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Much the Internet operations and research world has gone virtual for 2020. 
Meetings continue to take place and while the level of interaction in these meetings 
is different, many of these meetings continue to engender useful conversations. In 
my case I’m interested in the infrastructure that binds the network together into a 
coherent whole, and I don't think I'm alone in finding this topic fascinating. In the 
Internet’s name space the DNS OARC meetings are a case where a concentrated 
burst of DNS tests the proposition that you just can't have too much DNS! OARC 
held its latest meeting on the 11th August with four presentations 
(https://indico.dns-oarc.net/event/36/). Here's my thoughts on the material presented 
at that meeting. 

 

DNS Resolvers and RPKI 
 
DNS security and BGP Routing security appear to address quite distinct threat realms, but the question being asked in 
a presentation on DNS Resolvers and RPKI ROA validation is to what extent resolvers should use ROAs to "protect" 
their service from being hijacked. 
 
The threat model envisaged here is that the service IP address of a distant open recursive resolver is hijacked, and client 
queries are silently redirected to the attacker's service. This is not a purely hypothetical scenario and there have been 
persistent reports of networks in various countries and circumstances advertising a false route for Google's public DNS 
service (8.8.8.8). Authoritative servers are also potential targets of such routing attacks, and a successful attacker could 
substitute its own answers in place of the those provided by the authentic authoritative DNS server by performing a 
route hijack. Should DNS Recursive Resolvers and Authoritative Servers set up RPKI credentials for the route objects 
associated with reachability to these services and thereby invoke the awesome power of RPKI to protect the integrity 
of their service?  
 
A study performed by researchers at the University of Amsterdam set up a couple of test servers, located on IP addresses 
that had valid and invalid RPKI ROA credentials, and then used RIPE Atlas to direct queries to these servers. The 
results as far as I can tell were inconclusive, and I suspect that my issues here lie in both the methodology of the 
experiment and the underlying nature of the supposed threat model that is proposed in this presentation 
(https://indico.dns-oarc.net/event/36/contributions/775/attachments/751/1281/RoV-protected-resolvers.pdf). 
 
Let me explain. 
 
In terms of the analytical methodology the issue stems in the use of RIPE Atlas data to make general observations about 
the state of the entire Internet. RIPE Atlas is a relatively small set of probes (some 11,000 in August 2020), located 
predominately in  Western Europe in locations that are often managed by so-called 'power users' rather than commercial 
service defaults (https://atlas.ripe.net/results/maps/network-coverage/). Atlas’ reach into the mobile Internet appears to be 
minimal, as is the reach into the considerable user populations of Asia, Africa, and the Americas. Atlas is an incredibly 
powerful and unique measurement tool for certain measurements, but to use this measurement platform to make generic 
"whole of Internet" conclusions does not withstand objective scrutiny in my opinion, as the data set is just too small a 
sample and the biases in the Atlas sample set cannot be easily corrected, if at all. The conclusions from this presentation 
regarding inferences for "all of Internet" behaviours seem to me to be difficult to sustain. 
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However, there are some deeper concerns here about the supposed threat model that this presentation sets out to 
investigate. In security areas there is often a knee-jerk reaction of "more is better". I’m guessing that there is a widely 
held belief that adding further security mechanisms makes the result more resilient, as the attacker is meant to breach 
all these mechanisms at the same time or in a particular sequence in order to execute a successful attack (in a so-called 
“defence in depth” scenario). That is often not the case in computer network scenarios, and often the system retains 
the risk of the weakest security measure, not the cumulative sum of all of the measures (the "weakest link" model of 
compounded security). 
 
