?
DNSSEC has been deployed in a rather odd fashion. End users, or stub resolvers don't generally validate
DNS responses. Instead, they rely on recursive resolvers to perform DNSSEC validation. The recursive
resolver passes the response back to the stub resolver in an unencrypted DNS response with a single bit
set to indicate that the recursive resolver has performed DNSSEC due diligence on the answer. And the
stub resolver believes it! If we believe that this rather insubstantial veneer of security is good enough for
the DNS, then surely its good enough for BGP!

We've taken steps in this direction with RFC 8097. We just tag all BGP updates with the extended
community "validation state" with a value of 0 and everything is valid! Right?

 Page 7

Ok that was a low shot, and yes, this particular RFC is clear in saying that this is a non-transitive attribute
that should not leak outside of an AS. But what about an exchange point operator? As part of their
service as a trusted broker of routing then what's the problem in not only validating the BGP routes
being passed across the exchange, but marking these routes with a community attribute to show to
exchange peers that the exchange has validated this route?

I have often heard the observations that "outsourced security" is a contradiction in terms and "transitive
trust" is equally a misnomer! For the same reason that outsourced DNSSEC validation is a somewhat
inappropriate leap of faith, my view is that outsourced routing validation is a leap of faith. But perhaps
there is more to it than this and we all are sucked into outsourced validation in RPKI, like it or not.

In DNSSEC a client can say in a query: "Please don't do validation on my behalf, and just tell me what
you know, irrespective of whether the data passed or failed your validation". The EDNS(0) Checking
Disabled Flag is an interesting breakout of the inferred model of outsourced validation.

What about BGP? Can a BGP speaker say to its neighbour "Please send me what you have, RoV valid
or not", allowing the local BGP speaker to perform its local validation without reference to the validation
outcomes of its peer? Well, no, it can't do that. A router that performs RPKI validation these days
typically drops invalid routes. This "invalid drop" mechanism essentially imposes an outsourced
validation model on its peers by not even telling them of routes that failed validation. If it told them of
these invalid routes, then what is it supposed to do with the consequent packet flow?

Shouldn't we view this with the same level of scepticism that we use for outsourced DNSSEC validation?
What's the difference?

The answer lies in the very nature of the routing process itself. BGP speakers tell their neighbours a
promise: "If you pass me a packet destined to this address I promise to pass in onward". If the BGP
speaker's RPKI validation process results in a dropped route then the BGP speaker cannot convey such
a promise to its BGP neighbours, as the dropped route says that it will not pass any such packets onward.
In so many ways routing is a cooperative undertaking that relies on trust in what neighbours tell each
other in the first place.

I would say that by its very nature the action of dropping routes that are invalid each BGP speaker is not
only making a local decision, but is also making a decision on behalf of its BGP neighbours. The Drop
Invalid local decision in in fact an implementation of outsourced security already.

Why should I use a Hosted RPKI service?
As a part of a program to encourage the deployment of RPKI a number of folk, including the Regional
Internet Registries offer a so-called "hosted service" for RPKI,. where they operate the RPKI publication
point for the client, and perform all the certificate management services on their behalf, offering the
client a functional interface that hides the inner details of the RPKI certificate system.

It seemed like a good idea at the time.

But this is another case of adding an external point of vulnerability to the system. While all of our
experience points to the futility of expecting comprehensive perfection, our innate optimism often
triumphs over the disappointments of past experiences. Pushing this function to another party does not
necessarily mean that the function will be performed to a higher level of performance, and at the same
time you lose control over the service itself. If this is critical to your online service then perhaps this is
not what you want to do.

 Page 8

At the same time the tools available to host your own repository are improving, and current hosting tools
offer a similar level of functional interface to hosted solutions. In many ways the two approaches are
now similar in terms of operational complexity to the network operator. Does that mean we should all
host our own RPKI publication points so as to assume greater control over our own security
environment?

Well, maybe not.

The RPKI publication model is very rudimentary, and it strikes me as having a lot in common with the
web publication models before content distribution networks just took over the web world. Having
distinct RPKI publication points for each network means that in a few years we would be looking at
some 100,000 distinct RPKI publication points. And having achieved the goal of universal general
adoption (!) then each of these 100,000 networks would also be sweeping across all of these publication
points every two minutes. Right? So that’s 100,000 sweepers passing across 100,000 publication points
every 120 seconds. Yes, computers and fast and networks are big, but that seems a little too demanding.
Perhaps we should all use hosted services, so these 100,000 clients need to sweep across 10 or so
publication points every 120 seconds. Surely that’s an easier target? Well yes, but the implications of
having one of these hosting services drop out would have a dramatic impact on routing. After all, in a
universal adoption model the absence of credentials is as bad as fake credentials as everything that is
good is signed and everything else is bad. That’s what universal adoption really means. So, our tolerance
for operational mishaps in the routing security infrastructure now drops to zero, and we are now faced
with the challenge of making a large system not just operationally robust, but operationally perfect!