Let's look at the scenario of using BGP route origination security in DNS resolution. What BGP route origination 
security is intended to do is to increase the assurance of IP destination address delivery. Your packets have a greater 
level of assurance that they will be delivered to the endpoint that has the IP address that matches the destination address 
in the data packet. It does not make any claim that the service host has not been compromised, nor does it make any 
claims at all about the integrity of the subsequent network transaction. It does not even claim to protect the ultimate 
delivery of the packet to its intended destination. All BGP route origination security can do is claim that the packet 
might be delivered to the network that is using one of a set of "authorised" Autonomous System (AS) numbers. It makes 
no claim about whether the network's use of that particular AS number is "authentic" or not, nor any claim as to the 
ultimate delivery of packets, nor any claim about the handling of the packet within the destination network, or even any 
claim about the handling of the packet in transit. in the inter-AS routing space. None of that. In the limited context of 
route origination validation, the term "routing security" is an oxymoron, even when considering the limited capability 
of the inter-domain routing system to provide any assurance of packet delivery and nothing else.  Another issue with 
BGP route origination security is one shared with many security frameworks. Generating secure credentials is just not 
enough. Other parties have to use these credentials to validate this information. It’s not just that address holders have 
to generate Route Origination Attestations, but routing systems need to use these attestations to validate BGP route 
objects. But even that is not enough. The security objective is to identify what’s bad, and the way we do this is to assume 
that if we cannot validate the information as “good” then it is assumed to be “bad”. This implies that generating routing 
credentials for BGP route origination is, in and of itself, largely an insubstantive action. Network operators need to 
deploy invalid route detection and filtering for this to have any effect at all.  
 
But does this matter? Does the path, or even the ultimate destination of the packet provide any assurance that the 
subsequent transaction if genuine or not? Let's phrase this question another way. When the data is digitally signed and 
the data can be verified as current, entire and authentic then does it really matter as to which source you used to obtain 
the data or the path through the network between you and the source? When you can validate the information that 
you’ve been provided as being current, complete and authentic the manner by which you’ve learned this information is 
a far lesser concern. In many ways routing security, however poor it may be, is only really a minor factor in the larger 
issue of information authenticity if you cannot otherwise verify the information directly. And even then, the limited 
assurances of route origination are an incredibly poor substitute! 
 
Let's look at the DNS in this light. The DNS is opaque in so many ways. Data provided from a recursive DNS resolver 
was itself provided to that recursive resolver in ways that are entirely opaque to the end client, and it really does not 
matter in the slightest what IP address was queried to retrieve the DNS data. The real concern is the authenticity and 
currency of the answer, irrespective of the manner of its delivery. We really cannot secure the path of information flow 
in the DNS as the DNS itself rejects such notions as path as an integral component of the integrity name resolution 
protocol. For that reason, DNSSEC was devised.  
 
The security response for the DNS is quite simple: the greatest gains in protecting the integrity of information in the 
DNS is to use DNSSEC to sign that information. And the greatest gain in protecting the end user from being deceived 
in the DNS is for users to perform their own DNSSEC validation of signed DNS responses. 
 
However, substitution in the DNS is not the only form of attack. There is also the issue of denial of service, where the 
fake route is intended to merely prevent the server from being reached at all. Is BGP route origination validation the 
best approach to mitigate of the risks of such denial-styled attacks? The DNS uses a number of approaches to improve 
the resiliency of name resolution and the mainstay here is that of diversity.  DNS zone is best served by a number of 
name servers, not just one. These name servers are best spread across multiple networks. (This works well up to a point. 
Two authoritative name servers are far more resilient in combination than one, and three are likely to be more resilient 
than two, but a million distinct nameservers is probably detrimental in most cases. Conventional operational wisdom in 
the DNS points to somewhere between two and four in most cases.) Similarly, stub resolvers are best configured with 
more than one recursive resolver. One of these recursive resolvers should be in a local network that is not BGP routed. 
(This is one scenario where anycast systems are less effective than diverse unicast services. If an attacker can redirect 
traffic intended for the anycast address, then the attack may affect part or even all of the anycast constellation.) 
 
Should DNS Recursive Resolvers and Authoritative Servers have their IP addresses “covered” by ROAs? My opinion 
is that in most cases it’s a task that can be pushed to the far end of the “to do” list. DNSSEC is by far the most effective 
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defence against substitution attacks and service diversity is the most effective response to denial of service attacks. I can 
think of one area where ROAs may be contemplated, and that is in the case of anycast service platform, most often 
seen in the “quad” anycast platforms used by some open Recursive Resolvers. In that scenario the vulnerability of the 
service to a routing attack is somewhat higher, and while a ROA in and of itself will not eliminate the threat of a denial 
attack, it can contribute to reducing the risk of such an attack to some (small) extent. 
 
So, did I like this presentation? Yes, oddly enough considering my comments here, I did. If the intent of these 
presentations is to prompt a critical response and think about the assumptions behind the work and think about the 
analytical methodology used in the work, then this presentation clearly achieved such an intent for me! 

Local Roots 
Wes Hardaker presented on current work on a running a local root publication service (https://indico.dns-
oarc.net/event/36/contributions/778/attachments/755/1278/2020-07-localroot-dns-oarc.pdf). 
 
It’s often said of any group that the conversations that they prefer to have are those which are well rehearsed within the 
group, as distinct from those which are more crucial for the group. It goes by various names, including “Bike Shedding” 
(yes, Google it!). In DNS circles the topic of the DNS root zone service is one of those conversations that has been 
rehearsed time after time and it continues to absorb our collective attention.  
 
The DNS root service framework we have today is in so many ways a victim of its history. The characteristics of the 
root service are the result of various constraints that were applicable in an earlier age and not necessarily relevant today. 
Why are there 13 root server letters in a root zone priming response? History. Why are the majority of the organisations 
that operate these root servers domiciled in the United States? History. Why are these organisations operating a root 
service without formal contracts with some entity? History. Why can’t [insert country name here] run a root service? 
History. 
 
That last question is perhaps the one key question that has been highly contentious in political circles. Many economies 
recognise the critical role played by the Internet and appreciate the somewhat catastrophic consequences if the Internet 
simply stopped working. The DNS is an intrinsic part of the essential infrastructure of the Internet, and the observation 
that tends to excite some concern is that almost every Internet transaction starts with a call to the DNS, and every DNS 
name resolution operation notionally starts with a query to the root zone. Were the root zone servers to become 
inaccessible, for whatever reason, then the DNS would stop functioning as and when cached data times out. This is 
perhaps a dire simplification, but it’s enough to get some national strategists all jittery!  
 
The political response has been along the lines of “We need to run our own root service! America has too many, and 
they should be shared around” While the number 13 is perhaps an arbitrary number these days when counting the 
number of named root servers, then the number 220 or so too allow a distribution of a named service instance in every 
CC instance is way too big, and technically it’s not easy to understand how we could augment the root service set by 
more than 200 entries and not require changes to large parts of the DNS infrastructure. Also, I’m not exactly convinced 
that the penguins on the Heard and McDonald Islands (country code HM) truly need to consider DNS resilience in the 
form of a dedicated instance of a root zone service! 
 
The engineering response to this issue has been anycast.  There may be 13 distinct root server names, and 26 distinct IP 
addresses (as they all now have IPv4 and IPv6 addresses), there are many more points of service delivery as every service 
operator now runs an anycast service constellation. Instances of the root service are now located in most economies 
(although country code HM is still missing out!), and in the larger economies there are multiple instances of services. 
These days the root service is smeared across much of the Internet with 1,097 service instances and few regions could 
make the case that they are disadvantaged in this respect (https://root-servers.org). 
 
But it’s still not enough. 
 
That’s not a technical or engineering statement. It's a political statement. 
 
There’s a strong reluctance to unwind history. It starts to ask some questions that are all but unanswerable. “Who’s in 
charge?” is a good place to start. Then we can ask “Who can unravel these historical constraints?”, and “Who would be 
responsible for setting up a new set of constraints?”  
 
If we can’t unwind these historical constraints and the anycast approach is not enough to answer some concerns with 
the current setup what else can we do? Here is where the concept of “Local Roots” comes in. This leverages an old 
technique in the DNS of so-called “unofficial secondaries” where a copy of a zone is loaded into a recursive resolver 
and is used to answer incoming queries. For the Root Zone this technique is described in RFC 8806. What this means 
is that almost any DNS resolver can be configured to operate with a local copy of the root zone and is not dependant 
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on cache lifetimes and constant query level accessibility to the existing root servers. It creates the appearance of a local 
root service that is not part of the anycast service constellation of the existing root servers. It is the technical answer to 
the political question, according to proponents of this approach. 
 
But it’s clumsy to use. 
 
This presentation described work that is underway to make this local root option easier to use. Dedicated services to 
publish the root zone via AXFR have been deployed, documentation prepared, and other refinements are proposed 
(https://localroot.isi.edu). It’s nicely thought through and if you are thinking of running a local root zone service on your 
resolver this is a really good tool to use.  
 