But let's not forget that we are dealing with signed objects, and as long as the object is validated though
your trust anchor then you know its authentic and cannot be repudiated. Who cares whether you get the
object from an elegant (and expensive) certificate boutique in the fashionable part of town or pick it out
of the gutter? Authenticity is not about where you found it, but whether you are willing to trust its
contents. If it validates its good! So why don't we get over all this hosted or distributed publication point
issue and just toss it all into the CDN world? For the CDN world these numbers of the order of millions
of objects with millions of clients is not only comfortably within current CDN capabilities, but so
comfortably within their capability parameters that the incremental load is invisible to them. As has been
observed in recent years in the conversation on the death of transit, who needs an Internet at all when
you have CDNs?

What’s Egress Filtering and why should I do it?
There is this theory that in this yet-to-happen nirvana when every network does ROV dropping that
when two networks become BGP peers then that peering session needs to have only one point of origin
validation filtering. Applying a filter on both export and import seems like just having double the amount
of fun any network should have.

What about the imperfect world of partial adoption?

Earlier this year one largish network enabled RoV filtering over incoming BGP updates, but then was
observed leaking routes with its own AS as the origin AS. Some of these leaked prefixes had ROAs, and
route origin validation would've classified these leaked routes as invalid. RFC8893 on "Origin Validation
for BGP Export" specifies that implementations must support egress filtering in additional to ingress
filtering. It uses a normative MUST to make the point, but fails to provide any further discussion as to
whether network operators should enable this function.

 Page 9

If we come back to the leaked route incidents, it's true that egress filtering would’ve prevented this leak.
Well not quite. It would’ve stopped leaking those prefixes where there was an extant ROA. Other
prefixes, and in a world of partial adoption there are probably many other prefixes, would still have
leaked. In general, it’s true that egress filtering stops a network from "telling evil" in as much as ingress
filtering stops a network from "hearing evil" and the combination of ingress and egress filtering is a
pragmatic measure when the network is unaware of the origin validation capabilities of a BGP peer. But
it’s a senseless duplication of effort when both networks who directly peering are performing origin
validation.

This occurs because RPKI validation is performed as an overlay to BGP rather than as an integral part
of the protocol. Neither BGP speaker is aware when the other is applying an RoV filter to the updates
they are announcing or hearing. This structural separation of RPKI from BGP leads to the duplication
of effort.

But perhaps there is more to this than simply ingress and egress filtering. It was evident that in leaking
these routes the network was announcing more than it had intended. But other networks had no way of
knowing that. Now in the magical nirvana of universal adoption of route origination all these forms of
route leak would be evident to all because of the origination mismatch. But that nirvana may be some
time off. IPv6 is taking more than two decades. DNSSEC is looking pretty similar. Gone are the days
when we could contemplate an uplift of the entire routing infrastructure in a couple of months.

So pragmatically we should ask ourselves a slightly different question: “In a world of partial adoption
how can we take further steps to mitigate route leaks?” Here some of the earlier efforts in RPSL might
be useful. Route Origin Authorisations describe a permission from a prefix holder for an AS to originate
a route for this prefix into the routing system. But that granted permission does not mean that the AS in
question has accepted this permission. Indeed, there is no way of knowing in the RPKI the AS’s view of
this permission. What is the set of prefixes that the AS intended to originate? If this information was
available, signed by the originating AS of course, then any other network could distinguish between an
inadvertent route leak and deliberate intention by passing all the route objects that they see as originating
from this AS through such a filter.

Are we ever going to secure the AS Path?

No!

Really?

With Path protection the entire RPKI structure is still ineffectual as a means of preventing hostile efforts
to subvert the routing system. Any would-be hijacker can generate a fake route and others will accept it
as long as an authorised AS is used as an originating AS. And poor use of the MaxLength parameter in
ROAs and excessive AS prepending in AS paths make route hijacking incredibly simple. If RPKI rout
origin validation is a routing protection mechanism, then its little different to wearing an impregnable
defensive shield made of wet lettuce leaves!