One aspect is still missing here, and that is the assurance of authenticity for the zone as a whole. How can a local root 
operator assure themselves that the copy of the root zone that they have obtained is genuine? Yes, the zone is signed, 
but not every element in the zone is signed (NS records, for example) and the client is left with the task of performing 
a validation of every digital signature in the zone, and at present there are some 1,376 of them. It would be far better to 
replace this tedious form of element-by-element validation with a single validation, and the work on a message digest 
for DNS Zones (https://tools.ietf.org/html/draft-wessels-dns-zone-digest-06) makes a whole lot of sense in this context. 
 
But I’m left with the question of why would I want to do this? Is this any more than just a palliative technical response 
to what is at its heart a political question?  
 
To describe my disquiet here let me digress for a second into delivery logistics. The two extreme approaches are “just 
in time” and “just in case”. “Just in time” tries to deliver goods to consumers at precisely the time they are needed and 
in exactly the quantity needed. The benefits of this approach are reduction of standing inventory costs and improved 
capital efficiency, or, in other words, lower costs of production. But “just in time” is susceptible to any interruptions in 
supply lines. “Just in case” supply lines create a local buffer of input goods so that any interruptions in supply lines can 
be absorbed in the short term by the local buffer stocks. It also allows a production facility to quickly respond to 
increased demand without having to immediately call for instant responses in the supply channels. But “just in case” 
comes at a cost of increased inventory.  
 
The DNS resolution function is operated as a hybrid of these two approaches but biased to a “just in time” model. A 
recursive resolver will only locally store responses once it has answered the first query by querying an authoritative 
server directly, and it will use this local store for a limited time “just in case” there are successive queries for the same 
name. The cost of obtaining the response has already been amortized in answering the initial query, so the local cache 
is relatively cheap to maintain. It's an approach that has proved to be easy to operate and astonishingly efficient. We’ve 
scaled the DNS by many orders of magnitude and still been able to operate the DNS infrastructure efficiently. 
 
So why would anyone want to intrude statically configured zones into resolvers “just in case” they get a query? It has 
higher overheads, requires more configuration detail and introduces new elements to a DNS resolution service. Why 
would anyone want to incur this additional cost? 
 
There is another way to achieve a similar technical outcome. The key observation is that the overwhelming majority of 
queries seen at the roots are junk domain names where the response is “no such domain” (or NXDOMAIN). 
Conventional caching at a recursive resolver is largely bypassed when the queries use random labels as their top-level 
domain, and they are passed inward to the root to resolve. Caching of DNSSEC negative response (NSEC caching), as 
described in RFC 8198 is a highly effective response to this. If the resolver cached the signed NSEC range response, 
then some 3,000 cache entries would describe the entire root zone. It would be populated on a “just in time” basis, 
using conventional DNS processing. And of course, it would effective for all DNSSEC-signed zones, not just the root. 
 
If what we are after is faster “NO!” responses form the DNS, then operating a local root is a clumsy and complex 
technical response in my opinion. DNSSEC validation, coupled with NSEC caching will achieve a similar result with a 
lot less manual configuration of the resolver. 
 
If what we are after is a technical solution to a political desire to unravel the complex set of interdependencies that make 
each national realm of the Internet totally dependent on external elements, then the root zone of the DNS is a tiny part 
of a much larger set of interwoven dependencies. 

DNS and UDP Fragmentation 
For decades UDP transport has been the heart of the DNS resolution protocol. This lightweight transaction protocol 
with no session overheads has allowed the DNS to scale without imposing a major cost on the network, on servers nor 
on clients, and do so while keeping within performance parameters that make DNS name resolution times largely 
invisible to most users most of the time. However, UDP’s strength lies in small payloads. Once the payload is larger 
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than a single IP packet then IP fragmentation is needed. In both IPv4 and IPv6 packet fragmentation is a vexed topic. 
It's a security nightmare and firewalls often default to “when in doubt, discard!” rules for packet fragments. There is 
also the issue of IPv6 extension header processing, path MTU discovery and management, ICMP message integrity, to 
name a few. It’s not that IP fragmentation doesn’t work all of the time. It can work. Some of the time. The problem is 
detecting when it doesn’t work and figuring out what to do next. 
 
In IPv4 the protocol specification still states that a host is not required to accept an IP datagram larger than 576 octets 
in size. These days we use a de facto assumption that the maximum Ethernet packet size of 1,500 octets is a universal 
constraint and our servers are commonly configured with a 1,500 octet MTU. The assumption being that if the system 
is located behind a constrained network where the MTU is smaller (tunnels are a good example) then it’s up to the hosts 
behind the tunnel to adapt. The rest of the Internet just doesn't care. 
 