So let’s secure the AS Path and plug the gap!

Easier said than done, unfortunately.

The BGPSEC models of AS Path protection borrowed from the earlier s-BGP model. The idea is that
each update that is passed to an eBGP neighbour is signed by the router using the private key of the AS
in RPKI. But what is signed is quite particularly specified: It's the prefix, the AS Path and the AS of the

 Page 10

intended recipient of the update. Actually, it’s a bit more than this. It is signed over the signed AS Path
that this network received. As an update is propagated across the inter-AS space the signing level deepens,
This signing-over-signing makes any tampering with the AS Path incredibly challenging. Any rouge router
in the path cannot alter the AS path that they’ve received, as they have no knowledge of the private keys
of these ASes, and of course it cannot sign for future ASes that may receive the route object. And if it
does not sign this AS Path as it propagates it then the AS Path can no longer be validated. So in theory
its trapped and can't fake the AS Path.

All good, but there are quite a few practical problems with this approach:

- It's incredibly expensive to both calculate and validate these signatures. Even if you suppose that
we can use high speed crypto hardware there is still the challenge that we'd like to be able to
complete a full BGP session reset in no more than a couple of seconds. That’s of the order of
millions of crypto operations per second. That's hard to achieve on your everyday middle of the
road cheap router. “Impossible” springs to mind.

- Getting private keys to routers is a nightmare!

- Routing policy is not addressed. Protocol-wise is quite ok for a multi-homed customer to re-

advertise provider-learned route objects to another provider. Policy-wise it’s a real problem and
can be as bad, if not worse, than any other form of route leak.

- partial deployment is integral to this model. AS Path protection can only be afforded to internally

connected "islands" and only to prefixes originated within these "islands" and the system cannot
bridge gaps.

High cost. Low benefit.

It was never going anywhere useful.

An old idea first aired in soBGP from 20 years ago was dusted off and given a second airing. Here as AS
declares its AS neighbours in a signed attestation. The assumption here is that each AS makes an "all or
nothing" decision. Either an AS signs an attestation listing all of its AS neighbours or not. It can’t just
list a few. The implication is that if a party wants to manipulate an AS Path, then if it uses one of the
ASes that maintains on of these AS neighbour attestations then it must also add a neighbour AS into the
synthesised path (the all-or-none rule). The benefit to an AS of maintaining this neighbourhood
attestation is that its more challenging to include this AS into a synthetic path, as then an attacker also
has to include a listed neighbour AS. As more AS's create such neighbour attestations, they suck in their
neighbour ASes. The result is that it is still possible to lie in the AS Path, but the scope for such lies is
severely curtailed.

Such AS neighbour attestations can be handled in a manner analogous to ROAs. They are generated and
published by the AS owner. clients can collect and validate these attestations in the same way that they
collect and validate ROAs. And the result of a set of permitted AS adjacencies in AS Paths can be passed
to a router as an externally managed filter set, much the same as ROAs.

It's close to full signing of an AS Path but does not require universal adoption and does not extract a
heavy cost on the router.

It’s looking a whole lot more promising, but it still has that policy hole.

And this is where ASPA comes in. It’s still a draft in the SIDROPS working group, but the idea is simple.
A customer AS signs an attestation that lists all its provider and peer ASes (all or none, of course). Now

 Page 11

there is the concept of policy directionality and a BGP speaker can apply the "valley free" principle to
AS paths. It’s not comprehensive AS Path protection, but it further limits the space from which synthetic
AS Paths can be generated and it’s still useful even in the scenario of partial deployment.

But good as it sounds, I'm still not optimistic about its chances for deployment.

Not for any technical reason, but for the observation that in the engineering world we appear to have a
limited attention span, and we seem to get just one chance to gain attention and access to resources to
make the idea work. Route Origin Validation is what we came up with and all we came up with at the
time. Perhaps cynically, I suspect that it may be what we are stuck with for the foreseeable future.

Any more questions?

This story is far from over, but I trust that this has shed some light on the design trade-offs that were
behind the work so far, and point to some directions for further effort that would shift the needle with
some tangible improvements in the routing space.

 Page 12

Disclaimer

The above views do not necessarily represent the views or positions of the Asia Pacific Network
Information Centre.

Author

Geoff Huston B.Sc., M.Sc., is the Chief Scientist at APNIC, the Regional Internet Registry serving
the Asia Pacific region.

www.potaroo.net