So if 1,500 octets is the defacto maximum packet size in today’s public Internet, what’s the smallest size? In IPv4 its 28 
octets, while Ipv6 defines a minimum size of 1,280 octets? (Why 1,280 and not any other number is because of an 
arbitrary choice in the IPv6 design process. They wanted a number less than 1,500 because of the issue of packet 
encapsulation, but they wanted it to be substantially larger than IPv4’s setting of 28. The number 1,280 came about 
because it's the sum of 1,024 and 256. Nothing much deeper than that!) 
 
The question is: “What’s a reliable setting for an IP packet size in the DNS that maximises the likelihood of delivery?” 
Or, in other words, What’s an EDNS(0) default buffer size setting that can be used with some confidence if we want to 
avoid packet-size related loss in the network?” The values they tested range from 1,204 to 1472 in IPv4 and 1,220 to 
1,452 in IPv6. They tested both a path from the Atlas probe to their test serv er, testing the behaviour of the end host 
environment and the path from some open recursive resolvers to the authoritative server. 
 
This study used the RIPE Atlas measurement platform, and the previous methodology comments apply here as well.  
 
The results from this study were certainly surprising. They found a drop rate of 19% for 1,500 octet IPv4 DNS packets 
on the server to probe path, and a 25% drop rate for IPv6 packets of the same size. In IPv4 the drop rate tapered off 
to a little over 1% at the 1,428 octet size, while the drop rate remained close to 4% for Ipv6 packets greater than 1,280 
octets in size. For 1,280 octet IPv6 packets the drop rate was 1.7%. This is a very high drop rate, but it does need to be 
put into context. There are few DNS transactions outside of DNSSEC-enabled responses where the DNS response size 
exceeds 1,000 octets. If the responses from the root servers are any guide here, the are remarkably few responses from 
the root servers that exceed 1,184 octets of payload (https://stats.dns.icann.org/stats/d/wom-ext-5minagg-
rssac/rssac?orgId=1). So while the UDP packet drop rate for larger DNS responses being set to stub resolvers is very 
high according to this study, the number of such responses that would reasonably be expected to occur in the 
conventional use of the DNS is extremely low. Where this might become a consideration is the scenario where DNSSEC 
validation is moved from recursive resolvers out to the stub resolvers in large volumes.  
 
When the study tested the path between the authoritative server and open recursive resolvers the picture was 
significantly improved. The failure rate for 1,500 and 1,492 octet IPv4 packets was around 2.7%. This halved for packets 
does to 1,260 octets in size and halved again to some 0.7% for packets of size 1,260 or less. Curiously, the IPv6 results 
showed a similar pattern, but with lower drop drats. Larger (1,492 – 1500 octets) had a 1.4% drop rate, dropping to 
around 0.7% for sizes larger than 1,280 octets and then 0.4% for smaller packets. 
 
It’s challenging to place these results into context. The relatively small set of Atlas probes opens the results up to 
experimental uncertainty, and it is challenging to calculate this uncertainty level in the absence of much larger scale 
comparable measurements. It does call into question our defacto assumption that packets of 1,500 octets in size is a 
robust choice of the default IP packet size for the public Internet, but the limited scope of the experiment sample size 
makes this conclusion hard to put into context. 

The ”Core” of the DNS 
I recall a presentation I heard some years ago that looked at the resilience of a country’s public network services. It 
pointed out that while there were many agencies and many channels of publication, many of these publication channels 
used the same hosting provider, the same DNS provider and the same access provider. The underlying infrastructure 
was in fact built on a restricted set of platforms and the entire public system was more vulnerable than many had 
supposed. 
 
Ed Lewis is performing a comparable form of study of the DNS top level zone infrastructure. He is assembling a 
database of elements of this space, including the registries used, the nameservers used and the IP addresses and routing 
data. He also envisages collecting information on DNSSEC crypto algorithms used to sign the second level zones. 
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It’s all a work-in-progress at this stage so the presentation looked at the methodology of data collection. The interesting 
aspect of this work lies in the future phase of data analysis. Its abundantly clear that aggregation and the hollowing out 
of diversity in service provision is happening in many aspects of today’s Internet. Without studies such as the one 
proposed here it is not so clear if the same consolidation is happening in the upper layers of the DNS. 
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